
Absorbing Lexicographic Products in Metarouting
Eric Parsonage, Hung X. Nguyen, Matthew Roughan

University of Adelaide, Australia
{eric.parsonage,hung.nguyen,matthew.roughan}@adelaide.edu.au

Abstract—Modern treatments of routing protocols use alge-
braic techniques to derive the protocol’s properties, permitting a
semantic richness more flexible than simple numerical “shortest
paths”. Many such routing protocols make preference decisions
based on multiple criteria. This fits well with an algebraic
formulation with each strata in the decision process modeled
as an algebraic structure, that are combined to create the full
routing protocol. Routing protocols constructed in this manner
are the focus of this paper. To implement such a routing protocol
we must understand the properties needed on each of the
algebraic formulations representing a strata. In this paper we
examine a stratified routing algebra based on a recently suggested
absorbing product and provide the necessary and sufficient
conditions required by each of the operands to guarantee that
such a routing language ensures globally optimal paths will be
found.

I. INTRODUCTION

Convergence of a routing protocol to an optimum is crucial
for stability and efficiency. Proofs of convergence have their
roots in the work of Carré [1] who in 1971 showed that several
different kinds of pathfinding problems could be solved by
variants of classical methods in linear algebra using matrices
over semirings. Since then it has been possible to view a
routing protocol as comprising two distinct components:

routing protocol = routing language + algorithm,

where a protocol’s routing language is used to configure
a network and the protocol’s algorithm computes routing
solutions using the network’s configuration. This abstraction is
very useful as we know that if a routing language has certain
properties then the associated protocol will converge.

However, more recently, it was discovered that the Border
Gateway Protocol (BGP), that is used universally for inter-
domain routing in the Internet, does not always converge
[2], [3], despite the fact that the properties needed for such
convergence were known. It might reasonably be concluded
that although the theory was available, it was too hard to
apply to the complex routing protocols needed to implement
the flexible policies of modern inter-domain routing.

Carré’s formulation has been extended in various ways
in the intervening years [4]–[6]. Griffin and Sobrinho [6],
in particular, extended the standard formulation to allow for
combinations of simple building blocks into larger, more
complex routing protocols. The process, that is referred to
as metarouting, allows one to derive the properties of the
combined algebra from its components without the tedious
or difficult process of deriving these properties ab initio.
The most prominent example of such a construction is the
lexicographic product, which has been used to model BGP-like

protocols where the choice of best routes descends through a
series of metrics, using those after the first only as a tie-break
if the preceding metrics are equal.

In this paper we examine a structure based on an absorbing

lexicographic product proposed by Gurney [7] and further
elaborated upon by Griffin [8], specifically designed to over-
come practical difficulties that arise when implementing a
routing language using a simple lexicographic product.

Several examples of the use of the absorbing lexicographic
product to model subsets of BGP policy can be found in [8].
One of these considers a simplified model of BGP with only
two components. The first component is used to model the
business relationships between Autonomous Systems (ASs)
(call it local preference to match the conventions of BGP)
and the second models AS path length. The path selection
decision process is based on policy first (via the local prefer-
ence metric) with tiebreaks then decided by the shortest AS
path. The classification of business relationships between ASs
into customer-provider, peer-peer, and downstream leads to
import/export rules such as: (1) an AS does not export to a
provider or peer routes that it has learned from other providers
and other peers; and (2) an AS can export to its customers any
route it knows of. The model implements these policies by
assigning functions to links in the network that represent the
combined import and export policies of the routers at each
end of a link. Thus as paths are propagated these functions
combine to cause invalid paths (paths that are filtered out by
the import/export rules) to be marked with an absorbing zero
thus excluding them from further consideration.

A less conventional example is the calculation of shared-
risk groups across paths using Martelli’s algebra [9]. Here
the size of the state information that needs be conveyed
increases as path lengths increase. Thus, eliminating routes of
no interest from consideration would reduce the computational
and communications overheads of the protocol. This could be
achieved by using an absorbing lexicographic product where
the first component is used to absorb paths of no interest and
the second component is an instance of Martelli’s algebra.

Unfortunately the increased flexibility of the absorbing
product comes at the cost of disallowing the use of several
powerful theorems for the proof of its properties. Sufficient
conditions for a routing algebra formed from the absorbing
product always to converge to a globally optimal solution
were previously known [8]. Our main result is the provision
of necessary and sufficient conditions.

Discovery of necessary conditions is crucial if we want
to create these routing algebras with all the possible flexi-
bility that is allowed given the requirement for convergence.

Moreover, necessary conditions are required for the analysis
of existing routing protocols that may be convergent, despite
not meeting the existing sufficient conditions.

II. DEFINITIONS AND SIMPLE RESULTS

As an aide-mémoire this section contains pertinent defini-
tions and propositions. These can be found in textbooks such
as [4].

Definition 1. A semigroup consists of a set S and a binary

operator ⊕ under which S is closed, and which is associative:

∀ a, b, c ∈ S : (a⊕ b)⊕ c = a⊕ (b⊕ c).

Definition 2. A semigroup (S,⊕) is commutative if

∀ a, b ∈ S : a⊕ b = b⊕ a.

Definition 3. A semigroup (S,⊕) has an identity 0̄S if

∃ 0̄S ∈ S such that ∀ a ∈ S : 0̄S ⊕ a = a⊕ 0̄S = a.

A semigroup with an identity is called a monoid.

Definition 4. A semigroup (S,⊕) is selective if

∀ a, b ∈ S : a⊕ b = a or a⊕ b = b.

Definition 5. A semigroup (S,⊕) is idempotent if ∀ a ∈ S :
a = a⊕ a. A selective semigroup is also idempotent.

Definition 6. An algebra of monoid endomorphisms (AME)

is defined as a quadtuple (S, F,⊕, 0̄) where (S,⊕, 0̄) forms a

monoid and F is the set of mappings S → S with:

∀ f ∈ F, a ∈ S, b ∈ S : f(a⊕ b) = f(a)⊕ f(b)

and ∀ f ∈ F : f(0̄) = 0̄. Thus F is the set of endomorphisms

of (S,⊕) that satisfy f(0̄) = 0̄.

Definition 7. A semiring denoted (R,⊕,⊗, 0̄, 1̄) is a set R
with two binary operators ⊕ and ⊗, called addition and

multiplication, such that the following four properties hold:

1) (R,⊕) is a commutative monoid with identity 0̄.

2) (R,⊗) is a monoid with identity 1̄.

3) Multiplication distributes over addition from the left and

the right.

4) ∀a ∈ R : 0̄⊗ a = a⊗ 0̄ = 0̄.

Proposition 1. Given a commutative monoid (S,⊕), it is al-

ways possible to define a reflexive, transitive binary operation,

denoted ≤, as either:

a ≤ b ⇐⇒ ∃ c ∈ S such that b = a⊕ c, or (1)
a ≤ b ⇐⇒ ∃ c ∈ S such that a = b⊕ c. (2)

For ≤ to be a total order we need it to be antisymmetric (that
is if a ≤ b and b ≤ a then a = b). Since the antisymmetry of
≤ is not guaranteed, we call ≤ a preorder relation of (S,⊕).

Proposition 2. If (S,⊕) is a commutative and idempotent

monoid, then either of the above preorder relations is a partial
order relation.

Proposition 3. If (S,⊕) is a commutative, selective (thus

idempotent) monoid then ≤ is a total order relation.

Proposition 4. If (S,⊕) is a commutative, idempotent monoid

then either

a ≤ b ⇐⇒ a = a⊕ b or a ≤ b ⇐⇒ b = a⊕ b.

Proposition 5. If (S,⊕) is a commutative, selective monoid

then 0̄ is either the largest or smallest element in (S,⊕).

III. THE ALGEBRAIC FORMULATION OF ROUTING

Simple shortest-path algorithms aim to minimize the sum
of the weights of the links forming a path. Carré’s key
observation was that this decision process could be encoded
in the semiring (R+ ∪ ∞,min,+,∞, 1) where ⊕ chooses
shortest paths using the min operator, and ⊗ extends paths
using the + operator. Thus linear algebra could be used to find
shortest paths without concern about the underlying routing
protocol. The idea extends to any semiring, though guarantees
of convergence and path optimality require the set and the
operators to satisfy specific properties.

We can replace the ⊗ operator with a set of functions F :
in the simplest case, consider fb, where fb(a) = b ⊗ a, with
F = fb : b ∈ R. The use of arbitrary functions allows decision
processes with more semantic richness than simple shortest-
path algorithms provide. Gondran and Minoux [4] investigate
the requirements for such a construction to provide globally
optimal solutions, and Griffin uses these types of algebraic
structures as building blocks [8].

A. Lexicographic Products

Some routing protocols (e.g., BGP) make preference de-
cisions based on multiple criteria in a way that can be
implemented as lexicographic choice. That is, the criteria are
evaluated in order of importance with criteria of lower impor-
tance used to break ties arising from more important criteria.
Evaluation ends when a criterion has yielded a decisive result.
This is exactly the type of decision process that results from
constructing a routing algebra using a lexicographic product.

The absorbing lexicographic product presented by Griffin
[8] builds upon a specific lexicographic product defined thus:

Definition 8. Let (S,⊕S , 0̄S , FS) be a commutative and se-

lective monoid augmented with a set of functions FS : S �→ S
which have the property that ∀f ∈ FS : f(0̄S) = 0̄S and let

(T,⊕T , 0̄T , FT) be a monoid also augmented with a set of

functions FT : T �→ T such that ∀f ∈ FT : f(0̄T) = 0̄T ,

since S is commutative and selective by Proposition 3 we can

define < on S, which allows the operation of ⊕S×T in the

following manner:

(s1, t1)⊕S×T (s2, t2) =






(s1, t1 ⊕T t2) if s1 = s2,

(s1, t1) if s1 < s2,

(s2, t2) if s2 < s1.

The multiplicative component is constructed using the direct

product, where a pair (f, g) ∈ FS × FT is taken to represent

a new function h : (S × T) → (S × T) where h(s, t) =

Property Definition Remarks
DIST ∀ a, b ∈ S, f ∈ F : f(a⊕ b) = f(a)⊕ f(b) distributive, or additive
INFL ∀ a ∈ S, f ∈ F : a ≤ f(a) inflationary
S.INFL ∀ a ∈ S, f ∈ F : a < f(a) strictly inflationary
K ∀ a, b ∈ S, f ∈ F : f(a) = f(b) =⇒ a = b cancellative, or injective
K0̄ ∀ a, b ∈ S, f ∈ F : f(a) = f(b) =⇒ (a = b ∨ f(a) = 0̄) almost cancellative, or 0-cancellative
C ∀ a, b ∈ S, f ∈ F : f(a) = f(b) constant
C0̄ ∀ a, b ∈ S, f ∈ F : f(a) �= f(b) =⇒ (f(a) = 0̄ ∨ f(b) = 0̄) almost constant

TABLE I
PROPERTIES OF (S,⊕, F, 0̄) DISCUSSED. TAKEN FROM [8].

(f(s), g(t)). Now define the lexicographic product of S and

T , denoted S�×T , as (S × T,⊕S×T , (0̄S , 0̄T), FS × FT).

In an exhaustive examination of the various types of struc-
ture that can be combined using a lexicographic product [10]
Gurney and Griffin prove that the main property required of an
algebra of this type in order to ensure globally optimal paths
are found is that it should be distributive. This leads to an
important question: what are the necessary and sufficient prop-
erties of the components of such an algebra that will ensure
the algebra is distributive? They answered this emphatically
with the following (the properties required are described in
Table I):

DIST(S�×T) ⇐⇒ DIST(S)∧DIST(T)∧ (K(S)∨C(T)). (3)

B. Motivation for an absorbing product

There is a problem with the above definition when
(S,⊕, 0̄, FS) represents a finite algebra. To ensure that S�×T
causes only globally optimal solutions to be found S must
be distributive and cancellative (properties DIST and K in
Table I). The combination of these conditions force FS to
contain only the identity function (consider Lemma 1 below,
along with property K and the order on S). This is very
restrictive.

Further motivation for modifying the lexicographic product
of Definition 8 can be found in [7]. These centre around the
overloading of the semantics of infinite or error elements.
Given our chosen preorder we have 0̄ as the largest element in
S. This could be taken to be either a largest element that is not
an error condition; an erroneous route encoded as a maximal
element to be preferred less than a valid route; or as a place
keeper in the operation of the algorithm, such as an initial
value that will be overwritten by better information.

The solution proposed by Griffin in [8] is to define the
absorbing lexicographic product denoted S�×0̄T by building
upon Definition 8 thus:

Definition 9. Using the definitions for (S,⊕S , 0̄S , FS) and

(T,⊕T , 0̄T , FT) from Definition 8, take the set

S ×0̄ T = {S\0̄S × T} ∪ {0̄} where 0̄ �∈ S and 0̄ �∈ T,

Now, rather than pairs of the form (s, t), we use pairs of the

form �s, t�, which denote elements of S ×0̄ T ,

�s, t� =
�
0̄ if s = 0̄S ,

(s, t) otherwise.

Now redefine the direct product so that every pair (f, g) ∈
FS × FT is taken to represent a function h : (S ×0̄ T) →
(S ×0̄ T) where h(�s, t�) = �f(s), g(t)� and h(0̄) = 0̄.

Finally ⊕S�×0̄T
extends ⊕S×T in Definition 8 to handle the

absorbing element 0̄ thus:

0̄ ⊕S�×0̄T
�s, t� = �s, t� ⊕S�×0̄T

0̄ = �s, t�.

In [10] Gurney and Griffin provide proofs that give the
properties required of an algebra created with the standard
lexicographic product that will ensure globally optimal paths
are found. Examination of these reveals that the same prop-
erties are required of algebras created with the absorbing
lexicographic product if the same end is to be achieved.
This leaves the task of proving a statement similar to (3)
that will supply the necessary and sufficient properties of
the components of an algebra creating using the absorbing
lexicographic product to ensure the algebra is distributive. It
is this result which is the main contribution of this paper as
proved in Section IV.

C. Locally vs globally optimal paths

It has been shown that algebraic structures which satisfy
all of the semiring axioms except distributivity will provide
solutions when used as a routing algebra; however, rather
than calculating globally optimal paths between each pair of
nodes, the result is a stable solution among path assignments
with the properties of a Nash Equilibrium [11]. That is, if
we view each of the nodes in the graph as having their own
preferences amongst possible paths and they are only allowed
to choose paths that are consistent with the choices made
by their neighbours, then the solution found is one where
the assignment of paths to nodes is such that no node can
choose a better path from the candidates available as a result
of the choices of the other nodes. In the literature this is
referred to as “the stable paths problem” [12] and is the
type of solution that BGP attempts to find. In [8], Griffin
is interested in the properties that are required of an algebra
created using the absorbing lexicographic product such that
these “locally optimal” solutions can be found. The result
proved in Section IV forms an “upper bound” in the sense
that we expect weaker conditions to ensure local optimality.

IV. CONDITIONS FOR S�×0̄T TO BE DISTRIBUTIVE

We will need a set of conditions on (S,⊕S , 0̄S , FS) and
(T,⊕T , 0̄T , FT) for S�×0̄T to be distributive and vice-versa.

These properties are defined in Table I and are discussed in
the following lemmas.

Lemma 1. If (S,⊕) is a commutative, selective monoid with

an associated order ≤ and F : S �→ S a set of functions

mapping elements of S to elements of S, then f(a ⊕ b) =
f(a) ⊕ f(b) for all a, b ∈ S and f ∈ F is equivalent to

a ≤ b =⇒ f(a) ≤ f(b) for all a, b ∈ S and f ∈ F (i.e.,

distibutivity/additivity is equivalent to monotonicity).

Proof: By Proposition 3, the associated order ≤ on (S,⊕)
is total. Without loss of generality we assume that (2) is the
preorder; hence a ≤ b ⇐⇒ a = a⊕ b.

We first prove that if (S,⊕) is distributive then a ≤ b
implies f(a) ≤ f(b) for all a, b ∈ S and f ∈ F . Assume
a ≤ b (total order and ⊕ commutative means we can make
this assumption without loss of generality) then:

a ≤ b ⇐⇒ a = a⊕ b

=⇒ f(a) = f(a⊕ b)

=⇒ f(a) = f(a)⊕ f(b), (as (S,⊕) is distributive)
=⇒ f(a) ≤ f(b).

We now prove the reverse direction that if ∀ a, b ∈ S and
∀ f ∈ F , a ≤ b =⇒ f(a) ≤ f(b), then (S,⊕) is distributive.
For f ∈ F and a, b ∈ S assume that a ≤ b (total order and
⊕ commutative means we can make this assumption without
loss of generality) thus:

a ≤ b =⇒ f(a) ≤ f(b) =⇒ f(a) = f(a)⊕ f(b).

and

a ≤ b =⇒ a = a⊕ b =⇒ f(a) = f(a⊕ b).

Thus, ∀a, b ∈ S and ∀f ∈ F , f(a⊕b) = f(a)⊕f(b) = f(a).
Hence, (S,⊕) is distributive.

By design (S,⊕) is a commutative, selective monoid thus
by Proposition 3 it has total order. Therefore, ∀s1, s2 ∈ S we
can assume (without loss of generality) that s1 ≤ s2 is defined
by the preorder relation described in (2). Note that under this
relation, 0̄S ≥ s for all s ∈ S and that there are four cases
for the relationship between s1, s2 and the special elements
0̄S : (1) s1 = s2 = 0̄S , (2) s1 = s2 �= 0̄S , (3) s1 < s2 = 0̄S ,
and (4) s1 < s2 �= 0̄S . Our proofs rely on enumeration of
these cases.

Even though the zero element and the operator ⊕ are defined
on all the sets S, T and S�×0̄T , for convenience, in the rest of
this paper when the context is clear we will drop the subscript
from the notation 0̄ and ⊕.

Lemma 2. C(S) ⇐⇒ C(S�×0̄T) ⇐⇒ h(u) = 0̄ for all

h ∈ FS�×0̄T
and for all u ∈ S�×0̄T .

We omit the proof as it follows from the definitions of C(S):
C(S) is a necessary and sufficient condition for S�×0̄T to be
trivially distributive.

Lemma 3. DIST(S) ∧ C(T) =⇒ DIST(S�×0̄T)

Proof: We need to show that if f(s1 ⊕ s2) = f(s1)⊕ f(s2)
and g(t) = 0̄ for all s1, s2 ∈ S, t ∈ T , f ∈ FS and g ∈ FT ,
then h(�s1, t1� ⊕ �s2, t2�) = h(�s1, t1�)⊕ h(�s2, t2�).

We consider the four cases for the relationship between s1
and s2 and 0̄S separately.

1) s1 = s2 = 0̄:

h(�s1, t1� ⊕ �s2, t2�) = h(0̄⊕ 0̄) = h(0̄) = 0̄,

and

h(�s1, t1�)⊕ h(�s2, t2�) = h(0̄)⊕ h(0̄) = 0̄.

2) s1 = s2 �= 0̄ giving rise to the following two sub-cases.
a) f(s1) = f(s2) = 0̄:

h(�s1, t1� ⊕ �s2, t2�) = �f(s1), g(t1 ⊕ t2�) = 0̄,

and

h(�s1, t1�)⊕ h(�s2, t2�)
= �f(s1), g(t1)� ⊕ �f(s2), g(t2)� = 0̄⊕ 0̄ = 0̄.

b) f(s1) = f(s2) �= 0̄: since C(T) implies g(t) =
0, ∀t ∈ T , we get

h(�s1, t1� ⊕ �s2, t2�) = h(�s1, t1 ⊕ t2�) = �f(s1), 0̄�,

and

h(�s1, t1�)⊕ h(�s2, t2�)
= �f(s1), g(t1)⊕ g(t2)� = �f(s1), 0̄�.

3) s1 < s2 = 0̄:

h(�s1, t1�⊕�s2, t2�) = h(�s1, t1�⊕�0̄, t2�) = h(�s1, t1�),

and

h(�s1, t1�)⊕h(�s2, t2�) = h(�s1, t1�)⊕ 0̄ = h(�s1, t1�).

4) s1 < s2 �= 0̄: from Lemma 1, DIST(S) implies that
f(s1) ≤ f(s2) if s1 < s2. Furthermore, as s1 < s2, in
cases 4c and 4d we can use

h(�s1, t1� ⊕ �s2, t2�) = h(�s1, t1�) = �f(s1), g(t1)�.

We need to consider the following subcases for the
relationship between f(s1) and f(s2).

a) f(s1) = f(s2) = 0̄: thus

h(�s1, t1� ⊕ �s2, t2�) = �f(s1), g(t1)� = 0̄,

and

h(�s1, t1�)⊕ h(�s2, t2�)
= �f(s1), g(t1)� ⊕ �f(s2), g(t2)� = 0̄⊕ 0̄ = 0̄.

b) f(s1) = f(s2) �= 0̄: since C(T) implies g(t) =
0, ∀t ∈ T ,

h(�s1, t1� ⊕ �s2, t2�) = h(�s1, t1�) = �f(s1), 0̄�,

and as shown in case 2b

h(�s1, t1�)⊕ h(�s2, t2�) = �f(s1), 0̄�.

c) f(s1) < f(s2) = 0̄:

h(�s1, t1�)⊕ h(�s2, t2�)
= �f(s1), g(t1)� ⊕ 0̄ = �f(s1), g(t1)�.

d) f(s1) < f(s2) �= 0̄:

h(�s1, t1�)⊕ h(�s2, t2�) = �f(s1), g(t1)�,

as f(s1) < f(s2).

Lemma 4. DIST(S) ∧ DIST(T) ∧ K0̄(S) =⇒ DIST(S�×0̄T)

Proof: We again consider the four cases for the relationship
between s1, s2 and 0̄S .

1) s1 = s2 = 0̄: the same result as case 1 of Lemma 3,
h(�s1, t1� ⊕ �s2, t2�) = h(�s1, t1�)⊕ h(�s2, t2�) = 0̄.

2) s1 = s2 �= 0̄: giving rise to two cases for the relationship
between f(s1) and f(s2):

a) f(s1) = 0̄ and f(s2) = 0̄ as shown in case 2a
of Lemma 3, h(�s1, t1� ⊕ �s2, t2�) = h(�s1, t1�)⊕
h(�s2, t2�) = 0̄.

b) f(s1) �= 0̄ and f(s2) �= 0̄ thus

h(�s1, t1� ⊕ �s2, t2�) = �f(s1), g(t1 ⊕ t2)�,

and

h(�s1, t1�)⊕ h(�s2, t2�) = �f(s1), g(t1)⊕ g(t2)�
= �f(s1), g(t1 ⊕ t2)� (as DIST(T)).

3) s1 < s2 = 0̄: again similarly to case 3 in Lemma 3 we
have h(�s1, t1� ⊕ �s2, t2�) = h(�s1, t1�)⊕ h(�s2, t2�) =
�f(s1), g(t1)�.

4) s1 < s2 �= 0̄, using DIST(S), K0̄(S) and Lemma 1, we
get f(s1) < f(s2), giving the following two subcases.

a) f(s1) < f(s2) = 0̄ thus h(�s1, t1� ⊕ �s2, t2�) =
�f(s1), g(t1)� = h(�s1, t1�)⊕h(�s2, t2�) as shown
in case 4c of Lemma 3.

b) f(s1) < f(s2) �= 0̄ thus h(�s1, t1� ⊕ �s2, t2�) =
�f(s1), g(t1)� = h(�s1, t1�)⊕h(�s2, t2�) as shown
in case 4d of Lemma 3.

An alternative method for proving the previous two lemmas
is to show that the equivalence relation defined by (s1, t1) ∼
(s2, t2) ⇐⇒ ((s1 = s2 and t1 = t2) or s1 = s2 = 0̄) is a
congruence. This provides a connection between the ordinary
lexicographic product and the absorbing lexicographic prod-
uct, allowing the theorems of [7] and [10] to be applied. The
approach above is used here because (i) it uses only basic
steps, suitable for implementation through theorem provers,
and (ii) it can be extended to the case where both S and T
can throw an absorbing state, a case that we intend to tackle
in future work.

Lemma 5. DIST(S�×0̄T) =⇒ DIST(S)

Proof: Lemma 1 gives DIST(S) ⇐⇒ s1 ≤ s2 =⇒ f(s1) ≤
f(s2) for all s1, s2 ∈ S and f ∈ F , thus we only need to show

that DIST(S�×0̄T) implies s1 ≤ s2 =⇒ f(s1) ≤ f(s2) for
all s1, s2 ∈ S.

Again, we consider four cases for the relationship between
s1, s2 and 0̄:

1) s1 = s2 = 0̄ thus f(s1) = f(s2)
2) s1 = s2 �= 0̄ thus f(s1) = f(s2)
3) s1 < s2 = 0̄ giving rise to two cases for the relationship

between f(s1) and f(s2):
a) f(s1) = 0̄S and f(s2) = 0̄S thus f(s1) = f(s2)
b) f(s1) �= 0̄S and f(s2) = 0̄S as 0̄S ≥ s for all

s ∈ S, f(s1) ≤ f(s2) = 0̄S .
4) s1 < s2 �= 0̄ we prove that f(s1) ≤ f(s2) by con-

tradiction. Assume that f(s1) > f(s2) as DIST(S�×0̄T)
implies

h(�s1, t� ⊕ �s2, t�) = h(�s1, t�)⊕ h(�s2, t�)
⇐⇒ �f(s1), g(t)� = �f(s2), g(t)�
⇐⇒ f(s1) = f(s2)

⇒⇐ thus f(s1) ≤ f(s2).

Lemma 6. ¬C(S) ∧ DIST(S�×0̄T) =⇒ DIST(T)

Proof: As ¬C(S) there exists s ∈ S, f ∈ FS such that
f(s) �= 0̄S . From DIST(S�×0̄T) for all t1, t2 ∈ T, g ∈ FT

with h = �f, g� ∈ FS�×0̄T
we have

h(�s, t1� ⊕ �s, t2�) = h(�s, t1�)⊕ h(�s, t2�)
which implies

�f(s), g(t1 ⊕ t2)� = �f(s), g(t1)� ⊕ �f(s), g(t2�).

Now f(s) �= 0̄S thus �f(s), g(t1 ⊕ t2)� �= 0̄ which implies
∀ t1, t2 ∈ T, g ∈ FT g(t1 ⊕ t2) = g(t1) ⊕ g(t2) hence
DIST(T).

Lemma 7. ¬C(S) ∧ DIST(S�×0̄T) =⇒ K0̄(S) ∨ C(T)

Proof: Proof by contradiction. Assume ¬C(S) ∧
DIST(S�×0̄T) ∧ ¬K0̄(S) ∧ ¬C(T) thus

¬C(T) =⇒ ∃t ∈ T, g ∈ FT : g(t) �= 0̄T ,

and
¬K0̄(S) =⇒ ∃s1, s2 ∈ S, f ∈ FS : f(s1) = f(s2)

with s1 < s2 and f(s1) �= 0̄S .

For the above t, s1, s2,
h(�s1, 0̄T � ⊕ �s2, t�) = h(�s1, 0̄T �) = �f(s1), 0̄T �,

and

h(�s1, 0̄T �)⊕ h(�s2, t�) = �f(s1), g(0̄T)� ⊕ �f(s2), g(t)�
= �f(s1), 0̄T ⊕ g(t)�.

Now f(s1) �= 0̄S and DIST(S�×0̄T) thus

�f(s1), 0̄T � = �f(s1), 0̄T ⊕ g(t)� =⇒ 0̄T = g(t).

⇒⇐ thus ¬C(S) ∧ DIST(S�×0̄T) =⇒ K0̄(S) ∨ C(T)
Using the above lemmas, we now state our main the-

oretical contribution, the properties of (S,⊕, 0̄S , FS) and
(T,⊕, 0̄T , FT) that make S�×0̄T distributive.

Theorem 1. The necessary and sufficient conditions for S�×0̄T
to be distributive are

C(S) ∨ (DIST(S) ∧ C(T)) ∨ (DIST(S) ∧ DIST(T) ∧ K0̄(S))
⇐⇒ DIST(S�×0̄T),

(4)
where the properties C,DIST and K0̄ are defined in Table I.

Proof: Lemmas 2, 3 and 4 provide

C(S) ∨ (DIST(S) ∧ C(T)) ∨ (DIST(S) ∧ DIST(T) ∧ K0̄(S))

=⇒ DIST(S�×0̄T).

Lemmas 2, 5, 6 and 7 along with the fact that DIST(S�×0̄T)
can be partitioned into (C(S) ∧ DIST(S�×0̄T)) and (¬C(S) ∧
DIST(S�×0̄T)) provide

DIST(S�×0̄T) =⇒
C(S) ∨ (DIST(S) ∧ C(T)) ∨ (DIST(S) ∧ DIST(T) ∧ K0̄(S)).

Remarks: Theorem 4 divides condition (4) into three parts:
the first two involve the requirement that either C(S) or C(T),
i.e., that the component algebra is constant. These make no
sense in context – why use strata if one level is constant? The
interesting condition for distributivity of the overall algebra
is that the components be distributive, and that S be almost
cancellative. This was stated without proof as a sufficient
condition for distributivity in [8]. Here we have shown it is
also a necessary condition for useful algebras of this type.

V. FURTHER RESULTS

By assuming ∃f ∈ FS , a ∈ S : f(a) < a as a base case for
an induction that leads to a contradiction, we can show that
DIST(S) ∧ K0̄(S) =⇒ INFL(S).

This leads to a way of counting the number of possible
functions in FS when we have DIST(S) ∧ K0̄(S) and S is
finite. We consider paths on a |S| − 1 × |S| − 1 square grid.
The constraints of DIST(S)∧K0̄(S)∧ INFL(S) mean that we
can move only up or to the right, so the set of paths we are
interested in can be written as a word consisting of the letters
U and R. Suppose that the value that f(a) takes is the highest
point of the path at a. The words can be written as |S|−1 Us
each of which can be followed by 0 or 1 Rs, thus the number
of distributive functions possible is 2|S|−1.

VI. CONCLUSION

The main result of this paper is proof of the necessary and
sufficient properties of (S,⊕S , 0̄S , FS) and (T,⊕T , 0̄T , FT)
such that S�×0̄T is distributive. It is this distributivity which
ensures S�×0̄T will find globally optimal paths. The required
properties are given in Theorem 1. They are remarkably
similar to the those for S�×T to be distributive given in
(3); however, when S is finite, comparison of the number of
possible functions in Fs (Sections III-B and V) demonstrates
how much more flexible the absorbing lexicographic product
is in comparison to the standard lexicographic product.

The minimal assumption that the functions in FS and FT

map zero onto itself was made, but the requirement for S�×0̄T

to be distributive forces these functions to be endomorphisms
and thus S and T must be AMEs.

We considered an absorbing lexicographic product where
only the highest level could generate an absorbing zero. Ideally
we could create algebras using an n-ary product, where every
level might be able to create an absorbing zero. The first step
towards this end would be to consider the simple case of two
levels, both of which can generate an absorbing zero. This
could then be used recursively to generate an n-ary product.
By defining a new property N : f(a) = 0̄ =⇒ a = 0̄ on T
we can provide the following sufficient conditions for such an
algebra to be distributive:

DIST(S) ∧ DIST(T) ∧ K0̄(S) ∧ N(T) =⇒ DIST(S�×0̄T).

If these are also necessary conditions, we suspect that the
requirement for N(T) could be quite restrictive in the case
where T was finite. This would also have implications in an
n-ary product as with each recursive definition the property
would be needed on larger and larger constructs.

The addition of the conditions that generate an absorbing
zero means that many powerful theorems can no longer be
applied to this construct to provide proof of various properties.
Elementary methods were applied in this case. Their success
gives an indication that automated theorem provers might be
useful in proving the properties of these constructs and would
be a necessity if n-ary products with a mix of levels capable
of generating an absorbing zero were required.

REFERENCES

[1] B. A. Carré, “An Algebra for Network Routing Problems,” IMA Journal

of Applied Mathematics, vol. 7, no. 3, pp. 273–294, 1971.
[2] K. Varadhan, R. Govindan, and D. Estrin, “Persistent route oscillations

in inter-domain routing,” Computer Networks, vol. 32, no. 1, pp. 1–16,
2000.

[3] T. Griffin. BGP ”Wedgies”, Request for Comments: 4264: http://www.
ietf.org/rfc/rfc4264.txt, November 2005.

[4] M. Gondran and M. Minoux, Graphs, Dioids and Semirings: New Mod-

els and Algorithms (Operations Research/Computer Science Interfaces

Series). Springer Publishing Company, Incorporated, 1st ed., 2008.
[5] J. Sobrinho, “Algebra and algorithms for QoS path computation and hop-

by-hop routing in the Internet,” Networking, IEEE/ACM Transactions on,
vol. 10, pp. 541–550, August 2002.

[6] T. G. Griffin and J. L. Sobrinho, “Metarouting,” SIGCOMM Comput.

Commun. Rev., vol. 35, pp. 1–12, August 2005.
[7] A. Gurney, Construction and verification of routing algebras. PhD

thesis, University of Cambridge, 2009.
[8] T. G. Griffin, “The stratified shortest-paths problem,” in Proceedings

of the 2nd international conference on COMmunication systems and

NETworks, COMSNETS’10, (Piscataway, NJ, USA), pp. 268–277, IEEE
Press, 2010.

[9] A. Martelli, “An application of regular algebra to the enumeration of
the cut sets of a graph,” Information Processing, vol. 74, pp. 511–515,
1976.

[10] A. Gurney and T. Griffin, “Lexicographic products in metarouting,” in
Network Protocols, 2007. ICNP 2007. IEEE International Conference

on, pp. 113–122, October 2007.
[11] T. Griffin and A. Gurney, “Increasing Bisemigroups and Algebraic

Routing,” in Relations and Kleene Algebra in Computer Science

(R. Berghammer, B. Möller, and G. Struth, eds.), vol. 4988 of Lecture

Notes in Computer Science, pp. 123–137, Springer Berlin / Heidelberg,
2008. 10.1007/978-3-540-78913-0-11.

[12] T. G. Griffin, F. B. Shepherd, and G. Wilfong, “The stable paths problem
and interdomain routing,” IEEE/ACM Trans. Netw., vol. 10, pp. 232–243,
April 2002.

