An Algebraic Approach to Internet Routing Day 1

Timothy G. Griffin

timothy.griffin@cl.cam.ac.uk Computer Laboratory University of Cambridge, UK

School of Mathematical Sciences Colloquium
The University of Adelaide
22 June, 2011

Semigroups

Definition (Semigroup)

A semigroup (S, \oplus) is a non-empty set S with a binary operation such that

ASSOCIATIVE :
$$a \oplus (b \oplus c) = (a \oplus b) \oplus c$$

S	\oplus	where
\mathbb{N}_{∞}	min	
\mathbb{N}_{∞}	max	
\mathbb{N}_{∞}	+	
2^W	U	
2^W	\cap	
\mathcal{S}^*	0	$(abc \circ de = abcde)$
S	left	(a left b = a)
S	right	(a right b = b)

Special Elements

Definition

• $\alpha \in S$ is an identity if for all $a \in S$

$$\mathbf{a} = \alpha \oplus \mathbf{a} = \mathbf{a} \oplus \alpha$$

- A semigroup is a monoid if it has an identity.
- ω is an annihilator if for all $a \in S$

$$\omega = \omega \oplus \mathbf{a} = \mathbf{a} \oplus \omega$$

S	\oplus	α	ω
\mathbb{N}_{∞}	min	∞	0
\mathbb{N}_{∞}	max	0	∞
\mathbb{N}_{∞}	+	0	∞
2 ^W	U	{}	W
2^W	\cap	W	{}
\mathcal{S}^*	0	ϵ	
S	left		
S	right		

Important Properties

Definition (Some Important Semigroup Properties)

COMMUTATIVE : $a \oplus b = b \oplus a$ SELECTIVE : $a \oplus b \in \{a, b\}$ IDEMPOTENT : $a \oplus a = a$

S	\oplus	COMMUTATIVE	SELECTIVE	IDEMPOTENT
\mathbb{N}_{∞}	min	*	*	*
\mathbb{N}_{∞}	max	*	*	*
\mathbb{N}_{∞}	+	*		
2 ^W 2 ^W	U	*		*
2 ^W	\cap	*		*
S^*	0			
S	left		*	*
S	right		*	*

Order Relations

We are interested in order relations $\leq \subseteq S \times S$

Definition (Important Order Properties)

REFLEXIVE : $a \le a$

TRANSITIVE : $a \le b \land b \le c \rightarrow a \le c$

ANTISYMMETRIC : $a \le b \land b \le a \rightarrow a = b$

TOTAL : $a \le b \lor b \le a$

	pre-order	partial order	preference order	total order
REFLEXIVE	*	*	*	*
TRANSITIVE	*	*	*	*
ANTISYMMETRIC		*		*
TOTAL			*	*

Canonical Pre-order of a Commutative Semigroup

Suppose \oplus is commutative.

Definition (Canonical pre-orders)

$$a \leq_{\oplus}^{R} b \equiv \exists c \in S : b = a \oplus c$$

 $a \leq_{\oplus}^{L} b \equiv \exists c \in S : a = b \oplus c$

Lemma (Sanity check)

Associativity of \oplus implies that these relations are transitive.

Proof.

Note that $a ext{ } ext{$\supseteq$_{\oplus}$ } b$ means $\exists c_1 \in S : b = a \oplus c_1$, and $b ext{$\supseteq$_{\oplus}$ } c$ means $\exists c_2 \in S : c = b \oplus c_2$. Letting $c_3 = c_1 \oplus c_2$ we have $c = b \oplus c_2 = (a \oplus c_1) \oplus c_2 = a \oplus (c_1 \oplus c_2) = a \oplus c_3$. That is, $\exists c_3 \in S : c = a \oplus c_3$, so $a ext{$\supseteq$_{\oplus}$ } c$. The proof for $ext{$\supseteq$_{\oplus}$ } is$ similar.

Canonically Ordered Semigroup

Definition (Canonically Ordered Semigroup)

A commutative semigroup (S, \oplus) is canonically ordered when $a \leq_{\oplus}^{R} c$ and $a \leq_{\oplus}^{L} c$ are partial orders.

Definition (Groups)

A monoid is a group if for every $a \in S$ there exists a $a^{-1} \in S$ such that $a \oplus a^{-1} = a^{-1} \oplus a = \alpha$.

Canonically Ordered Semigroups vs. Groups [Car79, GM08]

Lemma (THE BIG DIVIDE)

Only a trivial group is canonically ordered.

Proof.

If
$$a, b \in S$$
, then $a = \alpha_{\oplus} \oplus a = (b \oplus b^{-1}) \oplus a = b \oplus (b^{-1} \oplus a) = b \oplus c$, for $c = b^{-1} \oplus a$, so $a \leq_{\oplus}^{L} b$. In a similar way, $b \leq_{\oplus}^{R} a$. Therefore $a = b$.

Natural Orders

Definition (Natural orders)

Let (S, \oplus) be a semigroup.

$$a \leq_{\oplus}^{L} b \equiv a = a \oplus b$$

 $a \leq_{\oplus}^{R} b \equiv b = a \oplus b$

Lemma

If \oplus is commutative and idempotent, then $a \leq_{\oplus}^{D} b \iff a \leq_{\oplus}^{D} b$, for $D \in \{R, L\}$.

Proof.

$$a \trianglelefteq_{\oplus}^{R} b \iff b = a \oplus c = (a \oplus a) \oplus c = a \oplus (a \oplus c)$$

$$= a \oplus b \iff a \leq_{\oplus}^{R} b$$

$$a \trianglelefteq_{\oplus}^{L} b \iff a = b \oplus c = (b \oplus b) \oplus c = b \oplus (b \oplus c)$$

$$= b \oplus a = a \oplus b \iff a \leq_{\oplus}^{L} b$$

Special elements and natural orders

Lemma (Natural Bounds)

- If α exists, then for all a, $a \leq_{\oplus}^{L} \alpha$ and $\alpha \leq_{\oplus}^{R} a$
- If ω exists, then for all $\mathbf{a},\,\omega\leq_{\oplus}^{\mathbf{L}}\mathbf{a}$ and $\mathbf{a}\leq_{\oplus}^{\mathbf{R}}\omega$
- If α and ω exist, then S is bounded.

$$\begin{array}{cccc} \omega & \leq^{\mathbf{L}}_{\oplus} & \mathbf{a} & \leq^{\mathbf{L}}_{\oplus} & \alpha \\ \alpha & \leq^{\mathbf{R}}_{\oplus} & \mathbf{a} & \leq^{\mathbf{R}}_{\oplus} & \omega \end{array}$$

Remark (Thanks to Iljitsch van Beijnum)

Note that this means for (min, +) we have

$$\begin{array}{ccccc}
0 & \leq_{\min}^{L} & a & \leq_{\min}^{L} & \infty \\
\infty & \leq_{\min}^{R} & a & \leq_{\min}^{R} & 0
\end{array}$$

and still say that this is bounded, even though one might argue with the terminology!

Examples of special elements

S	\oplus	α	ω	$\leq^{\mathrm{L}}_{\oplus}$	$\leq^{\mathbf{R}}_{\oplus}$
$\mathbb{N} \cup \{\infty\}$	min	∞	0	\leq	\geq
$\mathbb{N} \cup \{\infty\}$	max	0	∞	\geq	\leq
$\mathcal{P}(W)$	U	{}	W	\supseteq	\subseteq
$\mathcal{P}(W)$	\cap	W	{}	\subseteq	⊇

Property Management

Lemma

Let $D \in \{R, L\}$.

- **1** IDEMPOTENT $((S, \oplus)) \iff \mathsf{REFLEXIVE}((S, \leq^D_{\oplus}))$
- $lackbox{2}$ COMMUTATIVE $((S,\,\oplus)) \implies$ ANTISYMMETRIC $((S,\,\leq^D_\oplus))$
- $lackbox{0}$ SELECTIVE $((S, \oplus)) \iff \mathsf{TOTAL}((S, \leq^D_\oplus))$

Proof.

Direct Product of Semigroups

Let (S, \oplus_S) and (T, \oplus_T) be semigroups.

Definition (Direct product semigroup)

The direct product is denoted $(S, \oplus_S) \times (T, \oplus_T) = (S \times T, \oplus)$, where $\oplus = \oplus_S \times \oplus_T$ is defined as

$$(s_1, t_1) \oplus (s_2, t_2) = (s_1 \oplus_S s_2, t_1 \oplus_T t_2).$$

Lexicographic Product of Semigroups

Definition (Lexicographic product semigroup (from [Gur08]))

Suppose S is commutative idempotent semigroup and T be a monoid. The lexicographic product is denoted $(S, \oplus_S) \times (T, \oplus_T) = (S \times T, \oplus)$, where $\vec{\oplus} = \oplus_S \times \oplus_T$ is defined as

$$(s_1,t_1) \vec{\oplus} (s_2,t_2) = egin{cases} (s_1 \oplus_S s_2, t_1 \oplus_T t_2) & s_1 = s_1 \oplus_S s_2 = s_2 \ (s_1 \oplus_S s_2, t_1) & s_1 = s_1 \oplus_S s_2
eq s_2 \ (s_1 \oplus_S s_2, t_2) & s_1
eq s_1 \oplus_S s_2
eq s_2 \ (s_1 \oplus_S s_2, \overline{0}_T) & ext{otherwise.} \end{cases}$$

Semirings

$(S, \oplus, \otimes, \overline{0}, \overline{1})$ is a semiring when

- $(S, \oplus, \overline{0})$ is a commutative monoid
- $(S, \otimes, \overline{1})$ is a monoid
- $\overline{0}$ is an annihilator for \otimes

and distributivity holds,

LD :
$$a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$$

RD : $(a \oplus b) \otimes c = (a \otimes c) \oplus (b \otimes c)$

A few examples

name	S	\oplus ,	\otimes	$\overline{0}$	1	possible routing use
sp	\mathbb{N}_{∞}	min	+	∞	0	minimum-weight routing
bw	\mathbb{N}_{∞}	max	min	0	∞	greatest-capacity routing
rel	[0, 1]	max	×	0	1	most-reliable routing
use	$\{0, 1\}$	max	min	0	1	usable-path routing
	2^W	\cup	\cap	{}	W	shared link attributes?
	2^W	\cap	U	W	{}	shared path attributes?

Encoding path problems

- $(S, \oplus, \otimes, \overline{0}, \overline{1})$ a semiring
- G = (V, E) a directed graph
- $w \in E \rightarrow S$ a weight function

Path weight

The *weight* of a path $p = i_1, i_2, i_3, \dots, i_k$ is

$$w(p)=w(i_1,\ i_2)\otimes w(i_2,\ i_3)\otimes \cdots \otimes w(i_{k-1},\ i_k).$$

The empty path is given the weight $\overline{1}$.

Adjacency matrix A

$$\mathbf{A}(i, j) = \begin{cases} w(i, j) & \text{if } (i, j) \in E, \\ \overline{0} & \text{otherwise} \end{cases}$$

The general problem of finding globally optimal paths

Given an adjacency matrix **A**, find **R** such that for all $i, j \in V$

$$\mathbf{R}(i, j) = \bigoplus_{p \in P(i, j)} w(p)$$

How can we solve this problem?

Powers and closure

• $(S, \oplus, \otimes, \overline{0}, \overline{1})$ a semiring

Powers, a^k

$$a^0 = \overline{1}$$

 $a^{k+1} = a \otimes a^k$

Closure, a*

$$a^{(k)}=a^0\oplus a^1\oplus a^2\oplus \cdots \oplus a^k \ a^*=a^0\oplus a^1\oplus a^2\oplus \cdots \oplus a^k\oplus \cdots$$

Fun Facts [Con71]

$$(a^*)^* = a^*$$

 $(a \oplus b)^* = (a^*b)^*a^*$
 $(ab)^* = \overline{1} \oplus a(ba)^*b$

Stability

Definition (q stability)

If there exists a q such that $a^{(q)} = a^{(q+1)}$, then a is q-stable. Therefore, $a^* = a^{(q)}$, assuming \oplus is idempotent.

Fact 1

If $\overline{1}$ is an annihiltor for \oplus , then every $a \in S$ is 0-stable!

Lift semiring to matrices

- $(S, \oplus, \otimes, \overline{0}, \overline{1})$ a semiring
- Define the semiring of $n \times n$ -matrices over $S : (\mathbb{M}_n(S), \oplus, \otimes, \mathbf{J}, \mathbf{I})$

\oplus and \otimes

$$(\mathbf{A} \oplus \mathbf{B})(i, j) = \mathbf{A}(i, j) \oplus \mathbf{B}(i, j)$$

 $(\mathbf{A} \otimes \mathbf{B})(i, j) = \bigoplus \mathbf{A}(i, q) \otimes \mathbf{B}(q, j)$

J and I

$$\mathbf{J}(i, j) = \overline{0}$$

$$\mathbf{I}(i, j) = \begin{cases} \overline{1} & (\text{if } i = j) \\ \overline{0} & (\text{otherwise}) \end{cases}$$

1 < q < n

$\mathbb{M}_n(S)$ is a semiring!

Check (left) distribution

$$A \otimes (B \oplus C) = (A \otimes B) \oplus (A \otimes C)$$

$$(\mathbf{A} \otimes (\mathbf{B} \oplus \mathbf{C}))(i, j)$$

$$= \bigoplus_{1 \leq q \leq n} \mathbf{A}(i, q) \otimes (\mathbf{B} \oplus \mathbf{C})(q, j)$$

$$= \bigoplus_{1 \leq q \leq n} \mathbf{A}(i, q) \otimes (\mathbf{B}(q, j) \oplus \mathbf{C}(q, j))$$

$$= \bigoplus_{1 \leq q \leq n} (\mathbf{A}(i, q) \otimes \mathbf{B}(q, j)) \oplus (\mathbf{A}(i, q) \otimes \mathbf{C}(q, j))$$

$$= (\bigoplus_{1 \leq q \leq n} \mathbf{A}(i, q) \otimes \mathbf{B}(q, j)) \oplus (\bigoplus_{1 \leq q \leq n} \mathbf{A}(i, q) \otimes \mathbf{C}(q, j))$$

$$= ((\mathbf{A} \otimes \mathbf{B}) \oplus (\mathbf{A} \otimes \mathbf{C}))(i, j)$$

On the matrix semiring

Matrix powers, \mathbf{A}^k

$$\mathbf{A}^0 = \mathbf{I}$$

$$\mathbf{A}^{k+1} = \mathbf{A} \otimes \mathbf{A}^k$$

Closure, A*

$$\mathbf{A}^{(k)} = \mathbf{I} \oplus \mathbf{A}^1 \oplus \mathbf{A}^2 \oplus \cdots \oplus \mathbf{A}^k$$

$$\mathbf{A}^* = \mathbf{I} \oplus \mathbf{A}^1 \oplus \mathbf{A}^2 \oplus \cdots \oplus \mathbf{A}^k \oplus \cdots$$

Note: A* might not exist (sum may not converge)

Fact 2

If *S* is 0-stable, then $\mathbb{M}_n(S)$ is (n-1)-stable. That is,

$$\mathbf{A}^* = \mathbf{A}^{(n-1)} = \mathbf{I} \oplus \mathbf{A}^1 \oplus \mathbf{A}^2 \oplus \cdots \oplus \mathbf{A}^{n-1}$$

Computing optimal paths

- Let P(i,j) be the set of paths from i to j.
- Let $P^k(i,j)$ be the set of paths from i to j with exactly k arcs.
- Let $P^{(k)}(i,j)$ be the set of paths from i to j with at most k arcs.

Theorem

(1)
$$\mathbf{A}^k(i,j) = \bigoplus w(p)$$

(2)
$$\mathbf{A}^{(k+1)}(i,j) = \bigoplus_{p \in P^k(i,j)} w(p)$$

(3)
$$\mathbf{A}^*(i,j) = \bigoplus_{p \in P(i,j)}^{p \in P(k)} w(p)$$

Proof of (1)

By induction on k. Base Case: k = 0.

$$P^0(i, i) = \{\epsilon\},\$$

so
$$\mathbf{A}^0(i,i) = \mathbf{I}(i,i) = \overline{1} = w(\epsilon)$$
.

And $i \neq j$ implies $P^0(i,j) = \{\}$. By convention

$$\bigoplus_{p\in\{\}} w(p) = \overline{0} = \mathbf{I}(i, j).$$

Proof of (1)

Induction step.

$$\mathbf{A}^{k+1}(i,j) = (\mathbf{A} \otimes \mathbf{A}^k)(i,j)$$

$$= \bigoplus_{1 \le q \le n} \mathbf{A}(i,q) \otimes \mathbf{A}^k(q,j)$$

$$= \bigoplus_{1 \le q \le n} \mathbf{A}(i,q) \otimes (\bigoplus_{p \in P^k(q,j)} w(p))$$

$$= \bigoplus_{1 \le q \le n} \bigoplus_{p \in P^k(q,j)} \mathbf{A}(i,q) \otimes w(p)$$

$$= \bigoplus_{(i,q) \in E} \bigoplus_{p \in P^k(q,j)} w(i,q) \otimes w(p)$$

$$= \bigoplus_{p \in P^{k+1}(i,j)} w(p)$$

Example with $(2^{\{a, b, c\}}, \cap, \cup)$

We want matrix **A*** to solve this global optimality problem:

$$\mathbf{A}^*(i, j) = \bigcap_{p \in P(i, j)} w(p)$$

where w(p) is now the union of all edge weights in p.

For $x \in \{a, b, c\}$, interpret $x \in \mathbf{A}^*(i, j)$ to mean that every path from i to j has at least one arc with weight containing x.

$$(2^{\{a, b, c\}}, \cap, \cup)$$
 continued ...

Partition Equation (left)

$$\textbf{X} = (\textbf{AX}) \oplus \textbf{I}$$

$$\left(\begin{array}{c|c} \boldsymbol{X}_{1,1} & \boldsymbol{X}_{1,2} \\ \hline \boldsymbol{X}_{2,1} & \boldsymbol{X}_{2,2} \end{array}\right)$$

We now have four (left) equations

$$\begin{array}{lll} \boldsymbol{X}_{1,1} & = & (\boldsymbol{A}_{1,1}\boldsymbol{X}_{1,1}) \oplus (\boldsymbol{A}_{1,2}\boldsymbol{X}_{2,1}) \oplus \boldsymbol{I}_{1,1} \\ \boldsymbol{X}_{2,1} & = & (\boldsymbol{A}_{2,1}\boldsymbol{X}_{1,1}) \oplus (\boldsymbol{A}_{2,2}\boldsymbol{X}_{2,1}) \\ \boldsymbol{X}_{1,2} & = & (\boldsymbol{A}_{1,1}\boldsymbol{X}_{1,2}) \oplus (\boldsymbol{A}_{1,2}\boldsymbol{X}_{2,2}) \\ \boldsymbol{X}_{2,2} & = & (\boldsymbol{A}_{2,1}\boldsymbol{X}_{1,2}) \oplus (\boldsymbol{A}_{2,2}\boldsymbol{X}_{2,2}) \oplus \boldsymbol{I}_{2,2} \end{array}$$

- Solve for $\mathbf{X}_{2,1}$ with $\mathbf{A}_{2,2}^*\mathbf{A}_{2,1}\mathbf{X}_{1,1}$
- Therefore

$$\begin{array}{ll} & \textbf{X}_{1,1} \\ = & (\textbf{A}_{1,1}\textbf{X}_{1,1}) \oplus (\textbf{A}_{1,2}\textbf{A}_{2,2}^*\textbf{A}_{2,1}\textbf{X}_{1,1}) \oplus \textbf{I}_{1,1} \\ = & (\textbf{A}_{1,1} \oplus \textbf{A}_{1,2}\textbf{A}_{2,2}^*\textbf{A}_{2,1})\textbf{X}_{1,1} \oplus \textbf{I}_{1,1} \end{array}$$

- Solve for $X_{1,1}$ with $(A_{1,1} \oplus A_{1,2}A_{2,2}^*A_{2,1})^*$
- So $X_{2,1}$ is solved with $A_{2,2}^*A_{2,1}(A_{1,1} \oplus A_{1,2}A_{2,2}^*A_{2,1})^*$
- In a similar way, solve for X_{1,2} and X_{2,2}

This gives a partition of A* [Con71]

 \mathbf{A}^*

$$\left(\begin{array}{c|c} (\textbf{A}_{1,1} \oplus \textbf{A}_{1,2} \textbf{A}_{2,2}^* \textbf{A}_{2,1})^* & \textbf{A}_{1,1}^* \textbf{A}_{1,2} (\textbf{A}_{2,2} \oplus \textbf{A}_{2,1} \textbf{A}_{1,1}^* \textbf{A}_{1,2})^* \\ \hline \textbf{A}_{2,2}^* \textbf{A}_{2,1} (\textbf{A}_{1,1} \oplus \textbf{A}_{1,2} \textbf{A}_{2,2}^* \textbf{A}_{2,1})^* & (\textbf{A}_{2,2} \oplus \textbf{A}_{2,1} \textbf{A}_{1,1}^* \textbf{A}_{1,2})^* \\ \end{array} \right)$$

Trivial example of forwarding = routing + mapping

matrix	solves		
A *	$R = (A \otimes R) \oplus I$		
$\mathbf{A}^*\mathbf{M}$	$F = (A \otimes F) \oplus M$		

$$\mathbf{M} = \begin{bmatrix} d_1 & d_2 \\ 1 & \infty & \infty \\ 2 & 3 & \infty \\ \infty & \infty & \infty \\ 4 & \infty & 1 \\ 5 & 2 & 3 \end{bmatrix}$$

Mapping matrix

$$\mathbf{F} = \begin{bmatrix} d_1 & d_2 \\ 1 & 5 & 6 \\ 2 & 3 & 7 \\ 5 & 5 \\ 4 & 9 & 1 \\ 5 & 2 & 3 \end{bmatrix}$$

Forwarding matrix

Routing Matrix vs. Forwarding Matrix (see [BG09])

- Inspired by the the Locator/ID split work
 - See Locator/ID Separation Protocol (LISP)
- Let's make a distinction between infrastructure nodes V and destinations D.
- Assume *V* ∩ *D* = {}
- M is a V × D mapping matrix
 - ▶ $\mathbf{M}(v, d) \neq \infty$ means that destination (identifier) d is somehow attached to node (locator) v

More Interesting Example: Hot-Potato Idiom

$$\mathbf{M} = \begin{array}{c} d_1 & d_2 \\ 1 \\ 2 \\ (0,3) & \infty \\ \infty & \infty \\ 4 \\ 5 \\ (0,2) & (0,3) \end{array}$$

Mapping matrix

$$\mathbf{F} = \begin{array}{c} d_1 & d_2 \\ 1 & (2,3) & (4,3) \\ 2 & (0,3) & (4,3) \\ 3 & (3,2) & (3,3) \\ 4 & (7,2) & (0,1) \\ 5 & (0,2) & (0,3) \end{array}$$

Forwarding matrix

General Case

G = (V, E), n is the size of V.

A $n \times n$ (left) routing matrix **L** solves an equation of the form

$$\textbf{L} = (\textbf{A} \otimes \textbf{L}) \oplus \textbf{I},$$

over semiring S.

D is a set of destinations, with size d.

A $n \times d$ forwarding matrix is defined as

$$F = L \triangleright M$$

over some structure $(N, \square, \triangleright)$, where $\triangleright \in (S \times N) \rightarrow N$.

forwarding = routing + mapping

Does this make sense?

$$\mathbf{F}(i, d) = (\mathbf{L} \triangleright \mathbf{M})(i, d) = \sum_{q \in V}^{\square} \mathbf{L}(i, q) \triangleright \mathbf{M}(q, d).$$

- Once again we are leaving paths implicit in the construction.
- Forwarding paths are best routing paths to egress nodes, selected with respect □-minimality.
- —-minimality can be very different from selection involved in routing.

When we are lucky ...

matrix	solves
A *	$L = (A \otimes L) \oplus I$
$A^* \triangleright M$	$F = (A \rhd F) \square M$

When does this happen?

When $(N, \square, \triangleright)$ is a (left) semi-module over the semiring S.

(left) Semi-modules

• $(S, \oplus, \otimes, \overline{0}, \overline{1})$ is a semiring.

A (left) semi-module over S

Is a structure $(N, \Box, \triangleright, \overline{0}_N)$, where

- $(N, \Box, \overline{0}_N)$ is a commutative monoid
- \triangleright is a function $\triangleright \in (S \times N) \rightarrow N$
- $(a \otimes b) \triangleright m = a \triangleright (b \triangleright m)$
- $\overline{0} > m = \overline{0}_N$
- $s \triangleright \overline{0}_N = \overline{0}_N$
- \bullet $\overline{1} > m = m$

and distributivity holds,

LD :
$$s \triangleright (m \square n) = (s \triangleright m) \square (s \triangleright n)$$

$$\mathsf{RD} \ : \ (s \oplus t) \rhd m \ = \ (s \rhd m) \square (t \rhd m)$$

Example: Hot-Potato

S idempotent and selective

$$egin{array}{lcl} S &=& (S,\oplus_S,\otimes_S) \ T &=& (T,\oplus_T,\otimes_T) \ drapprox_{\mathrm{fst}} &\in& S imes(S imes T) o (S imes T) \ s_1drapprox_{\mathrm{fst}}\left(s_2,\,t
ight) &=& (s_1\otimes_S s_2,\,t) \end{array}$$

$$\operatorname{Hot}(S, T) = (S \times T, \vec{\oplus}, \triangleright_{\operatorname{fst}}),$$

where $\vec{\oplus}$ is the (left) lexicographic product of $\oplus_{\mathcal{S}}$ and $\oplus_{\mathcal{T}}$.

Define ⊳_{hp} on matrices

$$(\mathbf{L}\rhd_{\mathrm{hp}}\mathbf{M})(i,\,d)=\sum_{q\in V}^{\vec{\ominus}}\mathbf{L}(i,\,\,q)\rhd_{\mathrm{fst}}\mathbf{M}(q,\,d)$$

Sanity Check: does this implement hot-potato?

Define M to be <u>simple</u> if either $\mathbf{M}(v, d) = (1_S, t)$ or $\mathbf{M}(v, d) = (\infty_S, \infty_T)$.

$$\begin{array}{ll} (\mathbf{L}\rhd_{\mathrm{hp}}\mathbf{M})(i,\,d) \\ &=& \displaystyle\sum_{q\in V}^{\vec{\oplus}}\mathbf{L}(i,\,\,q)\rhd_{\mathrm{fst}}\mathbf{M}(q,\,d) \\ &=& \displaystyle\sum_{q\in V}^{\vec{\oplus}}(\mathbf{L}(i,\,\,q)\otimes_{S}s,\,\,t) \\ && \mathbf{M}(q,\,d)=(s,\,\,t) \\ &=& \displaystyle\sum_{q\in V}^{\vec{\oplus}}(\mathbf{L}(i,\,\,q),\,\,t) \qquad \text{(if M is simple)} \\ && \mathbf{M}(q,\,d)=(1_{S},\,\,t) \end{array}$$

Example of hot-potato forwarding

matrix	solves
A *	$L = (A \otimes L) \oplus I$
$A^* \rhd_{hp} M$	$F = (A \rhd_{hp} F) \vec{\oplus} M$

Mapping matrix

$$\mathbf{F} = \begin{bmatrix} d_1 & d_2 \\ 1 & (2,3) & (4,3) \\ 2 & (0,3) & (4,3) \\ (3,2) & (3,3) \\ 4 & (7,2) & (0,1) \\ 5 & (0,2) & (0,3) \end{bmatrix}$$

Forwarding matrix

Example: Cold-Potato

T idempotent and selective

$$egin{array}{lcl} S &=& (S,\oplus_S,\otimes_S) \ T &=& (T,\oplus_T,\otimes_T) \ &
hd_{\mathrm{fst}} &\in& S imes(S imes T) o (S imes T) \ s_1
hd_{\mathrm{fst}}(s_2,t) &=& (s_1\otimes_S s_2,t) \end{array}$$

$$Cold(S, T) = (S \times T, \stackrel{\leftarrow}{\oplus}, \triangleright_{fst}),$$

where $\vec{\oplus}$ is the (left) lexicographic product of $\oplus_{\mathcal{S}}$ and $\oplus_{\mathcal{T}}$.

Define \triangleright_{cp} on matrices

$$(\mathsf{L}\rhd_{\mathrm{cp}}\mathsf{M})(i,\,d)=\sum_{q\in V}^{\leftarrow}\mathsf{L}(i,\,q)\rhd_{\mathrm{fst}}\mathsf{M}(q,\,d)$$

Example of cold-potato forwarding

matrix	solves
A *	$L = (A \otimes L) \oplus I$
$A^* \rhd_{\mathrm{cp}} M$	$ig oldsymbol{F} = oldsymbol{A} hd_{\operatorname{cp}} oldsymbol{F} oldsymbol{ar{\ominus}} oldsymbol{M} ig $

$$\mathbf{M} = \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array} \begin{bmatrix} \infty & \infty \\ (0,3) & \infty \\ \infty & \infty \\ \infty & (0,1) \\ (0,2) & (0,3) \end{array}$$

Mapping matrix

$$\mathbf{F} = \begin{bmatrix} d_1 & d_2 \\ 1 & (4, 2) & (5, 1) \\ 2 & (4, 2) & (9, 1) \\ (3, 2) & (4, 1) \\ 4 & (7, 2) & (0, 1) \\ 5 & (0, 2) & (7, 1) \end{bmatrix}$$

Forwarding matrix

A simple example of route redistribution

We will will use the routing and mapping of G_2 to construct a forwarding \mathbf{F}_2 , that will be passed as a mapping to G_1 ...

A simple example of route redistribution

- \bullet G_2 is routing with the bandwidth semiring bw
- G₂ is forwarding with Cold(bw, sp)
- G_1 is routing with the bandwidth semiring sp
- G_1 is forwarding with Hot(sp, Cold(bw, sp))

First, construct **F**₂

$$\mathbf{L}_2 = \begin{bmatrix} 6 & 7 & 8 & 9 \\ \infty & 20 & 30 & 20 \\ 7 & 8 & 20 & \infty & 20 \\ 8 & 0 & 20 & \infty & 20 \\ 9 & 20 & 40 & 20 & \infty \end{bmatrix} \qquad \mathbf{M}_2 = \begin{bmatrix} d_1 & d_2 \\ 6 & (\infty, 3) & \infty \\ \infty & \infty \\ (\infty, 2) & (\infty, 1) \\ \infty & (\infty, 1) \end{bmatrix}$$

First, construct **F**₂

$$\textbf{F}_2 = \textbf{L}_2 \rhd_{cp} \textbf{M}_2 = \begin{bmatrix} 6 \\ 7 \\ 8 \\ 9 \end{bmatrix} \begin{bmatrix} (30, 2) & (30, 1) \\ (20, 2) & (40, 1) \\ (\infty, 2) & (\infty, 1) \\ (20, 2) & (\infty, 1) \end{bmatrix}$$

Now, ship it over to G_2 as a mapping matrix, using $\mathbf{B}_{1,2}$

Now, ship it over to G_2 as a mapping matrix, using $\mathbf{B}_{1,2}$

$$\label{eq:mass_mass_mass} \begin{array}{c} \textbf{d}_1 & \textbf{d}_2 \\ \textbf{1} & \infty & \infty \\ \textbf{2} & \infty & \infty \\ \textbf{3} & \infty & \infty \\ \textbf{4} & (0, (30, 2)) & (0, (30, 1)) \\ \textbf{5} & (0, (20, 2)) & (0, (40, 1)) \end{array}$$

Finally, construct a forwarding matrix \mathbf{F}_1 for G_1

$$\mathbf{L}_{1} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 3 & 1 & 5 & 5 \\ 2 & 3 & 0 & 2 & 2 & 3 \\ 1 & 2 & 0 & 4 & 4 \\ 5 & 2 & 4 & 0 & 3 \\ 5 & 3 & 4 & 3 & 0 \end{bmatrix}$$

Finally, construct a forwarding matrix \mathbf{F}_1 for G_1

$$\mathbf{F_1} = \mathbf{L_1} \rhd_{hp} \mathbf{M_1} = \begin{bmatrix} (5, (30, 2)) & (5, (40, 1) \\ 2 & (2, (30, 2)) & (2, (30, 1) \\ (4, (30, 2)) & (4, (40, 1) \\ (0, (30, 2)) & (0, (30, 1) \\ (0, (20, 2)) & (0, (40, 1) \end{bmatrix}$$

Bibliography I

[BG09] John N. Billings and Timothy G. Griffin. A model of internet routing using semi-modules. In 11th International Conference on Relational Methods in Computer Science (RelMiCS10), November 2009.

[Car79] Bernard Carré.
Graphs and Networks.
Oxford University Press, 1979.

[Con71] J. H. Conway.

Regular Algebra and Finite Machines.

Chapman and Hall, 1971.

[GM08] M. Gondran and M. Minoux. *Graphs, Dioids, and Semirings: New Models and Algorithms.*Springer, 2008.

Bibliography II

[Gur08] Alexander Gurney.

Designing routing algebras with meta-languages.
Thesis in progress, 2008.