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Semigroups

Definition (Semigroup)
A semigroup (S, @) is a non-empty set S with a binary operation such

that

ASSOCIATIVE ad(bec)=(apb)dc

S @ where

N°° | min

N° | max

Neel +

2W U

2 n

S* o | (abco de = abcde)
S | left (aleft b= a)
S | right (aright b= b)
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Special Elements

o S D | a|w
Definition N© Tmin Too T 0
@ « € Sis an identity if for all N© | max | 0 | oo
acsS No© + 0 | o
Wl U || w
ada=aoadba=ad«a 2W N W {}
@ A semigroup is a monoid if it S| o |
has an identity. g I'e]:t
@ w is an annihilator if for all ng
ac$S
w=wda=adw )
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Important Properties

Definition (Some Important Semigroup Properties)

COMMUTATIVE : a®b = b®da
SELECTIVE : a®b € {a b}
IDEMPOTENT : a®a = a

S D COMMUTATIVE | SELECTIVE | IDEMPOTENT
N | min * * *
N | max * * *
N | + *

2w U * *

oW N * *

S* o

S | left * *

S | right * *
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Order Relations

We are interested in order relations <C S x S

Definition (Important Order Properties)

REFLEXIVE
TRANSITIVE
ANTISYMMETRIC

a<a
a<bAab<c—a<c
a<banb<a—a=b>b

TOTAL a<bvb<a
partial preference total
pre-order order order order
REFLEXIVE * * * *
TRANSITIVE * * * *
ANTISYMMETRIC * *
TOTAL * *
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Canonical Pre-order of a Commutative Semigroup
Suppose @ is commutative.
Definition (Canonical pre-orders)

a<fb = IceS:b=asdc
a<tb = 3IceS:a=bac

Lemma (Sanity check)
Associativity of & implies that these relations are transitive.

Proof.

Note that a <F b means 3¢ € S: b= a ¢y, and b <Z c means
dc, € S:c=bd cy. Letting c3 = ¢1 @ ¢, we have
c=bac=(a®c)dc=ad(c1dc)=adcs. Thatis,

Jdoz € S:c=a®d cs, so0 a<f c. The proof for <L is similar.
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Canonically Ordered Semigroup

Definition (Canonically Ordered Semigroup)

A commutative semigroup (S, @) is canonically ordered when a<f ¢
and a <% c are partial orders.

Definition (Groups)

A monoid is a group if for every a € S there exists a a~' € S such that
asa'=a'ga=a.
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Canonically Ordered Semigroups vs.
Groups [Car79, GM08]

Lemma (THE BIG DIVIDE)
Only a trivial group is canonically ordered.

Proof.

lfa, be S,thena=agda=(bob ")oa=bo(b'@a)=bac,
forc=b~' & a, so a<} b. In a similar way, b <f a. Therefore
a=b. O

v
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Natural Orders
Definition (Natural orders)
Let (S, &) be a semigroup.

a<tb = a=aaob
a<fb = b=aob

Lemma

If & is commutative and idempotent, then a<? b <= a <2 b, for
De{R, L}.

Proof.

a<fb < b=aoc=(ava)dc=ad(adc)
= aob <= a<fbp

adtb < a=baoc=(bob)ec=bd(bac)
= boa=adb = a<ghb

’_‘
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Special elements and natural orders
Lemma (Natural Bounds)

o Ifa exists, then for all a, a <% o and a <f
e Ifw exists, then for all a, w <L aanda <f w
@ Ifa and w exist, then S is bounded.

w <L g <L

@ =g &
aggaggw

Remark (Thanks to lljitsch van Beijnum)
Note that this means for (min, +) we have

0 <L. g <L

IBIH Eln ce
0 <m|n a < O

—min

and still say that this is bounded, even though one might argue with the
terminology!

v
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Examples of special elements

S ® |a|w|[<h| <k
NU{oco} [min oo | 0| < | >
NU{oo} max| 0 [c0| > | <

PW) | u [{} W] 2| C
PW) | n [ w|{] c|o
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Property Management

Lemma
LetD e {R, L}.
@ IDEMPOTENT((S, @)) <= REFLEXIVE((S, <B))

© COMMUTATIVE((S, ¢)) = ANTISYMMETRIC((S, gg))
@ SELECTIVE((S, ®)) <= TOTAL((S, <2))

Proof.
Q a2<la—= a=aoa,

Q@ a<tbrb<la << a=asbrb=bsa= a=b
Q@ a=asbvb=asb < a<ibvb<ia
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Direct Product of Semigroups

Let (S,®g) and (T, &71) be semigroups.

Definition (Direct product semigroup)

The direct product is denoted (S, ®s) x (T,®7) = (S x T,®), where
@ = dg x @7 is defined as

(s1,t1) ©(S2, ) = (S1 Ds S2, 1 DT b).
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Lexicographic Product of Semigroups

Definition (Lexicographic product semigroup (from [Gur08]))

Suppose S is commutative idempotent semigroup and T be a monoid.
The lexicographic product is denoted (S, ®s) X (T,@1) = (S x T, ®),
where & = @g X @7 is defined as

(81 ®Bs S2,l1 BT ) S1 =81 BsS2 =5

. s So, t S1 =85 BgSp # S
(51, 1)3(50, 1) = (s1 ®s Sz, ty) 1=510sS2 # S2
(s1 ®s S2, ) S1 #81BPsS2 =S

(s1 ®s S2,07) otherwise.
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Semirings

(S, ®, ®, 0, 1) is a semiring when
@ (S, @, 0) is a commutative monoid

@ (S, ®, 1)is a monoid

@ 0is an annihilator for ®

and distributivity holds,

LD : a®(bec) = (avb)d(a®c)
RD : (@aeb)®c = (avc)d(b®c)
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A few examples

name S P, ®
sp N min  +
bw N max min

possible routing use
minimum-weight routing
greatest-capacity routing
most-reliable routing
usable-path routing
shared link attributes?
shared path attributes?

rel [0, 1] max X
use {0, 1} max min
2w U N
2w n U

SO o o o g|ol
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Encoding path problems

° (S, @ ®, 0, 1) asemiring
@ G=(V, E) adirected graph
@ w < E — S aweight function

Path weight
The weight of apath p = iy, o, I3, -+ - , Ik IS
w(p) = w(ir, i2) @ w(iz, i3) ® -+ @ W(ik_1, lx)-

The empty path is given the weight 1.

Adjacency matrix A

w(i, j) if(i, j) € E,

0 otherwise
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The general problem of finding globally optimal paths

Given an adjacency matrix A, find R such that for all /i, j € V

R(, j)= @ wip)

PEP(i, J)

How can we solve this problem?
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Powers and closure
e (S, @ ®, 0, 1) asemiring

Powers, a*
al =1
ak+1 = a® ak
Closure, a*
a = adeoa oo - 9o
Fun Facts [Con71]
(a* S — a*

(a®b)* — (a*b)*a*
(ab)* = 1@ a(ba)'b

T. Griffin (cl.cam.ac.uk) An Algebraic Approach to Internet Routing D¢ T.G.Griffin@©2011 19/54



Stability

Definition (g stability)

If there exists a g such that a9 = al9t1), then aiis g-stable. Therefore,
a* = a9, assuming & is idempotent.

v

Fact 1
If 1 is an annihiltor for @, then every a € S is 0-stable!
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Lift semiring to matrices

e (S, @, ®, 0, 1) asemiring
@ Define the semiring of n x n-matrices over S : (M,(S), @, ®, J, 1)

@ and ®
(AeB)(i, j) = A(, ))®B(, ))
(A®B)(i, j) = P A(, q9)®B(q, ))
1<g<n
Jandl
J(i, j) = 0

T (ifi=))

0 (otherwise)
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M,(S) is a semiring!

Check (left) distribution
A (BaC)=(A®B)® (A®C)

(A® (B® C))(i, j)
= P Al 9)eB&C)q,))

1<g<n

= P AG 9= (B(q, )&, )
1<g<n

= P (A(, 9)®B(q, ) ® (A(i, 9) ® C(q, )))
1<g<n

= (P Al 9@B(g. )@ ( P A, 9)®C(q. )
1<q<n 1=qsn

= (AoB)® (A®C))(, j)
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On the matrix semiring

Matrix powers, A%
A0 = |

ARHT = A Ak

Closure, A*
AK) = 1oA"oA2 - @ AK

A* = loA'oA2 .. -pAF ...

Note: A* might not exist (sum may not converge)
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Fact 2

If Sis O-stable, then M,(S) is (n — 1)-stable. That is,
A* :A(n—1) :IEBA1 @AZ@‘_.®AH—1

T. Griffin (cl.cam.ac.uk) An Algebraic Approach to Internet Routing Dz



Computing optimal paths

@ Let P(i,j) be the set of paths from j to j.
@ Let PX(i,}) be the set of paths from i to j with exactly k arcs.
@ Let P(K(j, j) be the set of paths from i to j with at most k arcs.

Theorem
(1) AGH) = P wp
pEPK(i, j)
2 A6 ) = @ wip)
peP(i, j)
®) AG) = P wp

peP(i, J)
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Proof of (1)

By induction on k. Base Case: k = 0.

PO(i, i) = {e},
so A°(i i) =I(i, i) = T = w(e).

And i # j implies PO(i, ) = {}. By convention

D wip) =0=1(i, ).

pe{}
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Proof of (1)

Induction step.
AL ) = (Ao AR, ))

= P A(, 92 A q. ))

1<g<n
- D aigel @ we)
1<q<n pePX(q, j)

= P P AL gewp)

1=9=npeP(q, )

- b D w w(p)

(i, Q)€E pePk(q.)

= EB w(p)

pePKTI(i, j)
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Example with (2{2 b:¢t 0 )

We want matrix A* to solve this
/C?\ global optimality problem:
a abce c wre
ta) {abc} te) A G )= () wip),
WX e @01
where w(p) is now the union of all
{ab} {b} edge weights in p.

®

For x € {a, b, c}, interpret x € A*(i, j) to mean that every path from i
to j has at least one arc with weight containing x. J
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(2fa b ¢t "N U) continued ...

The matrix A*

1 2 3 4 5

{+ { {6 {bp {
{+ { {6 {b} {}
{by {b} {} {b} {b}
{b} {b} {b} {} {b}
0 O 6 {r {

a ~ W N =

T. Griffin (cl.cam.ac.uk) An Algebraic Approach to Internet Routing D¢ T.G.Griffin@©2011 29/54



Partition Equation (left)

X = (AX) 1 ]

<X1,1 X1,2)

Xoq | Xop2

_ ((A1,1X1,1)®(A1,2X2,1)@|1,1 (A1,1X1,2)  (A1,2X22) )
(A2,1X1,1) @ (A22Xz21) | (A21X12) @ (Ag2X22) @ l22
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We now have four (left) equations

Xi1 = (A11X11) @ (A12X21) @ 1y 4
Xo1 = (A21X11)® (Az2X21)
Xi2 = (A11X12) ® (A12Xz2)
Xoo = (A21X12) ® (A22X02) D oo

@ Solve for X2,1 with A§?2A271X171
@ Therefore
Xy, 1

= (A1,1X1,1) @ (A1,2AZ72A2’1X1,1) D |1’1
= (A1 D A12A5,A2 )X 1 Dy 5

@ Solve for X1’1 with (A1’1 @ Aq ’2A372A2,1 )*
@ So X2,1 is solved with A§72A271 (A1,1 @ Ay ’2A;72A271 )*
@ In a similar way, solve for X; > and X5 »

T. Griffin (cl.cam.ac.uk) An Algebraic Approach to Internet Routing Dz T.G.Griffin©2011

31/54



This gives a partition of A* [Con71]

A*

(A1 @ A12A3 A1) | Aj Ar2(A22 @ AgiAf (Ag2)"
A5 oAz 1(A11 @ A1 2AS A2 1)" | (Az2 © A2 1A] A12)*
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Trivial example of forwarding = routing + mapping

3 > d,

A

Hq@_ %
RN

MR K w2
w=R8 Q3L

Mapping matrix

di
1[5 6
2(3 7
matrix | solves F = 3|55
A* |R=(A@R)al 4191
A*M |F=(AxF)oM 502 3
Forwarding matrix
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Routing Matrix vs. Forwarding Matrix (see [BG09])

@ Inspired by the the Locator/ID split work
» See Locator/ID Separation Protocol (LISP)

@ Let’s make a distinction between infrastructure nodes V and
destinations D.

@ Assume VN D= {}
@ Mis a V x D mapping matrix

» M(v, d) # co means that destination (identifier) d is somehow
attached to node (locator) v
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More Interesting Example : Hot-Potato Idiom

2/5 |

i

T. Griffin (cl.cam.ac.uk)

(0, 3) » o

4 (0,2

=
|
a A~ W N =

-
I
a A~ W N =

Mapping matrix

di o
(0?03) z
~ (1)
(0,2) (0, 3)
di o
(2,3) (4,3)
(0,3) (4,3)
(3,2) (3,3)
(7,2) (0,1)
(0, 2) (0, 3)

Forwarding matrix

An Algebraic Approach to Internet Routing Dz

T.G.Griffin@©2011

35/54



General Case

G = (V,E), nis the size of V.
A n x n (left) routing matrix L solves an equation of the form
L=(A®L)al,

over semiring S.

D is a set of destinations, with size d.

A n x d forwarding matrix is defined as

F=L>M,

over some structure (N, O, ), where > € (S x N) — N.
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forwarding = routing + mapping

Does this make sense?
O

F(i, d) = (L>M)(/, d) =Y _L(i, g)>M(q, d).
qeV

@ Once again we are leaving paths implicit in the construction.

@ Forwarding paths are best routing paths to egress nodes, selected
with respect O-minimality.

@ [-minimality can be very different from selection involved in
routing.
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When we are lucky ...

matrix | solves
A* L=(AxL)sl
A*>M | F=(AxF)OM

When does this happen?
When (N, O, ) is a (left) semi-module over the semiring S.
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(left) Semi-modules

° (S, @, ®, 0, 1)is a semiring.

A (left) semi-module over S

Is a structure (N, O, >, Oy), where
@ (N, O, Op) is a commutative monoid
@ >isafunction> e (Sx N)— N
@ (avb)>m=ar (bx>m)
@ 0> m=0yp
@ S>> 6/\/ = 6N
e1>m=m
and distributivity holds,

Lb : s>(mOn) = ( (
RD : (s@t)pm = (s>m)O(t>m)
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Example : Hot-Potato

S idempotent and selective

S = (S, s, ®s)
T = (T, %7, ®7)
Dt € SX(SxT)—=(SxT)
S1 D (S2, 1) = (81 ®s82, 1)

Hot(S, T) = (Sx T, &, ),

where & is the (left) lexicographic product of &g and ®7.

Define >y, on matrices

—

D

(L >np M)(7, d) = > L(J, q) > M(q, d)
qeVv
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Sanity Check : does this implement hot-potato?

Define M to be simple if either M(v, d) = (1g, t) or
M(v, d) = (cog, ooT) -

(L &1y M), 0)

@D
= Z L(Ia Q) D> fst M(q7 d)
geVv

&
= Z (L(Iv q) ®s S, t)

&
- S (L(, q), t)  (if Mis simple)
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Example of hot-potato forwarding

ad; [e )
- (0, 3) »|d T oo o0
(0.3) = d 2] (0,3) oo
‘ M = 3 00 00

4

5

2/5 4 (0,‘2) o (0,1)

BTN
H Mapping matrix

6 4 (0, 3) a d>
Y

oy

matrix | solves
A* L=(AxL)al Forwarding matrix
A >y M | F= (A, F)EM

'n
I

a A O N =

Nwon

NN W W
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Example : Cold-Potato

T idempotent and selective

S = (S, ®s, ®s)
T = (T7 b7, ®T)
Dt € Sx(SxT)—=(SxT)

S1 Do (S2, ) (51 ®s 82, 1)

Cold(S, T)=(Sx T, &, >1),

where @ is the (left) lexicographic product of &5 and ® 7.

Define >, on matrices

=

5%
(L B>cp M)(’: d) = Z L(Ia q) D> fst M(Q7 d)
qeV
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Example of cold-potato forwarding

dj d>

0,3) ~ d e o
( ) A1 2(1(0,3) o
M = 3| 00

4| oo (0,1)

51(0,2) (0,3)

1 —> 3 —_ ’ 0
Mapping matrix

dj d>
'w 1[(4,2) (5, 1)
-(0,1)>d2 2 (472) (9’1)
F = 3[(3,2) (4 1)
41(7,2) (0,1)
51(0,2) (7, 1)

matrix | solves
A* L=(AxL)asl Forwarding matrix
A >,M|F=A>,FOM
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A simple example of route redistribution

QI 2 3 3 20 G» 10 e

We will will use the routing and mapping of G, to construct a
forwarding F», that will be passed as a mapping to Gj ... J
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A simple example of route redistribution
d
Ak
(00, 8 (00, 2)

@ G is routing with the bandwidth semiring bw
@ G is forwarding with Cold(bw, sp)

@ G; is routing with the bandwidth semiring sp
@ G is forwarding with Hot(sp, Cold(bw, sp))
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First, construct F»

QI 2 3 3 20 G 10 BE?

6 7 8 9 o b
6 [ co 20 30 20 6 [ (00,3) o
L. _ 7]20 cc 20 40 Mo_ 7|
27 5(30 20 oo 20 27 8 | (00,2) (o0, 1)
9120 40 20 ~ 9 00 (o0, 1
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First, construct F»

d A
6 [ (30,2) (30, 1)

Fe=levaMe= | () (o)
9 [ (20,2) (oo, 1)
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Now, ship it over to Go as a mapping matrix, using B>
a
Ak
(00, 8 (o0, 2)

jS 2 3 3 20 G 10 o

g 83888 ~

(O, (
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Now, ship it over to Go as a mapping matrix, using B>
a
Ak
(00, 8 (o0, 2)

jS 2 3 3 20 G 10 o

d a

1 o0 o0

2 o0 ©.¢)

M1 :B172<]hpF2: 3 o0 o0
4| (0,(30,2) (0, (30, 1))

5 | (0,(20,2)) (0O, (40,1))
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Finally, construct a forwarding matrix F; for G;
ol
Ak
(00, 8 (o0, 2)

jS 2 3 3 20 G, 10 e

]
0
3
1
5
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Finally, construct a forwarding matrix F; for G;
ol
Ak
(00, 8 (o0, 2)

@( 2 3 3 20 G 10 e

d do
1 T (5 (30,2) (5, (40, 1)
2 | (2,(30,2)) (2 (30,1)
F1 = L1 >hp M1 = 3 (4, (30, 2)) (4, (40, 1)
4| (0,(30,2)) (0,(30,1)
5 | (0, (20,2)) (0, (40,1)
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