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Summary

Systems such as the M/G/1 queue are of great interest in queueing theory. Techniques

such as M.Neuts's block matrix methodology have traditionally been used on the more

complicated generalisations of this type of queue. In this thesis I develop an alternative

method which uses martingale theory and some renewal theory to �nd solutions for a

class of M/G/1 type queues.

The theory, originally applied by Baccelli and Makowski to simple queueing

problems, derives its key result from Doob's Optional Sampling Theorem. To make use

of this result some renewal theoretic arguments are necessary. This allows one to �nd

the probability generating function for the equilibrium distribution of customers in the

system.

Chapter 2 develops the renewal theoretic concepts necessary for the later parts

of the thesis. This involves using the key renewal theorem on a modi�ed type of Markov

renewal process to obtain results pertaining to forward recurrence times.

Chapter 3 contains the martingale theory and the main results. The type of

processes that can be dealt with are described in detail. Brie
y these consist of processes

where the busy period is broken into a series of phases. The transitions between phases

can be controlled in a number of ways as long as they obey certain rules. Some examples

are: phases ending when there are more than a certain number of customers in the

system or when the busy period has continued for a certain number of services. The

behaviour of the server can be di�erent in each phase. For instance, the service-time

distribution or the service discipline may change between phases. The main result uses

Doob's Optional Sampling Theorem and so we must establish a number of conditions on

the martingale used. We establish a simple criterion for these conditions to hold. Finally

in this chapter we examine the simplest case, the M/G/1 queue.

The following chapters contain a number of examples. Standard probabilistic

arguments are used to obtain the necessary conditions and results to use the theorems of

Chapter 3. The examples considered include cases with two, three, four and an in�nite

number of phases. The theoretical results are supported by a number of simulations in

the latter case.

Finally we have some suggestions for possible future work and the conclusion.
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Chapter 1

Introduction

Aim

The aim of this thesis is to apply a martingale technique to queueing theory. Martingales

have been used successfully in �nancial modelling and elsewhere and there is a well

developed theory built around them.

One of probability's great achievements is in its use in the study of queues and

so it is surprising that such a powerful area of probability such as martingale theory has

only been slowly taken up in queueing theory.

In order to redress this we have demonstrated how a technique suggested by

F. Baccelli and A.M. Makowski can be extended to solve some queueing problems of

interest.

The Technique

The amount published on the use of martingales in queueing theory, compared to the

total amount of literature on queueing theory, is minimal. Where martingales have

been used they tend to be deployed on a particular part of a larger problem and not

as a general technique for solving problems. Some examples where this is not true

are Rosenkrantz (1983), Kella and Witt (1992), Ferrandiz (1993), Baccelli (1986) and

Baccelli and Makowski (1985,1986,1989,1991). In these papers the approach is to solve a

problem or problems using martingales as the fundamental means. We are particularly

interested in the papers of Baccelli and Makowski.

Baccelli and Makowski's technique was �rst used, in the literature, to demon-

strate stability conditions (1985,1986) and later to provide probability generating func-

tions for the equilibrium number of customers in simple queueing systems, (1989,1991).

The only problem with these was that the systems investigated were the well-known

M/G/1 queue (1985,1989) and the single-server queue with Markov Modulated Poisson

Process input (1986,1991). This was criticised in Mathematical Reviews (92k:60202)

where the reviewer stated;

A number of papers including this one (Baccelli and Makowski, 1991) have

appeared in recent years wherein martingale methods have been used to

derive reasonably well-known results derived initially by other, less abstract

methods. It is not clear to the reviewer that our understanding of the related

queueing systems has been advanced by these very technical papers.
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The only other direct use of this technique, known to the author, is the master's thesis

of Park (1990). This also examines a well-known system, the M

X

/G/1 queue.

This thesis addresses this criticism. We use the four papers of Baccelli and

Makowski as a basis for all of the theory herein. The idea is extended to cover a major

group of useful and interesting problems.

The technique involves using Doob's Optional Stopping Theorem on the discrete-

time process, embedded at departure epochs. This theorem allows one to relate the

behaviour of the queue at arbitrary time points to the behaviour of a renewal process

embedded at speci�c epochs of the queue's history. This is the most important part of

all of the theory to follow, a large part of the remainder merely being support for this

result. In Baccelli and Makowski's papers the ends of the busy periods form the renewal

epochs of interest. In this extension other time points are allowed to have signi�cance in

the queue, and these are then included in the relationship. This considerably complicates

the renewal process of interest and we require a new result because of this complication.

One �nal note to make about this technique is that it is underutilised in this

thesis. Baccelli and Makowski derive stability criterion and transient results for the

systems they investigate. I have chosen only to look at the equilibrium probability

generating function of the number of customers in the systems. The stability criterion

is omitted because in the general case examined here the stability criterion depend on

the nature of the speci�c problem. The transient results are not provided in order to

keep this thesis as concise as possible, as the transient results for many of the problems

investigated are extremely complicated.

The problems

The class of systems to which this method is applicable is a generalisation of the M/G/1

queue. The single server is retained, as is the Poisson input, and what we call the server's

behaviour is modi�ed. The queue, during the course of a busy period, progresses through

a series of phases. In each phase the server's behaviour may be di�erent. For instance

the service-time distribution, the service discipline or even the probability of blocking

an arrival may vary between phases. (Note that our concept of a phase is di�erent from

the phase-type distribution of Neuts (1989).)

The phases must obey certain rules in order that the theory may be applied. In

some cases, processes whose phase structure does not obey these rules may be remodelled

so that the new phase structure does obey the rules. Through remodelling such as this

a great number of problems are included in this class of queues.

Motivation

The M/G/1 queue and variants thereof form one of the largest �elds of study in queueing

theory. Many computing, communication and manufacturing systems can be modelled

by M/G/1 models. There are too many articles on this subject to go into all of them

here. The following brief list indicates some of the very recent papers in this area:

Borst et al (1993), Ferrandiz (1993), Takine et al (1993), Schormans et al (1993) and

Yashkov (1993). A good initial starting point for investigating all single-server queues is

Cohen (1969).

Many interesting systems �t into the class of systems investigated. Later in this

thesis a number of simple examples are presented. These, while still perhaps too simple

2



to be used directly, point quite clearly to some of the types of problems that can be

solved. An example is a system with state dependent arrival and service processes as

described in Courtois and Georges (1971). Numerous papers which deal with problems

of this nature could be listed. A small sample of recent papers in this vein:

J. Dshalalow (1989),

W. Gong, A. Yan and C.G. Cassandras (1992),

O.C. Ibe and K.S. Trivedi (1990),

M. Kijima and N. Makimoto (1992a,b),

R.O. LaMaire (1992),

J.A. Morrison (1990),

J.A. Schormans and J.M. Pitts and E.M. Scharf (1993),

T. Takine, H. Takagi and T. Hesegawa (1993)

and H. Takagi (1992).

Furthermore there is an entire theory developed around precisely such problems. This

is the block-matrix methodology of Neuts et al described in Neuts (1989). Given that

this theory exists why have I presented an alternative? For a start many problems

easily soluble by the martingale technique may be solvable in the Neutsian scheme, but

not easily, and vice versa. Furthermore the martingale technique can provide elegant

analytical results and in addition it can in some situations provide, as a byproduct,

results in addition to those initially desired.

Further motivation is given by the examples presented in this thesis.

Outline

This thesis consists of two major parts. The general theory is covered in the �rst two

chapters. Chapter 2 covers renewal theory. Because of the complex nature of the renewal

processes which I use in this theory they need to be described in detail. Also a renewal

result is given which to the author's knowledge is not to be found in the literature.

Chapter 3 gives the technical de�nition of the type of processes investigated and

how these processes are modelled. The martingale (and related probabilistic elements)

that are used are given, as is a set of stopping times which are crucial to the results.

It is vital that these stopping times be regular with respect to the martingale and in

condition (�) (page 33) a condition for this is provided.

The martingale and stopping times are then used in Doob's Optional Stopping

Theorem to provide a set of results which when used in conjunction with those of Chap-

ter 2 provide the probability generating function of interest. The penultimate section of

Chapter 3 deals with all of the possible generalisations of the basic model to which this

technique can be applied, along with some of the potential pitfalls. Finally the technique

is applied to the simple M/G/1 queue.

The second major part of this thesis consists of a number of examples. Chapter 4

contains the �rst set of examples, and for this reason is the most detailed. These are

all two-phase examples, that is, M/G/1 queues where the busy period can be broken

into two parts, with di�erent server behaviour in each. We describe this by saying that

the �rst phase ends when some threshold is crossed. Three major types of threshold

are considered. The �rst is when there are more than a certain number of customers in

the system, the second when a geometrically-distributed number of customers have been

served in the busy period and the third when a �xed number of customers have been
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served in the busy period.

The individual solutions for each of these cases requires a reasonable amount

of work, using standard probabilistic techniques, before a result can be obtained. This

involves showing that condition (�) is satis�ed and investigating the behaviour of the

queue at the thresholds. Remarkably, all three solutions are in the same form. The

form of the probability generating function for the number of customers in the systems

is closely related to the form of that of the M/G/1 queue with a correction term that

depends on the di�erence in behaviour in the two phases. A number of subsidiary results

such as the equilibrium probability of each phase are calculated using Little's law.

Chapter 5 extends one of the examples of Chapter 4 to the case with three phases

by including a second threshold. This chapter also introduces a new type of threshold.

Chapter 6 describes and solves a four phase model which can be used to model a

M/G/1 queue which can break down. While this is an unsophisticated breakdown/repair

model it demonstrates how a more sophisticated model could be formed.

Finally, the example in Chapter 7 considers what happens in a case with an

in�nite number of phases. This can happen if two service regimes may alternate an

in�nite number of times during the busy period. It is di�cult in this case to prove

condition (�) and so a number of numerical examples are provided to support the result.

This type of model is then used to investigate the M/G/1 queue with a �nite waiting

room.

The major part of the text is followed by Chapter 8, the conclusion, which

discusses further work that could be conducted in this �eld and block-matrix methods

and how they could be applied to some of the problems herein.

A number of appendices are included in this thesis. These cover some of the

basic theory used in queueing theory and martingale analysis. A great deal of this will be

known to the experienced reader but we include it for two reasons. Firstly it is desirable

for this thesis to be as self contained as possible. To this end the major results which we

call upon are included. Secondly, some of the results appear in several di�erent forms in

the literature. For instance, while the major reference on martingales is Neveu (1975)

and we draw Doob's Optional Stopping Theorem from this reference, Neveu does not

refer to this theorem as Doob's Optional Stopping Theorem. This name appears in

relation to this theorem or related theorems in several places such as Williams (1991).

4



Chapter 2

Renewal Theory

2.1 Introduction

In this chapter we consider renewal processes. The results of this chapter provide the

probability generating function for the forward recurrence times of a type of renewal

process. By itself the result is of moderate interest. The results herein are more a means

to an end than an end unto themselves. However it is important that the nature of the

renewal process be understood before the more interesting parts of this thesis commence.

This chapter begins with a brief description of renewal processes, building up to

Markov renewal processes. This basic work on renewal processes and Markov renewal

processes is well known. Several references such as Wol� (1989), Cox (1962) and Pyke

(1961a,b) cover this. We have included it in order to build up to the type of process of

interest. De�nitions such as that of forward renewal times are much easier in the simple

renewal process. The concept is then extended to more complex systems. Further the

arguments used to prove results may be clearer in the simple case. Thus it is to be hoped

that when extended the arguments remain clear.

Two points to note are that we shall be concerned with non-delayed processes

and also that we are interested in lattice processes. The reasons for this will become

evident when the results are put to use.

Once the survey of Markov renewal processes is done we look at what we call

generalised Markov renewal processes. By this we do not mean the same thing as Pyke.

We mean a Markov renewal process in which not all of the states are renewal states.

This concept is explained in Section 2.3.2. This describes a process more general than

that needed for our results. Part of the reason for this is simply to provide a framework

for the case of interest. However the main reason is that it is to be hoped that the

results might be extended to the whole class of generalised Markov renewal processes.

This would enable simpli�cation of the technique for examining some processes.

The important part of this chapter is that which describes the multi-phase

Markov renewal process. This is the motivating case and the process for which orig-

inal results are produced. This can be thought of as a process in which the times

between renewals have been broken into a number of phases. The times spent in each of

the phases are not independent. Thus the recourse to the generalised Markov renewal

process. Each phase is considered to be a separate state in the Markov renewal process

with only one of the states being a renewal state. Entries to the renewal state correspond

5



to the renewals of the simple renewal process.

The two major results both connect the forward recurrence times of this process

to the sojourn times of the process, one of the results through the probability density

functions (Theorem 2.3) and the other through the probability generating functions

(Theorem 2.4). It is the second which is of major interest.

The �nal part of this chapter considers what happens if the number of phases

becomes in�nite in such a process.

6



2.2 Simple renewal theory

A simple renewal process is a process

N

t

=

1

X

n=1

I(T

n

� t);

where T

n

=

P

n

i=1

X

i

and the sequence (X

n

) of non-negative, independent, identically

distributed random variables have probability density function F (�). The times T

n

are

the times of the renewals and N

t

counts the number of renewals to have occurred by

time t. Note that

T

N

t

� t < T

N

t

+1

;

so that T

N

t

is the epoch of the last renewal before t while T

N

t

+1

is the epoch of the next

renewal after t. Also N

T

n

= n. The renewal process is said to be delayed if X

1

has a

di�erent probability distribution function F

1

(�) from F (�). We shall consider here only

non-delayed renewal processes but note that the limiting results can all be extended to

delayed processes. We take m = E [X

n

]. The forward and backward recurrence times are

de�ned by

�

t

= T

N

t

+1

� t and �

t

= t� T

N

t

;

respectively. They are the time until the next renewal and the time from the last renewal

respectively.

We shall be concerned with the lattice or arithmetic case where all of the events

in the process occur on a set of lattice points. This occurs if F (x) is a step function with

the steps on the lattice points kd, k 2 ZZ

+

. If d is the largest such number then d is the

span of the system. We let d = 1 by taking a change in time and then we can de�ne the

function f(n) = pfX

i

= ng for all i. We assume only one renewal can occur at a time

so that f(0) = 0. We de�ne the renewal function

H(n) = E [N

n

] :

Because we want a non-delayed renewal process we assume a dummy renewal that is not

included in N

n

occurs at time zero. We de�ne h(n) = pfa renewal occurs at time ng for

n 2 ZZ

+

and thus

h(n) =

(

0; n = 0;

H(n)�H(n� 1); n > 0;

so that

H(n) =

n

X

i=1

h(i):

A number of limit theorems are associated with renewal theory. They can all be derived

from the Key Renewal Theorem. This theorem can be found in many places in several

forms. This version is the lattice version of Serfozo (1990). Once the renewal function

is de�ned the Key Renewal Theorem for the lattice case is as follows.

Theorem 2.1 (Key Renewal Theorem) If F is lattice with span d then

lim

n!1

H � g(x+ nd) = m

�1

1

X

k=1

g(x+ kd);

7



provided the sum is �nite. In this H � g is the convolution of H and g and m

�1

is taken

to be zero for m =1.

A renewal equation is an equation involving the renewal function. Such equa-

tions arise often in this context due to the regenerative nature of the process. For instance

we can write a renewal equation for h(n),

h(n) = f(n) +

n�1

X

l=1

h(n� l)f(l): (2.1)

This equation arises from the two possible ways in which a renewal can occur at time n.

The �rst renewal subsequent to time zero could occur at time n with probability f(n).

Secondly the �rst renewal could occur at time l < n which happens with probability f(l).

If this is the case we consider the process to have started again at this time and there

will be a renewal at time n with probability h(n � l). Summing over these possibilities

gives the result.

The Key Renewal Theorem can be applied to this renewal equation as follows.

The �rst term in this sum tends to zero as n tends to in�nity and the second sum is the

convolution H � f(k) so that as n tends to in�nity

h(n) ! m

�1

1

X

i=1

f(i)

= m

�1

:

Theorem 2.2 Given the above de�nitions the renewal equation for the forward recur-

rence times in the renewal process is

p

n

(r) = f(r + n) +

n�1

X

l=1

h(n� l)f(r + l): (2.2)

where p

n

(r) = pf�

n

= rg. Assuming aperiodicity, as n tends to 1

p

n

(r) !

1

m

1

X

l=1

f(r + l): (2.3)

Proof: We get the renewal equation for p

n

(r) in exactly the same way as in (2.1). The

forward renewal time from time n can be equal to r in one of two ways. Firstly the

�rst renewal can occur at time n + r. Secondly if a renewal occurs before this time at

time n� l (probability h(n� l)) it can be followed r + l later by a second renewal with

probability f(r + l). Summing gives (2.2). From the key renewal theorem we get the

limit as n tends to in�nity of p

n

(r) to be

p(r) =

1

m

1

X

l=1

f(r + l):

2
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2.3 Basic Markov renewal theory

The concept of renewal theory as outlined above is not su�cient for our purposes here.

We need the more advanced concepts of Markov renewal theory. This is because the

renewal process we shall investigate will have a number of stages through which it pro-

gresses. It is natural to call these states and de�ne a process on them as below. We shall

need to progress to a more general description again before we are ready to produce the

results necessary for the later theory.

Although the de�nitions are quite general the motivation comes from a simple

set of examples. The generality is preserved because it is to be hoped that in the future

more di�cult problems might be tackled using these concepts.

We must �rst de�ne what we mean by a Markov renewal process (MRP). If we

take a Markov chain on the countable set of states S, which we shall label 1; 2; 3; : : :,

with the probability transition matrix P = (p

ij

), and we take the set of probability

distribution functions F

ij

(t) de�ned for p

ij

> 0 (and arbitrary for p

ij

= 0) then we can

describe a Markov renewal process as follows. It is a process in which a certain time

is spent in each state before the transition to another state. The choice of transitions

between states is governed by the matrix P and the time spent in state i, conditional on

a transition from this state to state j, is determined by probability distribution function

F

ij

. Formally we may consider the two dimensional process f(J

n

;X

n

) : n � 0g where

J

n

= the state after n transitions;

X

n

= the time spent in state J

n�1

before the transition to J

n

;

such that if the �ltration G

n

= �((J

m

;X

m

) : 0 � m � n), (see page 127) and the vector

of initial probabilities is a = fa

i

g

PfJ

0

= ig = a

i

;

PfJ

n+1

= ijG

n

g = PfJ

n+1

= ijJ

n

g

= p

J

n

;i

;

PfX

n+1

� xjJ

n

= i; J

n+1

= jg = F

ij

(x);

where F

ij

(x) is a probability distribution function such that

F

ij

(x) = 0; 8x � 0:

The reason for this being called a renewal process is simply that the future of the queue

at a transition epoch, is independent of the history of the process, except through the

current state. Thus at transitions the process renews itself. An alternative name is a

regenerative process.

Pyke (1961a) approaches the de�nition of these processes in a slightly di�erent

manner. It can be shown that the two de�nitions are equivalent by considering the

matrix valued function Q : IR ! IR

N

x IR

N

. Q = (Q

ij

) which is called a matrix of

transition distributions if the Q

ij

are non-decreasing functions satisfying

Q

ij

(x) = 0; x � 0

9



and H

i

(x) =

N

X

j=1

Q

ij

(x) is a probability distribution function for 1 � j � N . This agrees

with our de�nition if we take

Q

ij

(x) = p

ij

F

ij

(x);

or alternatively,

p

ij

= lim

x!1

Q

ij

(x);

F

ij

(x) =

(

p

�1

ij

Q

ij

(x); p

ij

> 0;

arbitrary; p

ij

= 0:

In Pyke's notation

PfJ

n+1

= k;X

n+1

� xjG

n

g = Q

J

n

;k

(x); a:s:

for all x 2 IR and 1 � k � N . Pyke de�nes the process in terms of Q(�). For our

purposes it is more natural to consider P and F(�) due to the simplicity of the matrix

P in the process we shall investigate.

The things that are normally investigated in Markov renewal theory are the

counting processes de�ned by

N(t) = supfn � 0jT

n

� tg; (2.4)

N

j

(t) =

N(t)

X

n=1

I(J

n

= j); (2.5)

where T

0

= 0 and T

n

=

P

n

i=1

X

i

. Note that the counting functions N

j

(t) do not record

the value of J

0

. The process N(t) = (N

1

(t); N

2

(t); : : :) will be referred to as the Markov

renewal process determined by (S;a;P;F). Where no ambiguity exists we shall refer

simply to this as the MRP. We can also de�ne a process (Z

t

) by

Z

t

= J

N(t)

:

This gives the state of the MRP at time t.

Just as in the theory of Markov chains the states of a MRPmay be classi�ed as to

whether they communicate, are (positive or null) recurrent or transient. For classi�cation

we use the following, de�ned for all i; j 2 S,

G

ij

(t) =

(

pfN

j

(t) > 0jZ

0

= ig; if t � 0;

0; if t < 0:

Also we de�ne �

ii

the mean time between transitions to state i

�

ii

=

Z

1

0

t dG

ii

(t):

The following classi�cations are used.

10



De�nition 2.1 The following de�nitions are used herein.

(a) States i and j communicate i� G

ij

(1)G

ji

(1) > 0; or i = j.

(b) The disjoint classes of communicating states are denoted by fC

i

g.

(c) A MRP is said to be irreducible i� there is only one class.

(d) A state i is said to be recurrent i� G

ii

(1) = 1, and is said to be transient

otherwise.

(e) A state is said to be null recurrent i� it is recurrent and �

ii

=1 while it is said

to be positive recurrent i� it is recurrent and �

ii

<1.

(f) If all of the states i 2 S have one of the preceding properties then we say that the

MRP has this property.

Theorem 5.1 of Pyke (1961a) means that the irreducibility and recurrence of the process

can be based on the corresponding properties of the Markov chain de�ned by the tran-

sition matrix P. We also de�ne a renewal function for the Markov renewal process by

M(t) = (M

ij

(t)) where M

ij

(t) is

M

ij

(t) = E[N

j

(t)jZ

0

= i]:

Note that we can still use a version of the Key Renewal Theorem. However we shall

not be directly interested in N(t) and M(t), we shall be more interested in forward

recurrence times, the previous theory being necessary for de�nitions and background.

The epoch of the next recurrence of state j after time t is given by

�

j

(t) = inffs > t jN

j

(s) > N

j

(t)g:

From this we de�ne the forward recurrence times for state j by

�

j

i

(t) =

8

>

<

>

:

0; if t = S

n

and J

n

= j for some n;

Z

�

j

(t)

t

I(Z

s

= i)ds; otherwise:

These are the total times spent in states i 2 S before the next recurrence of state j.

2.3.1 Delayed Markov renewal processes

Delayed Markov renewal processes are called generalised Markov renewal processes by

Pyke but we shall reserve this terminology for a later stage. These are processes with

a di�erent set of probability distribution functions describing the time spent in the

initial state. Thus we get a new process which we call the delayed MRP determined by

(S;a;P;

~

F;F)

PfJ

0

= ig = a

i

;

PfJ

n+1

= ijJ

n

g = p

J

n

;i

;

PfX

1

� xjJ

0

= i; J

1

= jg =

~

F

ij

(x);

PfX

n+1

� xjJ

n

= i; J

n+1

= jg = F

ij

(x); for n > 1:

Note that if we take a

i

= �

i

�

�1

ii

where �

i

is the mean time spent in state i and

~

F

ij

(t) = �

�1

i

Z

t

0

[1� F

ij

]dy;

11



we get a stationary process. (Pyke, page 1256). For the remainder of this thesis we shall

be considering non-delayed renewal processes. It is important to note that our reason for

doing this stems from our choice, in later chapters, of initial conditions for the queueing

systems considered. An alternative choice might well result in a delayed renewal process

but this will have no e�ect on the limiting behaviour of the systems.

2.3.2 Generalised Markov renewal processes

We now consider a process such as the one above with the modi�cation that the epochs

of entry to some states do not constitute renewals. We call this a generalised Markov

renewal process (GMRP). If the state space of the process is S and the non-renewal

states are S

�

� S then it is clear that we can no longer simply de�ne Q

ij

for i 2 S

�

because

PfJ

n+1

= j;X

n+1

� xjG

n

g 6= PfJ

n+1

= j;X

n+1

� xjJ

n

g;

for J

n

2 S

�

. There are a number of ways of approaching this. The approach taken by

Nakagawa and Osaki (1976) follows from Pyke's de�nition of a MRP and is to de�ne the

functions

Q

(k

1

;k

2

;::;k

m

)

ij

(x) = Pfafter entering i 2 SnS

�

the process next makes transitions through

states k

1

; k

2

; : : : ; k

m

2 S

�

and �nally enters state j 2 S;

in a total amount of time � xg;

We shall instead preserve the transition matrix P and de�ne the functions

F

(k

1

;:::;k

m

)

ij

(x

0

; x

1

; : : : ; x

m

) = PfX

n

� x

0

;X

n+1

� x

1

; : : : ;X

n+m

� x

m

jJ

n

= i; J

n+1

= k

1

; : : : ; J

n+m

= k

m

; J

n+m+1

= jg;

for i; j 2 SnS

�

and k

1

; ::; k

m

2 S

�

. We call the (x

0

; x

1

; : : : ; x

m

) state sojourn lifetimes

conditional on the states (i; k

1

; : : : ; k

m

; j). F

(k

1

;:::;k

m

)

ij

is then the joint probability distri-

bution function of the times spent in each state prior to a renewal, given the initial state

i, the other states prior to the renewal (k

1

; : : : ; k

m

) and �nal state j.

We can arrive at the notation of Nakagawa and Osaki (1976) by simply consid-

ering

Q

(k

1

;k

2

;::;k

m

)

ij

(x) = p

ik

1

p

k

1

k

2

� � � p

k

m

j

Z

x

1

+���+x

m

=x

F

(k

1

;:::;k

m

)

ij

(x

0

; x

1

; : : : ; x

m

)dx

0

dx

1

� � � dx

m

This de�nition limits the dependence upon the history of the process (beyond

dependence on the current state) to the times spent in states and not the actual states.

Thus the process describing the series of state transitions is still a Markov chain.

In such a process De�nition 2.1 still holds. In order to establish the relationship

between the MRP and the Markov chain that describes the transition states we shall use

Theorem 5.1 of Pyke. We do this by forming a Markov renewal process from the renewal

states SnS

�

. When the non-renewal states and corresponding transitions are ignored we

have a standard Markov renewal process and thus we can apply the theorem.
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2.3.3 Discrete time

In most analyses of renewal processes it is assumed that the distribution functions are

non-lattice. We shall be using renewal theory to examine the behaviour of a discrete-

time process embedded in the queueing processes of interest. For this reason we shall

only consider lattice Markov renewal processes. If all of the functions F

ij

or alternately

F

(k

1

;:::;k

m

)

ij

are lattice with integer spans we call the greatest common denominator of these

spans the span of the process. Herein we assume that the span is 1, which precludes

periodicity. We can then introduce the joint probability function

f

(k

1

;:::;k

m

)

ij

(i

0

; i

1

; : : : ; i

m

) = PfX

n

= i

0

;X

n+1

= i

1

; : : : ;X

n+m

= i

m

j

J

n

= i; J

n+1

= k

1

; : : : ; J

n+m

= k

m

; J

n+m+1

= jg: (2.6)

The process Z

t

= J

N(t)

is replaced by Z

n

= J

N(n)

, the state of the process at time n.

13



2.4 Multi-phase Markov renewal process

The case now described is the simplest non-trivial case of the generalised Markov renewal

process. It is called a Markov renewal process of type I in Nakagawa and Osaki (1976).

It is simply the case in which there are N states labelled 1; : : : ; N with only state 1 a

renewal state and the states visited in sequential order. Thus the probability transition

matrix P is given by

P =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

0 1 0 : : : 0 0

0 0 1 : : : 0 0

.

.

.

0 0 0 : : : 0 1

1 0 0 : : : 0 0

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

:

Ignoring non-renewal states 2; : : : ; N there is only a single state and hence the Markov

chain on this is obviously recurrent, so from Theorem 5.1 of Pyke the MRP must be

recurrent. Thus the multi-phaseMarkov renewal process must be recurrent. Furthermore

as all of the states communicate the process is irreducible.

2 3

4

N

1

Figure 2.1: The Markov renewal process. 2 denotes a renewal point while 
 denotes a

non-renewal point

We refer to this as a multi-phase Markov renewal process. The name refers to

the fact that the epochs of transitions to state 1 form a simple renewal process which is

then broken into phases, as we are interested in some of the internal behaviour of this

process. Each of the phases is simply a state in the GMRP. Because of the simplicity of

this case, much of the previous notation may be substantially abbreviated. Further this

allows us to use the Key Renewal Theorem in its simple form later in this chapter.

Note that the results of this section seem to be novel.
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2.4.1 De�nitions

We de�ne T

j

i

to be the epoch of the ith departure from state j and take T

0

m

= T

N

m�1

. As

we consider the lattice case T

j

i

2 ZZ

+

. We call the interval [T

N

m�1

; T

N

m

) the mth cycle.

The state sojourn times of the mth cycle are the times �

j

m

= T

j

m

�T

j�1

m

, the times spent

in each state during that cycle. We assume that the process is not delayed and the

vector of initial probabilities is a = e

1

= (1; 0; : : : ; 0). By this we mean that the process

starts with a transition to state 1 (and a corresponding renewal). So T

N

0

= 0 and the

probability function for the initial transition times is the same as that for all of the other

transition times. In terms of the notation of Section 2.3 we have

X

(m�1):N+j

= T

j

m

� T

j�1

m

;

J

(m�1):N+j

= j:

Due to the nature of renewal processes the joint distributions of �

1

m

; : : : ; �

N

m

are

identical for all m. Thus we may drop the subscript and refer to the state sojourn times

�

j

. We may from this de�ne the joint probability function f(i

1

; i

2

; : : : ; i

N

) of the state

sojourn times �

1

; : : : ; �

N

by

f(i

1

; i

2

; : : : ; i

N

) = pf�

1

= i

1

; �

2

= i

2

; : : : ; �

N

= i

N

g

= pfX

N:(m�1)+1

= i

1

;X

N:(m�1)+2

= i

2

; : : : ;X

N:(m�1)+N

= i

N

g;

= f

(2���N)

11

(i

1

; i

2

; : : : ; i

N

);

with f

(2���N)

11

as is de�ned by (2.6). We take � = E

h

�

1

+ � � �+ �

N

i

and require that

�

1

+ � � �+�

N

� 1 with probability one. The multi-phase MRP is positive recurrent when

� <1 and null recurrent otherwise. This can again be seen by considering the renewal

process formed by transitions to state 1.

The times of interest are the times spent in each state before the recurrence of

state 1, the forward recurrence times �

1

i

. Mathematically these are as follows. De�ne

the N + 2 sequences of random variables (�

j

(n))

N

j=0

and (� (n)) for n 2 ZZ

+

as follows

� (n) =

(

inffk > n j k = T

N

m

; m 2 INg; if the set is non-empty;

1; otherwise;

�

j

(n) =

(

supfn < k � � (n) j k = T

j

m

; m 2 INg; if the set is non-empty;

n; otherwise:

(Note the di�erence between �

j

and �

j

. The former is de�ned immediately above while

the latter is the epoch of the next recurrence of state j.) In this context we are only

interested in the recurrence of state 1 and so we drop the superscript and refer to the

following lemma. By the forward recurrence times we mean the forward recurrence times

for state 1 and we label these times by �

i

(n).

Lemma 2.2.1 (Forward recurrence times) For the multi-phase MRP the following

holds.

�

i

(n) =

(

0; n = T

N

m

; for some m 2 IN;

�

i

(n)� �

i�1

(n); otherwise,

8i 2 f1; : : : ; Ng and n 2 IN .
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Proof: We de�ned the forward recurrence times for state j by

�

j

i

(n) =

8

>

>

<

>

>

:

0; if n = T

m

and J

m

= j for some m 2 IN;

�

j

(n)

X

k=n

I(Z

k

= i); otherwise;

where, as before, Z

k

is the state of the process at time k and

�

j

(t) = inffs > t jN

j

(s) > N

j

(t)g:

Now for a multi-phase MRP the de�nitions of �

1

(n) and � (n) are equivalent. Thus

�

1

i

(n) =

8

>

>

<

>

>

:

0; if n = T

m

and J

m

= 1 for some m 2 IN;

�(n)

X

k=n

I(Z

k

= i); otherwise:

As T

m

is the time of the mth transition and J

m

is the state to which the mth transition

is made we can see that n = T

m

and J

m

= 1 for some m 2 IN is equivalent to n = T

N

m

for some m 2 IN . Also for a multi-phase MRP

I(Z

k

= i) =

(

1; if �

i�1

(n) � k < �

i

(n);

0; otherwise;

so that (dropping the superscript) we get

�

i

(n) =

(

0; if n = T

N

m

for some m 2 IN;

�

i

(n) � �

i�1

(n); otherwise:

2

Assuming that at time n, one is in the mth cycle and the current state is Z

n

> 1, the

forward recurrence times are as follows for 1 � j � N ,

�

j

(n) =

8

>

<

>

:

0; j < k;

T

j

m

� n; j = k;

T

j

m

� T

j�1

m

; j > k:

(2.7)

If the state at time n, Z

n

= 1, then there are two possibilities. The �rst is simply that

a renewal occurs at time n in which case �

j

(n) = 0 for all 1 � j � N . If this is not the

case then we get

�

j

(n) =

(

T

1

m

� n; j = 1;

T

j

m

� T

j�1

m

; j > 1:

(2.8)

Within the following sections we use the notation

De�nition 2.2 For l = 1; : : : ; N

X

�l

=

1

X

i

l

=0

1

X

i

l+1

=0

� � �

1

X

i

N

=0

;

X

~l

=

1

X

i

1

=0

1

X

i

2

=0

� � �

1

X

i

l�1

=0

;

with the empty set in the latter, for l = 1, being interpreted as zero.

This is used to simplify notation in later parts of this chapter.
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We can de�ne the joint probability functions

q

n

(r

1

; r

2

; ::; r

N

) = pf�

i

(n) = r

i

; (1 � i � N)g; (2.9)

p

l

n

(r

l

; r

l+1

; :::; r

N

) = pfZ

n�1

= l; �

i

(n) = r

i

; (l � i � N)g; (2.10)

f

l

(i

l

; i

l+1

; :::; i

N

) =

X

~l

f(i

1

; i

2

; :::; i

N

); (2.11)

g

l

n

(i

l

; i

l+1

; :::; i

N

) =

n

X

j=1

X

i

1

+���+i

l�1

=n�j

f(i

1

; ::; i

l�1

; i

l

+ j; i

l+1

; :::; i

N

); (2.12)

f(i) =

X

i

1

+���+i

N

=i

f(i

1

; i

2

; :::; i

N

): (2.13)

Note that g

l

n

(i

l

; i

l+1

; :::; i

N

) is the probability that the �rst l transitions in the process

take total time n+ i

l

, the lth transition takes time > i

l

and transitions l+ 1 to N take

times i

l+1

to i

N

respectively and p

l

n

(r

l

; r

l+1

; :::; r

N

) is the probability that at time n the

the last prior transition was to state l and the the forward recurrence times �

l

; : : : ; �

N

are r

l

; : : : ; r

N

respectively. Also from the theorem of total probability we get for n > 1

q

n

(r

1

; r

2

; ::; r

N

) =

N

X

l=1

p

l

n

(r

l

; r

l+1

; ::; r

N

): (2.14)

We can de�ne the following probability generating functions

F

�

(x

1

; x

2

; : : : ; x

N

) =

X

�1

 

N

Y

k=1

x

i

k

k

!

f(i

1

; i

2

; ::; i

N

);

F

�

l

(x

l

; x

l+1

; : : : ; x

N

) =

X

�l

 

N

Y

k=l

x

i

k

k

!

f

l

(i

l

; i

l+1

; ::; i

N

);

= F

�

(1; : : : ; 1; x

l

; : : : ; x

N

);

F

�

N+1

= 1;

when these converge. We take h(n) to be the probability of a renewal (subsequent to

time 0) at time n. Thus

h(n) =

1

X

m=1

pfT

N

m

= ng:
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2.4.2 Results

Theorem 2.3 Given the above de�nitions the renewal equation is

p

l

n

(r

1

; : : : ; r

N

) = g

l

n

(r

l

; : : : ; r

N

) +

n�1

X

k=1

h(n� k)g

l

k

(r

l

; : : : ; r

N

): (2.15)

Assuming aperiodicity, for l = 1; : : : ; N , and � <1 as n!1 we get

h(n) !

1

�

; (2.16)

p

l

n

(r

l

; : : : ; r

N

) !

1

�

1

X

k=1

f

l

(r

l

+ k; : : : ; r

N

): (2.17)

Proof: To obtain (2.16) we consider the simple renewal process formed by transitions

to state 1. This has probability density function given by f(�) de�ned in (2.13). This

will behave as in the simple renewal process of Section 2.2. Thus we get (2.16).

In order to obtain the renewal equation we follow the procedure of Theorem 2.2

and sum over all of the possibilities to get

p

l

n

(r

l

; : : : ; r

N

) = g

l

n

(r

l

; : : : ; r

N

) +

n�1

X

k=1

h(n� k)g

l

k

(r

l

; : : : ; r

N

):

The lattice version of the Key Renewal Theorem gives

p

l

(r

l

; : : : ; r

N

) =

1

�

1

X

k=1

g

l

k

(r

l

; : : : ; r

N

):

Now

1

X

k=1

g

l

k

(r

l

; : : : ; r

N

) =

1

X

k=1

k

X

j=1

X

i

1

+���+i

l�1

=k�j

f(i

1

; : : : ; i

l�1

; r

l

+ j; r

l+1

; : : : ; r

N

)

=

1

X

j=1

1

X

k=j

X

i

1

+���+i

l�1

=k�j

f(i

1

; : : : ; i

l�1

; r

l

+ j; r

l+1

; : : : ; r

N

)

=

1

X

j=1

1

X

k=0

X

i

1

+���+i

l�1

=k

f(i

1

; : : : ; i

l�1

; r

l

+ j; r

l+1

; : : : ; r

N

)

=

1

X

j=1

X

~l

f(i

1

; : : : ; i

l�1

; r

l

+ j; r

l+1

; : : : ; r

N

)

=

1

X

j=1

f

l

(r

l

+ j; r

l+1

; : : : ; r

N

)

and so

p

l

(r

l

; : : : ; r

N

) =

1

�

1

X

k=1

f

l

(r

l

+ k; r

l+1

; : : : ; r

N

): 2

Remark: Intuitively this can be explained in the following manner. We consider the

process after a long time. We then consider all of the ways in which a set of for-

ward recurrence times can occur. In order to have the forward renewal times r

l

; : : : ; r

N

,
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given the last transition prior to time n was to state l, we must have the sojourn times

i

l+1

= r

l+1

; : : : ; i

N

= r

N

. The the only restriction on i

l

is that i

l

� r

l

+ 1 and there will

be no restrictions on i

1

to i

l�1

. The probability of any particular set of sojourn times

i

1

; : : : ; i

N

will be f(i

1

; : : : ; i

N

). As we consider the long time limit, the probability of

a renewal at any particular time point is a constant 1=�. Thus the probability of a

set of sojourn times occurring in the context of our forward recurrence times will be

1

�

f(i

1

; : : : ; i

N

) when i

l

� r

l

+ 1 and i

l+1

= r

l+1

; : : : ; i

N

= r

N

and zero otherwise. When

we sum over all of these probabilities we get the result. This alternative explanation is

more intuitive but lacks the rigour of the proof.

As we can now see that the limits exist we de�ne

q(r

1

; r

2

; : : : ; r

N

) = lim

n!1

q

n

(r

1

; : : : ; r

N

); (2.18)

p

l

(r

l

; : : : ; r

N

) = lim

n!1

p

l

n

(r

l

; : : : ; r

N

): (2.19)

The corresponding probability generating functions are

Q

�

(x

1

; x

2

; : : : ; x

N

) =

X

�1

 

N

Y

k=1

x

r

k

k

!

q(r

1

; r

2

; : : : ; r

N

);

P

�

l

(x

l

; x

l+1

; : : : ; x

N

) =

X

�l

 

N

Y

k=l

x

r

k

k

!

p

l

(r

l

; r

l+1

; : : : ; r

N

);

and from (2.14) we get

Q

�

(x

1

; x

2

; : : : ; x

N

) =

N

X

l=1

P

�

l

(x

l

; x

l+1

; : : : ; x

N

): (2.20)

Theorem 2.4 Given the above de�nitions, 8N � 1 and x

1

; x

2

; : : : ; x

N

2 [0; 1),

Q

�

(x

1

; x

2

; : : : ; x

N

) =

1

�

N

X

l=1

F

�

l+1

(x

l+1

; : : : ; x

N

)� F

�

l

(x

l

; : : : ; x

N

)

1� x

l

: (2.21)

Furthermore, if Q

�

converges for some x

1

; x

2

; : : : ; x

N

not necessarily all in the interval

[0; 1), then it converges to the right-hand side of equation 2.21.

Proof: From Theorem 2.3 and De�nitions 2.19 and 2.11 we can see that

p

l

(i

l

; i

l+1

; ::; i

N

) =

1

�

8

<

:

f

l+1

(i

l+1

; : : : ; i

N

)�

i

l

X

m=0

f

l

(m; i

l+1

; ::; i

N

)

9

=

;

: (2.22)

Consider �rst the case with x

1

; : : : ; x

N

2 [0; 1). Multiplying (2.22) by

�

Q

N

k=l

x

i

k

k

�

and

summing over i

k

for k = l; : : : ; N we get the generating function P

�

l

on the left-hand side

and on the right-hand side we get the following

P

�

l

(x

l

; x

l+1

; : : : ; x

N

) =

1

�

8

<

:

X

�l

 

N

Y

k=l

x

i

k

k

!

f

l+1

(i

l+1

; : : : ; i

N

)
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�

X

�l

 

N

Y

k=l

x

i

k

k

!

i

l

X

m=0

f

l

(m; i

l+1

; ::; i

N

)

9

=

;

=

1

�

8

<

:

X

�l+1

0

@

N

Y

k=l+1

x

i

k

k

1

A

1

X

i

l

=0

x

i

l

l

f

l+1

(i

l+1

; : : : ; i

N

)

�

X

�l+1

0

@

N

Y

k=l+1

x

i

k

k

1

A

1

X

i

l

=0

x

i

l

l

i

l

X

m=0

f

l

(m; i

l+1

; ::; i

N

)

9

=

;

=

1

�

8

<

:

X

�l+1

0

@

N

Y

k=l+1

x

i

k

k

1

A

f

l+1

(i

l+1

; : : : ; i

N

)

0

@

1

X

i

l

=0

x

i

l

l

1

A

�

X

�l+1

0

@

N

Y

k=l+1

x

i

k

k

1

A

1

X

m=0

f

l

(m; i

l+1

; ::; i

N

)

0

@

1

X

i

l

=m

x

i

l

l

1

A

9

=

;

=

1

�

8

<

:

X

�l+1

0

@

N

Y

k=l+1

x

i

k

k

1

A

f

l+1

(i

l+1

; : : : ; i

N

)

�

1

1� x

l

�

�

X

�l+1

0

@

N

Y

k=l+1

x

i

k

k

1

A

1

X

m=0

f

l

(m; i

l+1

; ::; i

N

)

�

x

m

l

1� x

l

�

9

=

;

=

1

�

1

1� x

l

8

<

:

X

�l+1

0

@

N

Y

k=l+1

x

i

k

k

1

A

f

l+1

(i

l+1

; : : : ; i

N

)

�

X

�l

 

N

Y

k=l

x

i

k

k

!

f

l

(i

l

; ::; i

N

)

9

=

;

;

that is,

P

�

l

(x

l

; x

l+1

; : : : ; x

N

) =

1

�

(

F

�

l+1

(x

l+1

; : : : ; x

N

)� F

�

l

(x

l

; : : : ; x

N

)

1� x

l

)

: (2.23)

If Q

�

converges for some set of x

j

> 1 then P

�

l

must also converge for this set. Note that

if x

l

< 1 the proof of (2.23) remains unchanged. However if x

l

> 1 we must modify this

proof as follows.

P

�

l

(x

l

; x

l+1

; : : : ; x

N

) =

1

�

8

<

:

X

�l

 

N

Y

k=l

x

i

k

k

!

1

X

m=1

f

l

(i

l

+m; : : : ; i

N

)

9

=

;

=

1

�

8

<

:

X

�l+1

0

@

N

Y

k=l+1

x

i

k

k

1

A

1

X

i

l

=0

1

X

m=1

x

i

l

l

f

l

(i

l

+m; : : : ; i

N

)

9

=

;

=

1

�

8

<

:

X

�l+1

0

@

N

Y

k=l+1

x

i

k

k

1

A

1

X

m=1

x

�m

l

1

X

i

l

=0

x

i

l

+m

l

f

l

(i

l

+m; : : : ; i

N

)

9

=

;

=

1

�

8

<

:

X

�l+1

0

@

N

Y

k=l+1

x

i

k

k

1

A

1

X

m=1

x

�m

l

2

4

1

X

i

l

=0

x

i

l

l

f

l

(i

l

; : : : ; i

N

)

�

m�1

X

i

l

=0

x

i

l

l

f

l

(i

l

; : : : ; i

N

)

3

5

9

=

;
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=

1

�

8

<

:

X

�l+1

0

@

N

Y

k=l+1

x

i

k

k

1

A

1

X

i

l

=0

x

i

l

l

f

l

(i

l

; : : : ; i

N

)

1

X

m=1

x

�m

l

�

X

�l+1

0

@

N

Y

k=l+1

x

i

k

k

1

A

1

X

m=1

x

�m

l

m�1

X

i

l

=0

x

i

l

l

f

l

(i

l

; : : : ; i

N

)

9

=

;

=

1

�

8

<

:

X

�l

 

N

Y

k=l

x

i

k

k

!

f

l

(i

l

; : : : ; i

N

)

x

�1

l

1 � x

�1

l

�

X

�l+1

0

@

N

Y

k=l+1

x

i

k

k

1

A

1

X

i

l

=0

1

X

m=i

l

+1

x

i

l

�m

l

f

l

(i

l

; : : : ; i

N

)

9

=

;

=

1

�

8

<

:

X

�l

 

N

Y

k=l

x

i

k

k

!

f

l

(i

l

; : : : ; i

N

)

x

�1

l

1 � x

�1

l

�

X

�l+1

0

@

N

Y

k=l+1

x

i

k

k

1

A

1

X

i

l

=0

f

l

(i

l

; : : : ; i

N

)

1

X

m=i

l

+1

x

i

l

�m

l

9

=

;

=

1

�

8

<

:

X

�l

 

N

Y

k=l

x

i

k

k

!

f

l

(i

l

; : : : ; i

N

)

x

�1

l

1 � x

�1

l

�

X

�l+1

0

@

N

Y

k=l+1

x

i

k

k

1

A

1

X

i

l

=0

f

l

(i

l

; : : : ; i

N

)

1

X

m=1

x

�m

l

9

=

;

=

1

�

x

�1

l

1 � x

�1

l

8

<

:

X

�l

 

N

Y

k=l

x

i

k

k

!

f

l

(i

l

; : : : ; i

N

)

�

X

�l+1

0

@

N

Y

k=l+1

x

i

k

k

1

A

f

l+1

(i

l+1

; : : : ; i

N

)

9

=

;

=

1

�

(

F

�

l+1

(x

l+1

; : : : ; x

N

)� F

�

l

(x

l

; : : : ; x

N

)

1 � x

l

)

;

which again gives us (2.23). The case when x

l

= 1 can be seen to give

P

�

l

(x

l

; x

l+1

; : : : ; x

N

) =

1

�

8

<

:

X

�l+1

0

@

N

Y

k=l+1

x

i

k

k

1

A

1

X

i

l

=0

1

X

k=1

f

l

(i

l

+ k; : : : ; i

N

)

9

=

;

=

1

�

8

<

:

X

�l+1

0

@

N

Y

k=l+1

x

i

k

k

1

A

1

X

i

l

=0

1

X

k=i

l

+1

f

l

(k; : : : ; i

N

)

9

=

;

=

1

�

8

<

:

X

�l+1

0

@

N

Y

k=l+1

x

i

k

k

1

A

1

X

k=1

k�1

X

i

l

=0

f

l

(k; : : : ; i

N

)

9

=

;

=

1

�

8

<

:

X

�l+1

0

@

N

Y

k=l+1

x

i

k

k

1

A

1

X

k=1

kf

l

(k; : : : ; i

N

)

9

=

;

=

dF

l

dx

l

(x

l

; :::; x

N

)

�

�

�

�

�

x

l

=1

;
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as we would expect from L'Hôpitals rule. From (2.23) and (2.20) we get (2.21), that is

Q

�

(x

1

; x

2

; : : : ; x

N

) =

1

�

N

X

l=1

F

�

l+1

(x

l+1

; : : : ; x

N

)� F

�

l

(x

l

; : : : ; x

N

)

1 � x

l

;

which is the desired result. 2
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2.5 Multi-phase Markov renewal process with an

in�nite number of phases.

We consider here the case when N =1. These occur naturally in some circumstances.

In Figure 2.2 we present a GMRP that represents a situation we shall see in Chapter 7.

1

2

3
Figure 2.2: GMRP type II. 2 denotes a renewal point while 
 denotes a non-renewal

point

This has two renewal states. Starting from state 1 we can return directly to state

1 or have a transition to state 2. From here the process may undertake any number of

transitions between states 2 and 3 before returning through state 3 to state 1. We shall

call this the GMRP type II.

We obtain a multi-phase MRP from this as follows. We start in state 1. If we

return immediately to state 1 we consider the multi-phase process to have traversed all

of the other states in zero time. If from state 1 we go to state 2 we proceed as follows.

We consider each subsequent entry into states two and three, before returning to state

1, to be a new state. In this case we may alternate an in�nite number of times between

states 2 and 3, before the end of the busy period so there are an in�nite number of

states. The two phases alternate an in�nite number of times with probability zero (as a

transition from 3 to 1 occurs with positive probability and so the process's recurrence is

not adversely e�ected by this. When the transition to state 1 �nally occurs we consider

the process to again traverse all of the unvisited states in zero time before returning to

state 1.

Thus we get the multi-phaseMRP of Figure 2.3 with the states de�ned as follows.

States 2n+2 in the multi-phase MRP corresponds to the nth entry (before returning to

state 1) to state 2 of the GMRP type II while states 2n+3 correspond to the nth entry
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to state 3 in the GMRP type II and state 1 corresponds to state 1. Upon return to state

one we begin this transition through states 2; 3; : : :, again. Note also that the positive

recurrence (or null recurrence) of state 1 (and hence the other states) in the multi-phase

MRP will be related directly to the positive recurrence (or null recurrence) of state 1 in

the GMRP type II.

2

7

3

4

5

6

1

Figure 2.3: Multi-phase MRP with an in�nite number of phases. 2 denotes a renewal

point while 
 denotes a non-renewal point

Also we note that the odd numbered states would still appear to be renewal

states in this process. They are not, but only because when we �nally have a transition

from state 3 to state 1 in the GMRP type II in the equivalent multi-phase MRP we get a

transition through all of the remaining states in the process. This means that the times

spent in these phases are no longer entirely independent.

FinallyN(t), the number of transitions that occur before time t, becomes in�nite

after only one cycle through the phases of the multi-phase MRP. Thus pfN(t) <1; 8t �

0g = 0 and we can no longer de�ne N

j

(t) as in (2.5). However if we de�ne C(t) the

number of cycles that have occurred before time t we can see that N

j

(t) will simply be
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C(t) or C(t)+ 1 depending on the current state. Thus we can de�ne all of the necessary

quantities in a sensible fashion. The epochs of transitions T

j

m

will still be de�ned and

we can continue. We state without proof the following extension of Theorem 2.4.

Theorem 2.5 Given the above de�nitions and x

1

; x

2

; : : : 2 [0; 1),

Q

�

(x

1

; x

2

; : : :) =

1

�

1

X

l=1

F

�

l+1

(x

l+1

; : : :)� F

�

l

(x

l

; : : :)

1� x

l

: (2.24)

Furthermore, if Q

�

converges for some x

1

; x

2

; : : : not necessarily all in the interval [0; 1),

then it converges to the right-hand side of equation 2.24.
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Chapter 3

The Multi-phase M/G/1 Queue

3.1 Introduction

We shall consider a single-server queueing process in which the arrivals form a homo-

geneous Poisson process with rate �, and the service times are non-negative random

variables each with probability distribution function given by one of a set of probability

distribution functions fA

j

(�)g

N

j=1

. The queue size is unlimited. The service discipline

may be any non-preemptive discipline. The period during which A

j

(�) is chosen is called

phase j. Thus we have N phases labelled 1; : : : ; N .

We assume that the phase changes occur at the end of services and are stopping

times with respect to the �ltration generated by the queueing process. This essentially

means that the decision to change phase at time T is based only on the information up

until the time T , and not on any information about the future behaviour of the queue.

Also we assume that the times spent in two phases are independent if the two phases are

not in the same busy period. These limitations are necessary for the analysis to follow,

but are not unreasonable assumptions.

The motivating case and the case for which we calculate solutions is the case in

which the phases occur in some speci�c pre-de�ned order. We shall label the phases in

the order that they occur and call one transition through all of the phases a cycle.

It will also be convenient to consider each cycle of transitions between phases to

occur during one busy period. That is, we start the cycle (in phase 1) when an arriving

customer �nds the system with no customers in it, and if the cycle is not complete by

the time the system is again empty, we say the process spends zero time in the remaining

phases. Thus we enter each phase exactly once during each busy period. This and the

fact that the times spent in two phases in di�erent busy periods are independent mean

that the ends of busy periods are still renewal points of the process. We shall call a

queue which satis�es all of the above the multi-phase M/G/1 queue.

This does not limit the systems considered as much as it may at �rst seem. For

instance, if a particular phase is skipped over, we may insert a transition through the

missing phase which takes zero time. Also if a phase may be visited more than once

during a cycle we may consider the second entry to that phase to be a new phase, say

N +1, and so on for future repetitions. This introduces the possibility of in�nitely many

phases, which we shall not consider until Section 3.6.

As is the case with the usual M/G/1 queue we consider the embedded, discrete-
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time process formed when one observes the number of customers in the system after

departures. In this case this embedded process does not form a Markov chain, as

with the standard M/G/1 case, without the additional complexity of a supplementary

variable to describe the current phase. We shall follow the approach of Baccelli and

Makowski (1985,1989) in de�ning a martingale with respect to the embedded process,

and from this we establish a relationship between the forward recurrence times in a

multi-phase Markov renewal process and the system size.

Before the results can be obtained we need to prove the regularity of all the

stopping times involved with respect to the martingale of interest. This is closely linked

with the stability of the queueing process as we shall see. The primary condition of

interest called condition (�) is considered in Section 3.2.2.

Then we get the fundamental relationship of this paper which is expressed in

Theorem 3.5. From an analysis of the multi-phase MRP, in Chapter 2, the limiting

probability generating function for the number of customers in the system in equilibrium

may be expressed in terms of that of the state sojourn times of the multi-phase MRP.

Helpful results for the calculation of these probability generating functions are found in

Corollary 3.6 and Theorem 3.7 using the martingale once again. A general form for the

equilibrium probability generating function of the system size can then be found. This

is expressed in Theorem 3.9.

The example of the standard M/G/1 queue is examined using this technique

in Section 3.7. To obtain the �nal solution for a more complicated problem further

work must be done using conventional probabilistic arguments. Further examples are

examined in Chapters 4-7.

Note that in this chapter the exact nature of the transitions between phases is

not speci�ed. We provide the constraints on what types of transitions are allowed but say

nothing about the actual way in which the transitions are governed. The theory allows

a quite general approach to these transitions. In Chapters 4-7 we consider a number of

possible cases. For instance in Chapter 4 we consider a process in which the transition

occurs when some threshold is crossed. This threshold could be a physical limit on the

queue size or a limit on the number of customers served after the busy period begins.

The scope for choice of this threshold is quite large. We shall often refer to the points in

the process at which transitions occur as a threshold. For more details the reader must

consider the examples presented in following chapters. These, however, are by no means

exhaustive.

We now describe the model used to examine these processes. The basic parts of

this model are described in Appendix C.
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3.1.1 The model

Take the number of customers in the system at time t to be X(t). We consider the

discrete-time embedded process X

n

, where X

n

is the number of customers seen by the

nth departing customer. Formally, if the departure epochs are t

1

; t

2

; : : : then X

n

=

X(t

n

+). We shall assume that the queue starts at time 0 with a departure, thus X

0

=

0. The arrivals to the queue form a homogeneous Poisson process with rate �. The

service-time distribution is a general service-time distribution chosen from a set of general

distributions according to the phase of the queue, where the phase is chosen from the

set f1; : : : ; Ng. The phases of the queue obey certain rules.

(i) The phase can change only on service completion.

(ii) The times at which phase changes occur are stopping times.

(iii) The times spent in two phases in di�erent busy periods are independent.

For the examples we consider we also require the following three extra conditions on the

phases.

(iv) At the start of busy periods we are always in phase 1.

(v) The phases occur in order, so phase i is followed by phase (i+ 1) mod N .

(vi) Each phase is entered exactly once during a busy period.

We refer to the time from the beginning of phase 1 to the end of phase N as a cycle. Thus

a cycle corresponds to a busy period. We say phase(n) = i, if after the nth departure,

the system is in phase i.

We de�ne the epochs at which the phase changes T

j

i

2 ZZ

+

, by

T

j

i

= the time of the ith transition out of phase j;

with T

0

i

= T

N

i�1

. We de�ne C

j

n

in terms of T

j

i

by

C

j

n

=

[

i2IN

f! jT

j�1

i

(!) � n < T

j

i

(!)g

=

[

i2IN

fT

j�1

i

� n < T

j

i

g;

so that C

j

n

is the event that at time n the queue is in phase j. We use the usual indicator

notation

I

C

j

n

=

(

1; phase(n) = j;

0; otherwise:

It is worth noting that the above does not preclude zero time being spent in a phase, as

T

j�1

i

might equal T

j

i

. In this case we still say T

j�1

i

occurs before T

j

i

.

During phase j the service times are random variables with distribution function

A

j

(�). Service times are assumed to be independent of the arrival epochs. We take the

number of arrivals during the nth service time, given the queue is in phase j, to be the

random variableA

j

n

. These random variables formN independent, identically distributed

sequences of random variables (A

j

n

). We de�ne a

j

i

= pfA

j

1

= ig. We take the probability

generating function

a

j

(z) = E

h

z

A

j

1

i

=

1

X

i=0

a

j

i

z

i

;
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and note that (from Theorem C.3) it is given in term of the Laplace-Stieltjes transform

of A

j

(�) by

a

j

(z) = A

j�

(� � �z):

We take �

j

= a

0

j

(1) which is the mean number of arrivals during a single service in phase

j and we call this the tra�c intensity during phase j. Note that �

j

= �=�

j

where 1=�

j

is the mean service-time during phase j. In the following text we shall use �

j

(z) de�ned

by

�

j

(z) =

z

a

j

(z)

:

Given this model we can de�neN+2 sequences of stopping times (�

0

(n)); (�

1

(n)); :::; (�

N

(n))

and (� (n)) for n 2 ZZ

+

as follows

� (n) =

(

inffm > njX

m

= 0g; if the set is non-empty,

1; otherwise;

�

j

(n) = � (n) ^ inffm � nj phase(m) > jg

= � (n) ^ inf

8

<

:

m � n

�

�

�

�

�

�

N

X

i=j+1

I

C

i

m

= 1

9

=

;

;

where ^ denotes the minimum (and _ denotes the maximum). When j = N the sum is

empty and so �

N

(n) = � (n). Note then that

n = �

0

(n) � �

1

(n) � � � � � �

i

(n) � � � � � �

N

(n) = � (n);

with probability one. � (n) is the epoch of the end of the current busy period at time

n. �

j

(n) = n if the process has already been through phase j in the current busy period

and otherwise it is the time of the next transition out of phase j. Note that when the

busy period ends we consider the process to go through the remaining phases, spending

zero time in each. That � (n) and �

j

(n) are stopping times comes directly from the fact

that we only allow phase transitions at stopping times. We can also de�ne the following

sequences of times

�

j

(n) = �

j

(n)� �

j�1

(n); (3.1)

�

j

(n) =

(

�

j

(n); X

n

6= 0;

0; X

n

= 0;

(3.2)

for j = 1; : : : ; N . We assume that there is a dummy service completion at time zero.

Thus we can takeX

0

to be some random variable �. For our purposes here it is convenient

to take X

0

= 0 a.s. and correspondingly phase(0) = 1. Hence T

0

0

= 0. One of the results

of this is

�

j

(�

l�1

(0)) =

(

�

j

(0); j � l;

0; j < l:

3.1.2 Probabilistic elements

Of course the above model must be speci�ed on some probability space (
;F ; P ). We

wish all of the random variables to be F -measurable. The phase at a given time, and the
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number of customers in the system at a given time are su�cient to generate this space.

We may de�ne the �ltration F

n

by

F

n

= �(A

j

m

j 0 � m � n; j = 1; ::; N):

Clearly X

n

is determined purely by A

j

m

and I

C

j

m

at times m � n. We chose the ends of

phases to be at stopping times, thus fT

j

i

� ng 2 F

n

for all j = 1; : : : ; N and i 2 IN . As

F

n

is a �-algebra we can see also that fT

j

i

> ng 2 F

n

for all j = 1; : : : ; N and i 2 IN (as

F

n

is closed under complements). Now from this C

j

n

=

S

i2IN

fT

j�1

i

� n < T

j

i

g 2 F

n

(as

F

n

is closed under intersections and countable unions) and hence I

C

j

n

is F

n

-measurable.

Thus X

n

is F

n

-measurable. Indeed we can see that for all m � n, X

m

, I

C

j

m

and A

j

m

are

all F

n

-measurable. We then take

F =

1

[

n=1

F

n

:

3.2 The martingale

We now de�ne the martingale which will provide the majority of the results herein.

Theorem 3.1 The following

�

M

n

(z)

�

is a non-negative integrable martingale for z 2

(0; 1].

M

0

(z) = 1;

M

n

(z) = z

X

n

n�1

Y

k=0

0

@

z

I(X

k

6=0)

P

N

j=1

I

C

j

k

a

j

(z)

1

A

; n � 1:

Proof: We have

E [M

n+1

(z)j F

n

] = E

2

4

z

X

n+1

n

Y

k=0

0

@

z

I(X

k

6=0)

P

N

j=1

I

C

j

k

a

j

(z)

1

A

�

�

�

�

�

�

F

n

3

5

=

n

Y

k=0

0

@

z

I(X

k

6=0)

P

N

j=1

I

C

j

k

a

j

(z)

1

A

E

h

z

X

n+1

�

�

�F

n

i

; a:s:;

from the F

n

-measurability of C

j

k

and I(X

k

6= 0) for k = 0 to n. The following recurrence

relation gives X

n+1

in terms of X

n

,

X

n+1

= X

n

+

N

X

j=1

I

C

j

n

A

j

n+1

� I(X

n

6= 0):

This simply states that during the busy period the number of customers left in the system

after a service completion is the number in the system before the service begins, plus

the number who arrive during the service, minus one for the customer who completed

service. When the queue is empty it must wait for a customer to arrive before it begins
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service and so there is one extra arrival to the system, hence the I(X

n

6= 0) term. So

E [M

n+1

(z)j F

n

] =

n

Y

k=0

0

@

z

I(X

k

6=0)

P

N

j=1

I

C

j

k

a

j

(z)

1

A

E

"

z

X

n

+

P

N

j=1

I

C

j

n

A

j

n+1

�I(X

n

6=0)

�

�

�

�

�

F

n

#

a:s:

= z

X

n

�I(X

n

6=0)

n

Y

k=0

0

@

z

I(X

k

6=0)

P

N

j=1

I

C

j

k

a

j

(z)

1

A

E

"

z

P

N

j=1

I

C

j

n

A

j

n+1

�

�

�

�

�

F

n

#

a:s:

Using the fact that the C

j

n

are a disjoint, complete set for j = 1; ::; N we get

E

"

z

P

N

j=1

I

C

j

n

A

j

n+1

�

�

�

�

�

F

n

#

=

N

X

i=1

I

C

j

n

E

h

z

A

j

n+1

i

a:s:

=

N

X

i=1

I

C

j

n

a

j

(z) a:s:

and so

E [M

n+1

(z)j F

n

] = z

X

n

n�1

Y

k=0

0

@

z

I(X

k

6=0)

P

N

j=1

I

C

j

k

a

j

(z)

1

A

a:s:

= M

n

(z) a:s:

It is trivial to show that M

n

(z) is non-negative, therefore E [jM

n

(z)j] = E [M

n

(z)] <1

and hence the martingale is integrable. 2

3.2.1 Stability and recurrence

In order for us to be able to �nd useful equilibrium results the processes investigated

must be stable. Furthermore in order for the martingale results to be of use we shall

relate them to the multi-phase MRP discussed in Section 2.4. To do this we require

the process to be recurrent. Lemma 3.1.2 provides a useful result based on the stability

of the M/G/1 queue and condition (�) presented in the following section is a su�cient

condition for stability but in general each situation must be considered on its merits.

The process should also be irreducible. That is, we want there to be no more

than one communicating class. In some types of queueing process (see Section 3.4 on

page 45) it is possible to have more than one communicating class. We wish to avoid

these possibilities. More will be said about this in Section 3.3.1.

The obvious criterion of use here is simply to require that � (n) be almost surely

�nite for all n 2 ZZ

+

. This means that state 0 will recur within a �nite time almost

surely. Lemma 3.2.2 shows that it is su�cient to look at � (0).

We need one further condition, that �

1

> 0. Simply stated, we require that the

tra�c intensity during the �rst phase to be positive. This is because the busy system

enters phase one at the completion of each busy period. It cannot leave phase one until

there has been at least one service completion. Thus, if �

1

were zero, there would be

no arrivals and hence we would never leave state 0. There are other similar conditions

which su�ce, such as requiring that a maximum time can be spent in phase 1 before

switching to a phase with positive tra�c intensity but these violate some of our rules for

phases, therefore we assume below that �

1

> 0.
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Lemma 3.1.1 Given X

0

= 0, if � (0) is almost surely �nite then � (n) and �

i

(n) are also

almost surely �nite for i = 1; : : : ; N and for all n 2 ZZ

+

.

Proof: When X

0

= 0, � (0) being almost surely �nite implies that the busy period is

almost surely �nite. From this � (n) must be a.s. �nite. This is because all of the states

are reachable from state 0 in one transition. So, as � (0) is almost surely �nite, we return

to state 0 in an almost surely �nite time. Hence no matter what state the process is in

it must return to state zero in an a.s. �nite time. It is immediate that �

i

(n) must also

be almost surely �nite as �

i

(n) � � (n) almost surely. 2

Lemma 3.1.2 If �

N

> 1 and pf�

N

(0) � �

N�1

(0) > 0g > 0 then the process is unstable.

Proof: We take �

N�1

(0) <1. In this case we have pf�

N

(0)� �

N�1

(0) > 0g > 0 so over

a busy period there is a positive probability of spending time in phase N . Once in phase

N the queue behaves as an M/G/1 queue. Thus the stability conditions of the M/G/1

queue apply. Hence for �

N

> 1, pf�

N

(0) <1g < 1 and hence the queue is unstable. 2

This last condition arises from the fact that the last phase ends when the system

empties. If �

N

> 1 and the process is not already empty at the beginning of this phase

then, with positive probability, the process may never become empty again, and hence

the phase might not end.
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3.2.2 Regularity of the stopping times

In order to uses Doob's Optional Sampling Theorem we must demonstrate that the

stopping times involved are regular for the martingale. This would be trivial if the

martingale were uniformly integrable, (from Neveu, IV-3-14) however it may not be.

Thus we must investigate the conditions under which we can prove regularity.

Condition (�) We take S = f1; 2; : : : ; Ng and S

�

� S to be the set of all j

with �

j

> 1. The condition is that

E

2

4

Y

j2S

�

�

j

(z)

�

j

(0)��

j�1

(0)

3

5

<1;

for all z 2 [0; 1]. When S

�

= � the condition is automatically satis�ed.

When S

�

= fig so that �

i

> 1 and �

j

� 1 for all other j we can write this condition as

E

h

�

�

i

(0)��

i�1

(0)

i

<1;

where � = sup

z2[0;1]

�

i

(z): This will be the condition used in Chapter 4. Note that

condition (�) implies that � (0) is almost surely �nite, and hence the queue is stable.

Theorem 3.2 If (�) is satis�ed then the stopping times �

0

(n); : : : �

N

(n) and � (n) are

regular for the martingale M

n

(z), z 2 [0; 1], n 2 ZZ

+

.

Furthermore when � (n) =1

M

�(n)

(z) = 0:

Proof: We wish the stopping times �

0

(n); : : : �

N

(n) and � (n) to be regular for the

martingale for n 2 ZZ

+

. First we consider the case with S

�

= �. In this case Tak�acs's

lemma (C.4) implies that �

j

(z) � 1 for all j = 1; : : : ; N . Hence

jM

n

(z)j � 1;

which implies that

�

M

n

(z)

�

is uniformly integrable (page 134). As

�

M

n

(z)

�

is a positive

integrable martingale, condition (a) of Neveu IV-3-14 is automatically satis�ed. When

M

n

(z) is uniformly integrable so too must M

n

(z) I(� > n) for all stopping times � and

so condition (b) of Neveu IV-3-14 is also satis�ed. Hence any possible stopping time is

regular in this case. Next we show that � (0) is regular for the case when S

�

= fig.

Lemma 3.2.1 For �

j

� 1, 8j 6= i, and �

i

> 1, if E

h

�

�

i

(0)��

i�1

(0)

i

< 1 where � =

sup

z2[0;1]

�

i

(z), then � (0) is regular for the martingale M

n

(z), z 2 [0; 1].
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Proof: We use Neveu IV-3-16. Condition (1) of this proposition,

Z

f�(0)<1g

jM

�(0)

(z)jdP <1;

is automatically satis�ed for our martingale. Condition (2),

lim

n!1

Z

f�(0)>ng

jM

n

(z)jdP = 0;

is satis�ed as follows. Noting that the martingale is non-negative we start with n > 0

from

jM

n

(z)j = z

X

n

n�1

Y

k=0

z

IfX

k

6=0g

P

N

j=1

I

C

j

k

a

j

(z)

;

which because � (0) > n gives

jM

n

(z)j �

0

@

(�

1

(0)^n)�1

Y

k=0

�

1

(z)

1

A

0

@

(�

2

(0)^n)�1

Y

k=�

1

(0)^n

�

2

(z)

1

A

� � �

0

@

(�

N

(0)^n)�1

Y

k=�

N�1

(0)^n

�

N

(z)

1

A

= �

1

(z)

(�

1

(0)^n)

�

2

(z)

(�

2

(0)^n)�(�

1

(0)^n)

� � � �

N

(z)

n�(�

N�1

(0)^n)

� �

(�

i

(0)^n)�(�

i�1

(0)^n)

� �

�

i

(0)��

i�1

(0)

; a:s:; (3.3)

as � = sup

z2[0;1]

�

i

(z) > 1. Now due to the almost sure �niteness of � (0) implied by (�)

lim

n!1

I(� (0) > n) = 0 a:s: (3.4)

Thus (3.3) and (3.4) imply jM

n

(z)j I(� (0) > n) tends to 0 almost surely as n tends to

in�nity. Also from (3.3) we get

jM

n

(z)j I(� (0) > n) � �

�

i

(0)��

i�1

(0)

; a:s:

the right-hand side of which has �nite expectation by the assumption. Thus we can use

the Dominated Convergence Theorem to show

lim

n!1

E [jM

n

(z)j I(� (0) > n)] = E

�

lim

n!1

jM

n

(z)j I(� (0) > n)

�

= 0;

from which we get condition (2) and thence the result. The latter part of the theorem

follows also from Neveu IV-3-16. 2

The generalisation of S

�

is done in the same manner as the previous lemma with

the substitution of the more general condition.

Lemma 3.2.2 If � (0) is regular for the martingale then � (n) and �

i

(n) are also regular

for the martingale for i = 1; : : : ; N and for all n 2 ZZ

+

..
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Proof: Given that � (n) is regular, Neveu IV-3-13 implies that �

i

(n) must also be regular.

All we need to show now is that the regularity of � (0) implies the regularity of � (n).

M

�(n)

(z) = z

X

�(n)

�(n)�1

Y

k=0

0

@

z

I(X

k

6=0)

P

N

j=1

I

C

j

k

a

j

(z)

1

A

= z

X

�(n)

�(n)�1

Y

k=0

0

@

z

I(X

k

6=0)

P

N

j=1

I

C

j

k

a

j

(z)

1

A

�(n)�1

Y

k=�(n)

0

@

z

I(X

k

6=0)

P

N

j=1

I

C

j

k

a

j

(z)

1

A

;

where �(n) = supfm � njX

m

= 0g, the epoch of the beginning of the current busy

period. Now the latter product in this equation is the product over one busy period.

Due to the regenerative nature of this process at time �(n), for m � n

E

2

4

I(� (n) > m) z

X

�(n)

�(n)�1

Y

k=�(n)

0

@

z

I(X

k

6=0)

P

N

j=1

I

C

j

k

a

j

(z)

1

A

3

5

= E

2

4

I(� (0) > m� �(n)) z

X

�(0)

�(0)�1

Y

k=0

0

@

z

I(X

k

6=0)

P

N

j=1

I

C

j

k

a

j

(z)

1

A

3

5

and also

�(n)�1

Y

k=0

0

@

z

I(X

k

6=0)

P

N

j=1

I

C

j

k

a

j

(z)

1

A

and I(� (n) > m) z

X

�(n)

�(n)�1

Y

k=�(n)

0

@

z

I(X

k

6=0)

P

N

j=1

I

C

j

k

a

j

(z)

1

A

are independent. Thus for m � n we can write

E

h

jM

�(n)

(z)jI(� (n) > m)

i

= E

2

4

�(n)�1

Y

k=0

0

@

z

I(X

k

6=0)

P

N

j=1

I

C

j

k

a

j

(z)

1

A

3

5

E

2

4

I(� (n) > m) z

X

�(n)

�(n)�1

Y

k=�(n)

0

@

z

I(X

k

6=0)

P

N

j=1

I

C

j

k

a

j

(z)

1

A

3

5

= E

2

4

�(n)�1

Y

k=0

0

@

z

I(X

k

6=0)

P

N

j=1

I

C

j

k

a

j

(z)

1

A

3

5

E

2

4

I(� (0) > m� �(n)) z

X

�(0)

�(0)�1

Y

k=0

0

@

z

I(X

k

6=0)

P

N

j=1

I

C

j

k

a

j

(z)

1

A

3

5

:

Now for �xed, �nite n the �rst expectation is clearly �nite and as m tends to in�nity the

second equals lim

n!1

E

h

I(� (0) > m)M

�(0)

(z)

i

which tends to zero as m tends to in�nity

from Lemma 3.2.1. So we have our result. 2

This concludes the proof of Theorem 3.2. 2

From here on we shall refer to the stopping time 
. By this we shall mean one

of the stopping times n, �

0

(n); : : : �

N

(n) or � (n) for n 2 ZZ

+

. Theorems which are said

to be true for stopping times 
 are also true for each of these stopping times. This is

expressed in the following de�nition.

De�nition 3.1 The stopping time 
 will refer to each of the stopping times

�

0

(n); : : : �

N

(n) or � (n) for n 2 ZZ

+

.
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Theorem 3.3 If (�) is satis�ed then the stopping times �

0

(
); : : : ; �

N

(
) and � (
) are

regular for the martingale M

n

(z), z 2 [0; 1] and 
 de�ned in De�nition 3.1.

Furthermore when � (
) =1

M

�(
)

(z) = 0 a:s:

Proof: We proceed as in Lemma 3.2.1. We satisfy the conditions of Neveu's Proposi-

tion IV-3-16. As before Condition (1) is automatically satis�ed. Condition (2),

lim

n!1

Z

f�(
)>ng

jM

n

(z)j dP = 0;

is satis�ed as follows.

lim

n!1

Z

f�(
)>ng

jM

n

(z)j dP = lim

n!1

Z

f�(
)>ng

h

I(
 � n) + I(
 > n)

i

M

n

(z) dP

= lim

n!1

Z

f�(
)>ng

I(
 � n)M

n

(z) dP

+ lim

n!1

Z

f�(
)>ng

I(
 > n)M

n

(z) dP

= lim

n!1

Z

f�(
)>ng

I(
 � n)M

n

(z) dP

+ lim

n!1

Z

f
>ng

M

n

(z) dP: (3.5)

When 
 = � (m) the second term of (3.5) becomes

lim

n!1

Z

f�(m)>ng

M

n

(z) dP = 0; (3.6)

since we know from Theorem 3.2 that � (m) is regular for the martingale and must satisfy

condition (2) of Neveu IV-3-16. Hence from (3.5) and (3.6) we get

lim

n!1

Z

f�(
)>ng

jM

n

(z)j dP = lim

n!1

Z

f�(
)>ng

I(
 � n)M

n

(z) dP

= lim

n!1

Z

f
�n<�(
)g

M

n

(z) dP;

when 
 = � (m). In this integral � (m) � n and so we can write

M

n

(z) =

2

4

�(m)�1

Y

k=0

0

@

z

I(X

k

6=0)

P

N

j=1

I

C

j

k

a

j

(z)

1

A

3

5

2

4

z

X

n

n�1

Y

k=�(m)

0

@

z

I(X

k

6=0)

P

N

j=1

I

C

j

k

a

j

(z)

1

A

3

5

:

As in Lemma 3.2.2 the two parts of this product are independent due to the regenerative

nature of the process. Furthermore the regularity of � (m) implies that the former term

has �nite expectation. The expectation of the second part can be shown to approach zero

as n tends to in�nity by exactly the same method as is used to demonstrate condition

(2) of Neveu IV-3-16 in Lemma 3.2.1.

Thus the theorem is proven for 
 = � (m). When 
 = �

i

(m) we can see that

� (� (m)) � � (�

i

(m)) almost surely and so from Neveu IV-3-13 we get the regularity of

all � (�

i

(m)). This is the result we need. The latter part of the theorem again comes

directly from Neveu IV-3-16. 2
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3.2.3 Use of the Optional Sampling Theorem

Theorem 3.4 For z 2 [0; 1), 
 as in De�nition 3.1 and with (�) satis�ed

E

2

4

N

Y

j=1

�

j

(z)

�

j

(
)

�

�

�

�

�

�

F




3

5

= z

X




z

I(X




=0)

; a:s:

Proof: Consider Doob's Optional Sampling Theorem (A.7) with stopping times 
 and

� (
). We know 
 � � (
) a.s. and condition (�) gives the regularity of these stopping

times through Theorem 3.3 and so the following is true

E

h

M

�(
)

(z)

�

�

�F




i

= M




(z); a:s:

Rewritten this is

E

2

4

z

X

�(
)

�(
)�1

Y

k=0

z

I(X

k

6=0)

P

N

j=1

I

C

j

k

a

j

(z)

�

�

�

�

�

�

F




3

5

= z

X





�1

Y

k=0

z

I(X

k

6=0)

P

N

j=1

I

C

j

k

a

j

(z)

; a:s:

There are two possibilities: � (
) = 1 in which case M

�(
)

(z) = 0 from Theorem 3.3 or

� (
) < 1 in which case X

�(
)

= 0. The former case can make no contribution to the

expectation so by using the fact that


�1

Y

k=0

z

I(X

k

6=0)

P

N

j=1

I

C

j

k

a

j

(z)

is F




-measurable we get

E

2

4

�(
)�1

Y

k=


z

I(X

k

6=0)

P

N

j=1

I

C

j

k

a

j

(z)

�

�

�

�

�

�

F




3

5

= z

X




; a:s:

It is clear that X

k

6= 0 for k = 
 + 1 to � (
)� 1 from the de�nition of � (
). Thus

E

2

4

z

I(X




6=0)

P

N

j=1

I

C

j




a

j

(z)

�(
)�1

Y

k=
+1

z

P

N

j=1

I

C

j

k

a

j

(z)

�

�

�

�

�

�

F




3

5

= z

X




; a:s:

As z

I(X




6=0)

is also F




-measurable we can write this as

z

I(X




6=0)�1

E

2

4

�(
)�1

Y

k=


z

P

N

j=1

I

C

j

k

a

j

(z)

�

�

�

�

�

�

F




3

5

= z

X




; a:s:

E

2

4

�(
)�1

Y

k=


z

P

N

j=1

I

C

j

k

a

j

(z)

�

�

�

�

�

�

F




3

5

= z

1�I(X




=0)

z

X




; a:s:

We note that 1 � I(X




6= 0) = I(X




= 0) and

I

C

j

k

=

(

1; �

i�1

(
) � k < �

i

(
);

0; otherwise,

and so we get

E

2

4

N

Y

j=1

 

z

a

j

(z)

!

�

j

(
)��

j�1

(
)

�

�

�

�

�

�

F




3

5

= z

I(X




=0)

z

X




; a:s:
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and by substituting the de�nitions of �

j

(
) and �

j

(z) this gives

E

2

4

N

Y

j=1

�

j

(z)

�

j

(
)

�

�

�

�

�

�

F




3

5

= z

I(X




=0)

z

X




; a:s:

which is the required result. 2

Remark: Note that at this point we may multiply by any F




-measurable random vari-

able such as I(� (0) > 
) to get

E

2

4

I(� (0) > 
)I(
 <1)

N

Y

j=1

�

j

(z)

�

j

(
)

�

�

�

�

�

�

F




3

5

= I(� (0) > 
)I(
 <1)z

I(X




=0)

z

X




; a:s:

(3.7)

Theorem 3.5 For z 2 [0; 1), 
 as in De�nition 3.1 and condition (�) satis�ed

E

h

z

X




i

= E

2

4

N

Y

j=1

�

j

(z)

�

j

(
)

3

5

:

Proof: From Theorem 3.4 we get

E

2

4

N

Y

j=1

�

j

(z)

�

j

(
)

�

�

�

�

�

�

F




3

5

= z

X




z

I(X




=0)

; a:s:

Due to the F




-measurability of X




we may multiply both sides of the equation by

I(X




6= 0) and write

E

2

4

I(X




6= 0)

N

Y

j=1

�

j

(z)

�

j

(
)

�

�

�

�

�

�

F




3

5

= I(X




6= 0)z

X




z

I(X




=0)

; a:s:

We may then take expectations of this equation

E

2

4

I(X




6= 0)

N

Y

j=1

�

j

(z)

�

j

(
)

3

5

= E

h

I(X




6= 0)z

X




i

:

Noting that X




6= 0 implies that �

j

(
) = �

j

(
) for j = 1; : : : ; N and adding pfX




= 0g

to both sides gives

pfX




= 0g+ E

2

4

I(X




6= 0)

N

Y

j=1

�

j

(z)

�

j

(
)

3

5

= pfX




= 0g + E

h

IfX




6= 0gz

X




i

:

The right-hand side is equal to E

h

z

X




i

. The events

[X




= 0], [�

j

(0) = 0; j = 1; ::; N ];
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are equivalent, by (3.2) and so

[X




6= 0], [�

j

(0) 6= 0; for some j];

which implies

pf�

j

(n) = 0; 8jg+ E

2

4

If9j; st : �

j

(n) 6= 0g

N

Y

j=1

�

j

(z)

�

j

(
)

3

5

= E

h

z

X




i

;

and so �nally

E

2

4

N

Y

j=1

�

j

(z)

�

j

(
)

3

5

= E

h

z

X




i

;

which is the desired result. 2

Corollary 3.6 For z 2 [0; 1), condition (�) satis�ed and l > 1

E

2

4

N

Y

j=l

�

j

(z)

�

j

(0)

3

5

= E

h

z

X

�

l�1

(0)

i

:

Proof: The proof is simply a matter of putting 
 = �

l�1

(0) in the preceding theorem

and noting that we assume X

0

= 0 and so

�

j

(�

l�1

(0)) =

(

�

j

(0); j � l;

0; j < l:

2

Remark: Note that the case with l = 1 is excluded as when l = 1, �

l�1

(0) = �

0

(0) = 0

and �

j

(0) = 0 because X

0

= 0. Thus the result would not hold. Instead we resort to the

following theorem.

Theorem 3.7 For z 2 [0; 1) and condition (�) satis�ed

E

2

4

N

Y

j=1

�

j

(z)

�

j

(0)

3

5

= z:

Proof: Simply taking 
 = 0 in Theorem 3.4 and taking expectations gives us

E

2

4

N

Y

j=1

�

j

(z)

�

j

(0)

3

5

= E

h

z

X

0

z

IfX

0

=0g

i

;

which, as we assume X

0

= 0 gives

E

2

4

N

Y

j=1

�

j

(z)

�

j

(0)

3

5

= z:

2
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3.2.4 Martingale arguments for stability

In this section we examine martingale stability arguments. From Lemma 3.2.2 it is

su�cient to consider � (0) when X

0

= 0. As before it is su�cient to discuss the behaviour

of � (0) when X

0

= 0. When condition (�) is satis�ed we know that pf� (0) < 1g = 1.

Thus condition (�) is a su�cient condition for the stability of the queueing process (and

hence the recurrence of the MRP).

It would be nice to have necessary and su�cient conditions for stability as Bac-

celli and Makowski provide in the examples they have considered. Their results however

revolve around the following type of technique. They provide a tra�c intensity � for

the system of interest and then the condition for stability is simply that � � 1. The

tra�c intensity in the M/G/1 case is the standard intensity �=� (Baccelli and Makowski,

1985). In the case with Markov modulated input the tra�c intensity is a weighted sum

of the intensities during each of the input states (Baccelli and Makowski, 1986).

We can see that this approach would give us a tra�c intensity in our type of

process as well. It is not, however, easy to see how this would bene�t us in this case. In

our type of process we could take the approach of setting

� =

N

X

j=1

�

j

�

j

;

where �

j

is the probability of �nding the system in phase j during equilibrium. In order

to have the probabilities p

j

we must assume the existence of the equilibrium solution.

Thus any argument based on this would be inherently circular. This occurs because the

time spent in phase j may be strongly dependent on �

j

. Thus we may have a situation

where during one of the phases �

j

is very large but a phase shift occurs if too many

customers arrive during one service and so the length of the phase is very small, so the

two balance. We may not however assume this balance.

It is thus not clear as yet how to provide the type of elegant stability criterion

that is commonly used in many other situations. It is to be strongly suspected that

condition (�) is related to the necessary conditions. It would not be surprising if condition

(�) is in fact also a necessary condition for stability. One approach to this problem would

be to use Rosenkrantz (1989) which deals with ergodicity conditions for two-dimensional

Markov chains. Our queueing processes can be represented by a two-dimensional Markov

chain by taking the number of customers in the system and the phase to be the two

variables. If the conditions of Rosenkrantz could be related to condition (�) this might

provide the desired result.

Another related question is that of null recurrence. Even though � (0) < 1

almost surely we may still have

E [� (0)] =1:

In other words the length of the busy period is almost surely �nite but the mean length of

the busy period is in�nite, this is the null recurrent case. Although in the null recurrent

case our martingale arguments will still work the equilibrium results will be inherently

uninteresting. We shall not consider these cases in most examples.
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3.3 Relationship with the MRP

The connection between the multi-phase MRP and the multi-phase M/G/1 queueing

process will by now be obvious. Each phase of the queueing process is associated with a

state in the multi-phase MRP. Transitions between states in the MRP are at the same

times as changes in phase in the queueing process. Because phases change only at the

end of services we use the embedded process and consequently the multi-phase MRP has

discrete or lattice time. We must resort to a generalised multi-phase MRP because there

is no requirement that the time spent in each phase be independent of the times spent

in each of the other phases. However, we do assume that the times when the system is

left empty do constitute renewals. This means the times spent in phases during di�erent

busy periods must be independent. Also because we assume the queue begins with a

dummy service leaving it empty (X

0

= 0) we have a non-delayed renewal process.

Given this description it becomes clear that the �

j

(n) are forward recurrence

times in the multi-phase MRP as can be seen in Lemma 2.2.1, and the �

j

(0) are sojourn

lifetimes in the multi-phase MRP. With this relationship

Q

�

(�

1

(z); �

2

(z); : : : ; �

N

(z)) = lim

n!1

E

2

4

N

Y

j=1

�

j

(z)

�

j

(n)

3

5

;

F

�

(�

1

(z); �

2

(z); : : : ; �

N

(z)) = E

2

4

N

Y

j=1

�

j

(z)

�

j

(0)

3

5

;

F

�

l

(�

l

(z); �

l+2

(z); : : : ; �

N

(z)) = E

2

4

N

Y

j=l

�

j

(z)

�

j

(0)

3

5

;

where Q

�

is de�ned in (2.20) and F

�

and F

�

l

are as de�ned in Section 2.4. Thus Theo-

rems 3.5 and 3.7 and Corollary 3.6 imply respectively that

Q

�

(�

1

(z); �

2

(z); : : : ; �

N

(z)) = lim

n!1

E

h

z

X

n

i

; (3.8)

F

�

(�

1

(z); �

2

(z); : : : ; �

N

(z)) = z; (3.9)

F

�

l

(�

l

(z); �

l+1

(z); : : : ; �

N

(z)) = E

h

z

X

�

l�1

(0)

i

: (3.10)

From these we deduce the following

Theorem 3.8 For z 2 [0; 1) and (�) satis�ed

lim

n!1

E

h

z

X

n

i

=

1

m

N

X

l=1

"

F

�

l+1

(�

l+1

(z); : : : ; �

N

(z))� F

�

l

(�

l

(z); : : : ; �

N

(z))

1 � �

l

(z)

#

;

where m acts as a normalising constant.

Proof: The result comes directly by substituting (3.8) in Theorem 2.4. 2

Theorem 3.9 For z 2 [0; 1) and (�) satis�ed

E

h

z

X

i

=

1

m

2

4

N

X

l=2

E

h

z

X

�

l

(0)

i

�E

h

z

X

�

l�1

(0)

i

1 � �

l

(z)

+

E

h

z

X

�

1

(0)

i

� z

1 � �

1

(z)

3

5

;

where m acts as a normalising constant and X(t)! X almost surely as t!1.
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Proof: We substitute (3.9) and (3.10) into the preceding theorem and then use the

dominated convergence theorem (A.3), PASTA (page 143) and Theorem C.1 to see that

lim

n!1

E

h

z

X

n

i

= lim

t!1

E

h

z

X(t)

i

:

From this we get the result. 2

3.3.1 Discussion

A number of points deserve some further discussion before we continue on to some exam-

ples. The �rst point to note is that we have looked only at the system size distribution.

From this we may use the arguments of Section C.5 to calculate the waiting time distri-

butions for a �rst-in, �rst-out (FIFO) queue. For other service disciplines this may be

more di�cult.

Also it is of some interest to consider the origin of these results. We have consid-

ered three processes on di�erent time scales: the queueing processes itself, a discrete-time

queueing process embedded at departure epochs and a further process embedded in this

at the epochs of phase changes.

Given su�cient conditions on the queueing process considered, one interpreta-

tion of the Optional Sampling Theorem is that the process M

Q

n

(z) (where Q

nN+j

= T

j

n

)

is also a martingale and from this we derive our relationships. The epochs Q

n

are the

transition epochs of the multi-phase MRP of Chapter 2 and so we can obtain limiting

formulae using the renewal techniques.

The results of this chapter are quite general but may be extended. The following

section documents some of the ways in which the results can be generalised still further.

Two major extensions are proposed. The �rst considers the server's behaviour. We have

until now assumed that only the service-time distribution can change between phases but

there are other types of behaviour that can be used. The second proposal (in Section 3.5)

concerns the rules which limit the types of phase transitions allowed.

It is also worth noting here that many processes which might not appear to have

the required phase structure actually can be considered in this mold. This is considered

in Section 3.6.
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3.4 Generalisations of server behaviour

In the processes considered so far we have considered service times. We have said that the

service-time distribution changes between phases. There are, however, other plausible

models with which this technique deals with equal facility.

We can vary a whole range of server behaviour between phases without a�ecting

the results obtained thus far. The results we have obtained need only the probability

generating function for the number of arrivals during a single service in each phase. So

we may, for instance, change service discipline between phases with no alteration of the

results (so long as the discipline remains non-preemptive).

In the following we elucidate a number of examples. We give the relevant prob-

ability generating function and some motivation for each example. Throughout this

discussion we mean by blocked that a customer is either lost or rerouted. Customers

who are blocked do not return for service at a later time.

(i)

During phase j a customer waits a random period of time before beginning service. If

the extra time has probability distribution function B

j

(�) then

a

j

(z) = A

j�

(�(1� z))B

j�

(�(1� z)):

This is an example of the service time for a customer being extended and so the proba-

bility distribution function for the service time is a convolution of A

j

(�) and B

j

(�). Thus

the Laplace-Stieltjes transform of the new service time is the product A

j�

(s)B

j�

(s) and

hence from Theorem C.3 the result.

This type of behaviour is likely to occur if the service time of a customer who

arrives at an empty server is di�erent from the service time of a customer who arrives at

a busy server. This might occur if the server has some warmup time when it starts up

at the beginning of the busy period or if the server can take vacations when unoccupied.

In this case the modi�ed behaviour occurs in the �rst phase which lasts but one service

time.

(ii)

During phase j a customer waits until M

j

arrivals have occurred before commencing

service. In this case

a

j

(z) = z

M

j

A

j�

(�(1 � z)):

This also might occur for one service at the start of the busy period but for a

di�erent reason. If the server has some overhead associated with starting and stopping

service it is better to reduce the frequency of these events. To do this the busy period

must be increased in length. One way to do this is to allow a backlog to build up before

beginning service. This then minimises the number of times the server switches from

idle to busy states. This is called the N-policy queue by Neuts (1989).
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(iii)

During phase j only the �rst N

j

arrivals during any particular service are allowed to join

the queue, any further arrivals being blocked. In this case

a

j

(z) =

N

j

�1

X

i=0

a

j

i

z

i

+ z

N

j

1

X

i=N

j

a

j

i

=

N

j

�1

X

i=0

a

j

i

z

i

+ z

N

j

0

@

1 �

N

j

�1

X

i=1

a

j

i

1

A

=

N

j

�1

X

i=0

a

j

i

�

z

i

� z

N

j

�

+ z

N

j

;

where a

j

i

is the probability of i arrivals occurring during one service time in phase j.

This also might occur as part of a control strategy. However the reason for

using such a strategy might be to limit the number of customers in the system (thus

minimising waiting times).

(iv)

During phase j arrivals are blocked with probability p

j

. The arrivals are still Poisson

with new rate �p

j

and so

a

j

(z) = A

j�

(�p

j

(1 � z)):

This could also occur as part of a control strategy. For instance if the arrival

process is the superposition of several independent Poisson streams with rates �

i

, it will

itself be a Poisson stream with rate

P

�

i

. If these streams are then assigned di�erent

priorities then we can block some of the streams on the basis of their priority during

phase j in order to limit congestion for the higher priority arrivals. This would give us

the situation above.

(v)

Batch arrivals. If the batch size is given by the random variable B where b

i

is de�ned

by

b

i

= pfB = ig;

then

a

j

(z) = A

j�

(�[1 �B(z)]);

where B(z) is the probability generating function for the batch sizes. This is from Jun

Huek Park (1990) in which Baccelli and Makowski's technique has been shown to work

for the simple M

B

/G/1 queue. The derivation from Jun Huek Park follows.

a

j

(z) =

1

X

k=0

P (A

n

= k)z

k

dA

j

(t)

=

Z

1

0

1

X

k=0

k

X

m=0

e

��t

(�t)

m

m!

b

(m)

k

z

k

dA

j

(t)
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=

Z

1

0

1

X

k=0

k

X

m=0

e

��t

e

�tB(z)

dA

j

(t)

= A

j�

(�(1 �B(z));

where b

(m)

k

is the m-fold convolution of b(k) with itself. Note that for such a system the

initial service of the busy period will also have a slightly di�erent form. Thus for the

simple batch arrival queue

X

n+1

= X

n

+B

n

I(X

n

= 0) +A

n+1

� 1;

where B

n

is the batch size of the �rst arrival during a busy period after the nth service

if X

n

= 0.

(vi)

In all but (ii) of the above examples the service times are still independent of the arrival

epochs. This is an important assumption and may only be relaxed with care. An example

of a case in which this assumption does not hold would be if the server terminates

service only after N arrivals have occurred during the service. This example could cause

problems. For example a server that terminates service after exactly one arrival would

result in the process sticking in a certain state. Other problems such as reducibility of

the state space or periodicity of the states could occur given this type of service. We

shall avoid these possibilities throughout with the exception of case (ii). We allow this

in the situation described for its use, that is, for one service at the beginning of the busy

period. In this case it cannot cause any problems for regularity. Further problems can

occur in PASTA (page 143) if this independence is not maintained.

3.4.1 Blocking versus zero service time

We have considered the possibility that �

j

> 1 in our discussion of regularity, and

these cases must be dealt with on an individual basis. Mostly it will be obvious from

the stability of the queue when the stopping times are regular. However we have not

considered the case when �

j

= 0. Given a normal service with probability distribution

function A

j

(�) this would imply that �

R

1

0

(1 � A

j

(t))dt = 0. One way this can occur

is if the mass of A

j

(�) is concentrated at zero, that is the services take zero time with

probability one. This could be the case if the server serves the customers in the queue

instantaneously. We shall refer to this as discarding a customer. The customers are

discarded in the order of service. Thus in a FIFO queue the customer at the front of the

queue is discarded. This suggests that an alternative service discipline might be used in

di�erent phases. For example FIFO in the normal phases and LIFO in the phase with

zero service time, in order to discard customers from the end of the queue.

This is di�erent from the other situation in which �

j

= 0. This is the case when

� = 0 or all arriving customers are blocked. If all of the customers arriving at the queue

during a phase are blocked upon arrival, then the arrival rate becomes zero and tra�c

intensity also becomes zero. The service times, however, can still be positive.

It is noteworthy that the case with blocking does not immediately lead to the

solution for the M/G/1 queue with a limited waiting room. This is the normal model
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chosen for such a system but in our model we are limited to changing phase at the ends

of services. Thus the limit of the waiting room might be reached and exceeded during a

service without any blocking occurring. This could be overcome with di�culty by having

a separate phase for each state of the queueing system with each phase allowing only a

certain number of arrivals chosen to make sure the limit of the waiting room was not

exceeded. We can however model the M/G/1 queue with a limited waiting room using

the case with zero service times. This is discussed in Section 7.5.

We might note also that although there are subjective di�erences in what we

may mean by having �

j

= 0 the resulting solution is identical. Thus once we decide upon

the model being used we may then ignore this for all further purposes.

These possibilities, with �

j

= 0, may occur in a sensible fashion, as is described

above, but there is a case where it does not. If �

1

= 0 and the queue starts empty the

queue will remain empty forever. While this case is not impossible it is clearly trivial.

Such trivial cases are easily avoided and so we shall say no more about them here.

Throughout the rest of this we shall assume that they are excluded from any discussion.

Finally we make the observation that while customers who are blocked never

enter the queue, they are still considered to have entered the system. Thus our results,

which are arrived at from the equilibrium distribution that departing customers see,

will include the number of customers left in the system by a departing customer that is

blocked as well as the number left in the system by a customer who receives service.

3.4.2 Later modi�cations

Later in this text we shall present a number of examples. For the most part we shall

assume the varying service-time description of the processes. We shall consider the other

cases only brie
y. However, once the modi�ed form of the generating functions a

j

(z) is

noted the only major di�erence in the computations occurs in the calculation E

h

z

�

j

(0)

i

for j = 1; : : : ; N � 1 and then only in some cases. We shall give more details in the

examples.
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3.5 Generalisations of the phases

To understand possible generalisations of the phase structure of these processes we must

�rst understand why we have chosen the restrictions on phase structure. We have chosen

the rules governing the phases so that the phase transitions are as general as possible

while still allowing us to work with our model. To this end the rules restrict the behaviour

of the phases. Rule (i) is a result of considering the embedded process. We desire

the restriction in order that the embedded process's behaviour characterises that of the

queueing process. Rule (ii) is necessary in order that Doob's Optional Sampling Theorem

can be applied at the relevant time points. Rules (iii) and (iv) are required so that the

ends of busy periods are renewal points of the process. Finally we require rules (v) and

(vi). These are required in order that the structure of the renewal process we consider

is that of a multi-phase MRP.

Rule (ii) is therefore crucial to the whole idea of using a martingale argument.

Rules (iii) and (iv) are requirements for the Markov renewal results. Thus we must retain

these rules in all of the generalisations that can be considered.

Rules (v) and (vi) are required to enforce the multi-phase nature of the renewal

process. If we could obtain an equivalent result to that of Theorem 2.4 for generalised

Markov renewal processes that are not of the multi-phase form we could modify or

remove these two rules. This is suggested as a direction for continued work in Section 8.1.

However, in the next section we shall see that this is not a necessary area of expansion as

equivalent multi-phase Markov renewal processes can be found for generalised Markov

renewal process.

One possible area of expansion that has not yet been considered is processes

which change behaviour between service completions. An example of this is the single

server queue with Markov modulated Poisson input. This has been considered in Baccelli

and Makowski (1986,1991) using a modi�cation of their technique for the M/G/1 queue.

Thus we can expect that it will be possible to modify the results herein to cover such

cases. If we were to consider this type of process in our model it violates rules (i), (iv),

(v) and (vi). However we have an extra condition which is simply that the time spent in

each phase is independent of the times spent in all other phases. This will require some

further work before it can be dealt with through the multi-phase method, if it can.

A more pro�table approach would be to modify the multi-phase technique in the

same way that Baccelli and Makowski modify the simple technique for the M/G/1 queue

to cover Markov modulated arrivals. This also is mentioned in the section on possible

further work.

We have mentioned a number of relaxations of the phase transition rules which

can be considered. These have been left for future work as they require a great deal

of theoretical work before becoming practical and because the resulting complexity of

the theory might make this thesis somewhat unwieldy. The following section presents a

more fruitful way of extending the systems that can be considered.

47



3.6 In�nitely-many phases

We have until now only considered systems with a �nite number of phases. Now we

consider some reasons for considering processes with an in�nite number of phases. Some

cases with more complex structure require that we modify how we consider them in

order that they �t into the form of sequential phases each occurring once during the

busy period. A simple example is one where one or more phases do not necessarily occur

during every busy period. We deal with this by inserting transitions through the missed

phase which spend zero time in the phase. An in�nite number of phases can easily be

dealt with in this case as long as the original process under consideration has only a

�nite number of phases occur during the busy period, with probability one.

A more di�cult example is when a phase may be entered more than once during

the busy period. This may be modelled by considering each subsequent entry into this

phase during a single busy period to be a new phase. Clearly in cases where two phases

may alternate an in�nite number of times before the end of the busy period, this results

in an in�nite number of phases. In Chapter 7 we shall see an example of a situation in

which this occurs. The two phases alternate for ever with probability zero and so the

processes recurrence is not adversely e�ected by this.

Note that when we use this procedure the probability generating functions a

j

(z)

(and hence �

j

(z)) will be the same for a number of the new phases. This will allow a

great simpli�cation in the problems using this technique.

In all of these cases we simply generalise the results of this chapter replacing N

with in�nity.
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3.7 A single-phase example

In this section we consider the simplest example of this type, the M/G/1 queue. This

is one of the problems that this technique was originally applied to by Baccelli and

Makowski (1989). Thus the results here are exactly the same as theirs with some slight

modi�cations due to the notation. The solution to the ergodic M/G/1 queue is well

known and can be derived by a number of means (Cooper (1972)). It is given by

E

h

z

X

i

= (1 � �)

a(z)(1� z)

a(z)� z

; (3.11)

where a(z) is the probability generating function for the number of arrivals during a

service.

Note that in our notation this is a single-phase M/G/1 queue and the result is

obtained directly from Theorem 3.9 with N = 1. It is simply

E

h

z

X

i

=

1

m

"

1 � z

1� �

1

(z)

#

=

1

m

"

a

1

(z)(1� z)

a

1

(z)� z

#

;

where m = 1=(1��

1

), which is the expected answer. It is worth noting that Theorem 3.7

gives

F

�

(�

1

(z)) = z: (3.12)

This may then be used both to calculate m and to provide the generating function for

the number of customers served during the busy period (Baccelli and Makowski, 1989).

Namely for each � 2 [0; 1) the equation in the unknown variable z

z = �a(z);

has the unique solution Z(�) in the interval [0; 1]. From Baccelli and Makowski (2.14)

F

�

(y) = Z(y): (3.13)
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Chapter 4

Two-phase examples

In this chapter we consider the simplest non-trivial case of the type of process described

in Chapter 3. This is the case with only two phases and hence two possible service-time

distributions A

1

(�) and A

2

(�). As in the general theory of Chapter 3 the times at which

the service-time distributions switch must be stopping times. Also the two phases each

occur exactly once during a busy period and always occur in the same order. We call

the point at which the transition from phase 1 to 2 occurs a threshold. When the queue

is empty we start with service-time distribution A

1

(�). When the threshold is reached

the server switches to distribution A

2

(�) and as would be expected it switches back to

the initial distribution when the system becomes empty.

As there are only two phases we shall use A and B instead of A

1

and A

2

with

the corresponding changes in notation listed below.

A(t) = A

1

(t); B(t) = A

2

(t);

A

n

= A

1

n

; B

n

= A

2

n

;

a(z) = a

1

(z); b(z) = a

2

(z);

�

a

(z) = �

1

(z); �

b

(z) = �

2

(z);

a

i

= a

1

i

; b

i

= a

2

i

;

�

a

= �

1

; �

b

= �

2

:

(4.1)

We assume that �

a

> 0 throughout otherwise the solution is trivial. The results we use

demonstrate the connection between the queueing process and a discrete-time two-phase

MRP of the type described in Chapter 2. This process is illustrated in Figure 4.1.

We shall consider three major types of threshold in this chapter.

(i) We call the �rst a �xed upward threshold. This is when the phase change occurs at

the �rst time immediately after a customer �nishes service when there are more than

a certain number of customers in the system. We shall label this critical number of

customers by k.

(ii) The second is when the phase change occurs after a random number of customers

have been served in the busy period. We will consider the case when the number of

customers served before the phase change is geometric with parameter p and thus we

call this the geometrically-distributed random-time threshold.

(iii) The third is a �xed-time threshold. This is when the phase change occurs after a

set number of customers are served during the busy period. We shall label this number

of customers by S.

In Section 4.5 we brie
y consider some other random thresholds.
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τ(0)

τ1(0)

1 2

Figure 4.1: The two phase, Markov renewal process (state 2 is the non-renewal state).

4.0.1 Motivation

The motivation for each of these examples is slightly di�erent. There are three funda-

mental reasons for considering problems of this sort. The �rst reason is simply to model

systems which may have some peculiarity which �ts this structure.

The second reason is control. By allowing some sort of control over the system

through service times (or arrival blocking, etc) we can optimise a performance measure

of the system. For instance we may wish to constrain the average waiting time for a

customers while at the same time maximising the proportion of time in which server is

busy in order to make the most of the server.

In the standard M/G/1 model these two objectives are not compatible. In the

M/G/1 queue the probability of there being no customers in the system is 1 � �. The

mean number of customer in the system has a term proportional to 1=(1��) in it. Thus

if we constrain this (and hence the mean waiting time) we may be forced to have an

unacceptably high probability of the system being empty. Note also that the length of

the busy period is 1 divided by the probability of the server being empty (from renewal

theory). Thus the longer the busy period, the greater the server utilisation.

Because of this incompatibility we introduce elements such as we have described

to give further control over the queue. This is the aim of a �xed upward threshold. The

server may serve slowly during the �rst phase in order to lengthen the busy period and

thus increase the utilisation of the server. However if the number of customers in the

system becomes too large (and hence waiting time becomes too long) the queue switches

to a faster service rate to remove the excess customers. In this case the queue is cleared

before returning to the slower service rate. A more desirable situation is that the faster

service continues only until enough customers are removed from the system to remove

the problem. This will be considered in Chapter 7.

Such stochastic control over a queue is not an unusual idea, for instance Dsha-

lalow (1989) uses this concept. In most problems the basis for the control is assumed

to be state-dependent and otherwise independent of the history of the process. This is

the novel part of the problem considered here. The phase depends on the history of the

process, not just the current phase.

The �xed-time threshold is a cruder type of control. The server serves slowly
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for the �rst S services in order to build up a backlog which will then increase the length

of the busy period and thus server utilisation. This is mentioned in Neuts (1989) and is

closely related to the E-limited service discipline of LaMaire (1992).

The �nal reason given here for considering such situations is to model a server

which may breakdown (or exhibit some similar phenomena). In such a situation there

are many possible descriptions for the way in which the breakdown occurs. The one we

shall look at is when the server breaks down at the end of a service with probability p

which is a constant. We assume in this particular model that the server must then alter

its behaviour until the queue is emptied and the server can be repaired. For instance the

queue might simply discard all of the customers present at the time of the breakdown.

This is not a very good model for breakdowns. For a start we have assumed

that the repair takes zero time and requires the queue to be empty. Other descriptions

of breakdowns include features such as the server breaking down during the service or

even when the server is idle. Further the time until a breakdown might depend on the

number of customers served since the last breakdown or since the last checkup of the

server. We shall address some of these criticisms in Section 4.5 and other aspects of the

problem in Chapter 5 where we consider problems with four phases. We might note also

that these examples are provided to demonstrate the utility of this method, not to be

an end unto themselves. With some further work a suitable model for breakdowns could

be constructed but the speci�cs will depend on the mechanisms involved in the system.

We call this case the geometrically-distributed random-time threshold because

the breakdown occurs after a geometrically distributed number of customers have been

served in the busy period.

4.1 Results

Theorem 4.1 The following results hold for the relevant thresholds described above.

(i) For a �xed upward threshold condition (�) holds for all k 2 IN if �

b

� 1.

(ii) For a geometrically-distributed random-time threshold condition (�) holds for

p 2

�

1 �

1

�

; 1

�

and �

b

� 1;

where � = sup

z2[0;1)

�

a

(z).

(iii) For a �xed time threshold condition (�) holds for all S 2 IN if �

b

� 1.

Proof:

(i) See Lemma 4.2.1 in Section 4.2.

(ii) See Lemma 4.3.1 in Section 4.3.

(iii) See Section 4.4. 2

For the rest of this chapter we shall use the following matrix de�ned for k 2 IN .

P

k

=

0

B

B

B

B

B

B

B

@

a

1

a

2

a

3

� � � a

k�1

a

k

a

0

a

1

a

2

� � � a

k�2

a

k�1

0 a

0

a

1

� � � a

k�3

a

k�2

.

.

.

0 0 0 � � � a

0

a

1

1

C

C

C

C

C

C

C

A

: (4.2)
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Theorem 4.2 Given either k 2 IN , p 2

�

1�

1

�

; 1

�

or S 2 IN for each type of threshold

respectively the following results hold.

(i) For �

b

> 1 the queue is transient.

(ii) For �

b

= 1 the queue is null recurrent.

(iii) For �

b

< 1 the queue is positive recurrent and the probability generating function

for the equilibrium distribution of customers in the queue is given by

E

h

z

X

i

=

1

m

"

b(z)(1� z) + fb(z)� a(z)g zR

(F )

q

(z)

b(z)� z

#

;

for z 2 [0; 1) and with the mean length of the busy period m given by

m =

"

1 + f�

a

� �

b

gR

(F )

q

(1)

1 � �

b

#

;

where R

(F )

q

(z) is a non-negative function bounded above on the interval [0; 1] that is

determined by the speci�c type of threshold between the phases. F speci�es the type of

threshold used and q is a parameter associated with that type of threshold. Thus we write

F =

8

>

>

<

>

>

:

U; a �xed upward threshold at k, q = k 2 IN;

G; a geometrically-distributed random-time threshold, q = p 2

�

1�

1

�

; 1

�

;

T; a �xed-time threshold at S, q = S 2 IN:

The actual values for R

(F )

q

(z) are given by

R

(U)

k

(z) =

1

z

e

1

(I�P

k

)

�1

z

t

, (4:3)

where P

k

is the k x k matrix de�ned in (4.2),

R

(G)

p

(z) =

z � F

�

(1 � p)

z � a(z)(1� p)

, (4:4)

where F

�

(z) is the probability generating function for the number of customers served

during the busy period of the M/G/1 queue with service-time distribution A(�) (see 3.13

on page 49).

R

(T )

S

(z) =

"

�

a

(z)

S

� 1

�

a

(z)

S�1

(�

a

(z)� 1)

#

�

(1� �

S1

)

z

S�1

X

i=1

"

�

a

(z)

S�i

� 1

�

a

(z)

S�i�1

(�

a

(z)� 1)

#

a

(i)

, (4:5)

where

a

(i)

=

Z

1

0

e

��x

(�x)

i�1

i!

dA

(i)

(x);

A

(i)

(�) being the i-fold convolution of A(�).
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Proof: We use the notation from (4.1) and de�nitions from Chapter 3 so that

M

0

(z) = 1;

M

n

(z) = z

X

n

n�1

Y

k=0

0

@

z

I(X

k

6=0)

I

C

1

k

a(z) + I

C

2

k

b(z)

1

A

;

is the martingale for n 2 IN .

If �

a

> 0 and �

b

> 1, Lemma 3.1.2 demonstrates that � (0) = 1 with positive

probability. Thus the queue is unstable in the sense that X

n

!1 as n!1.

If however �

a

> 0 and �

b

� 1 we must show that condition (�) holds so that the

stopping times we use are regular for the martingale. If �

a

� 1 the condition is trivial

and if �

a

> 1 the condition becomes (noting that �

b

� 1)

E

h

�

�

1

(0)

i

<1; (4.6)

where � = sup

z2[0;1)

�

a

(z). This must be shown with respect to each speci�c threshold.

Theorem 4.1 is provided to point to the relevant proofs as they are located in the sections

dealing with their respective thresholds.

Theorem 3.9 gives the probability generating function for the number of cus-

tomers in the system at equilibrium to be

E

h

z

X

i

=

1

m

2

4

1 � E

h

z

X

�

1

(0)

i

1� �

b

(z)

+

E

h

z

X

�

1

(0)

i

� z

1� �

a

(z)

3

5

=

1

m

2

4

1� z

1 � �

b

(z)

+

E

h

z

X

�

1

(0)

i

� z

1� �

a

(z)

�

E

h

z

X

�

1

(0)

i

� z

1� �

b

(z)

3

5

=

1

m

2

4

1� z

1 � �

b

(z)

+

[�

a

(z)� �

b

(z)]

h

E

h

z

X

�

1

(0)

i

� z

i

(1 � �

a

(z))(1� �

b

(z))

3

5

=

1

m

2

4

b(z)(1� z)

b(z)� z

+

fb(z)� a(z)g z

h

E

h

z

X

�

1

(0)

i

� z

i

(a(z)� z)(b(z)� z)

3

5

: (4.7)

In order to �nd the �nal result we must calculate

E

h

z

X

�

1

(0)

i

� z;

but this will be di�erent for each threshold considered and so we will consider each in a

separate section below. However, we may note that this solution will exist for �

a

> 1 and

in this case there will be some z

0

2 (0; 1) such that a(z

0

) = z

0

and hence the denominator

in the second term of (4.7) will be zero. Therefore, in order that the generating function

exist we must have the numerator equal to zero at this point as well. For this to be so

we shall write

E

h

z

X

�

1

(0)

i

� z = (a(z)� z)R(z);

for some function R(z) bounded on [0; 1]. Then we can write the solution as

E

h

z

X

i

=

1

m

"

b(z)(1� z) + fb(z)� a(z)g zR(z)

b(z)� z

#

: (4.8)
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Note that we have yet to demonstrate that an R(z) of this form can be found but we shall

do this in the following sections. As the particular function R(z) depends both on the

type of threshold and its relevant parameter we shall write it as R

(F )

q

(z) where F gives

the type of threshold and q gives the relevant parameter. For proofs of the expressions

for R

(F )

q

(z) see Theorems 4.3, 4.4 and 4.6.

The value of m may be calculated in two ways. The �rst is to note that m is

given by the renewal results to be the mean number of customers served in the busy

period. This can be calculated through use of the generating function F

�

(x

1

; x

2

). The

alternative, which we use here due to its ease, is to note that E

h

z

X

i

is a probability

generating function and in the limit as z tends up to 1 it must be 1. Hence m can be

viewed as a normalising constant. Taking the limit as z tends up to 1 using L'Hôpital's

rule the left-hand side is equal to one, and hence multiplying both sides by m gives

m =

"

�b(1) + fb(1)� a(1)gR

(F )

0

q

(1) + fb(1)� a(1)gR

(F )

q

(1) + fb

0

(1)� a

0

(1)gR

(F )

q

(1)

b

0

(1) � 1

#

;

where noting that a(1) = 1, a

0

(1) = �

a

, b(1) = 1 and b

0

(1) = �

b

gives

m =

"

1 + f�

a

� �

b

gR

(F )

q

(1)

1 � �

b

#

:

Note that as �

b

" 1,m tends to in�nity and so when �

b

= 1 the process is null recurrent. 2

Remarks: (i)The generating function in the solution is interesting in itself as it suggests

that the solution can be written as the normal solution to the M/G/1 queue plus a

correcting term that depends on the di�erence between a(z) and b(z) and the type of

threshold.

(ii) Note that m is insensitive to the actual distribution B(�) except through �

b

and when �

1

= �

2

, m is insensitive to both distributions A(�) and B(�) except through

�

a

and �

b

.

For each type of threshold considered we must now prove that condition (�) is

satis�ed and calculate R

(F )

q

(z). It will be seen that conditions (�) is satis�ed without

restriction except in the case of the geometrically-distributed random-time threshold.
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4.2 Fixed upward threshold

In this case the threshold is a �xed number of customers, say k. If more than this number

of customers are in the system at the end of a service then the queue switches from phase

1 to phase 2. We take

�

1

(n) =

(

� (n) ^ inffm > njX

m

> kg; if phase(n) = 1;

n; if phase(n) = 2;

= I

C

1

n

[� (n) ^ inffm > njX

m

> kg] + I

C

2

n

n:

If at time n the process is in phase 1 then �

1

(n) is the time of the next transition to

phase 2. (Note that when the queue empties we assume a dummy transition through

phase 2.) When at time n the process is in phase 2, �

1

(n) is de�ned to be equal to n in

order to be consistent with our de�nitions. When n = 0 we have assumed the process

to be in phase 1 and so

�

1

(0) = � (0) ^ inffm > 0jX

m

> kg: (4.9)

In order to apply the results of Section 3.2.3 and 3.3 we must �rst prove the

regularity of the stopping time � (0). To do this we must satisfy condition (�).

Lemma 4.2.1 For a threshold as described above with k 2 IN , �

a

> 0 and �

b

� 1

condition (�) is satis�ed. Furthermore

E

h

!

�

1

(0)

i

= 1 + (! � 1)e

1

(I� !P

k

)

�1

1

t

;

for all ! 2 [0; �].

Proof: Condition (�) is

E

h

�

�

1

(0)

i

<1;

for � = sup

z2[0;1]

�

a

(z). We write, for ! 2 [0; �] the expectation

E

h

!

�

1

(0)

i

=

1

X

i=1

!

i

pf�

1

(0) = ig

=

1

X

i=1

k

X

j=0

!

i

pf�

1

(0) = i; X

i�1

= jg

= ! pf�

1

(0) = 1g+

1

X

i=2

k

X

j=1

!

i

pf�

1

(0) = ijX

i�1

= j; �

1

(0) � ig pfX

i�1

= j; �

1

(0) � ig: (4.10)

Now we can see that pf�

1

(0) = 1g = a

0

+

P

1

l=k+1

a

l

and for i > 1 and j = 1; : : : ; k

pf�

1

(0) = ijX

i�1

= j; �

1

(0) � ig =

0

@

a

0

�

1j

+

1

X

l=k+1

a

l�j+1

1

A

=

0

@

1�

k

X

l=(j�1)_1

a

l�j+1

1

A

;
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where a

i

= pfA

1

= ig as de�ned by (4.1). We shall de�ne g

j

by

g

j

=

0

@

1�

k

X

l=(j�1)_1

a

l�j+1

1

A

;

and from this we form the vector g. Substituting these in (4.10) we arrive at

E

h

!

�

1

(0)

i

= !g

1

+ !

k

X

j=1

g

j

1

X

i=1

!

i

pfX

i

= j; �

1

(0) > ig:

In order to �nd

P

1

i=1

!

i

pfX

i

= j; �

1

(0) > ig, we de�ne the vector

v

i

= (pfX

i

= 1; �

1

(0) > ig; pfX

i

= 2; �

1

(0) > ig; : : : ; pfX

i

= k; �

1

(0) > ig); (4.11)

the sub-stochastic probability transfer matrix P

k

as in (4.2) and v

1

= (a

1

; a

2

; : : : ; a

k

),

the probability vector of initial probabilities given a transition from X

0

= 0. Then

v

i

= v

1

P

i�1

k

:

We seek conditions under which

1

X

i=1

!

i

P

i

k

converges. From Property B.3 of norms and Theorems B.1 and B.2 the series converges

if j!j jjPjj < 1 for some matrix norm jjPjj.

We use the matrix norm de�ned in (B.6), for z 2 (0; 1] by

jjAjj

z

= max

i=1;::;k

2

4

k

X

j=1

ja

ij

jz

j�i

3

5

;

for a matrix A = (a

ij

). Then

jjP

k

jj

z

= max

8

<

:

k

X

j=1

a

j

z

j�1

;

k

X

j=1

a

j�1

z

j�2

;

k

X

j=2

a

j�2

z

j�3

; : : :

9

=

;

= max

8

<

:

k

X

j=1

a

j

z

j�1

;

k�1

X

j=0

a

j

z

j�1

9

=

;

<

k

X

j=0

a

j

z

j�1

<

a(z)

z

;

so that

1

jjP

k

jj

z

>

z

a(z)

:

Thus there exists a z

0

2 [0; 1) such that

sup

z2[0;1)

z

a(z)

<

1

jjP

k

jj

z

0

:
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Thus �jjP

k

jj

z

0

< 1 and hence the series converges for ! 2 [0; �]. This proves that

E

h

�

�

1

(0)

i

<1. For the second part we can note that we now have

E

h

!

�

1

(0)

i

= !

(

g

1

+ !v

1

 

1

X

i=0

!

i

P

i

k

!

g

t

)

;

when the sum converges. The previous result means that this sum converges for all

! 2 [0; �] and we know from Theorem B.2 that it must converge to (I� !P

k

)

�1

and so

E

h

!

�

1

(0)

i

= !

n

g

1

+ ! v

1

(I� !P

k

)

�1

g

t

o

:

Now v

1

= e

1

P

k

and so Lemma B.0.1 means that

! v

1

(I� !P

k

)

�1

= !e

1

P

k

(I� !P

k

)

�1

= �e

1

+ e

1

(I� !P

k

)

�1

;

which gives

E

h

!

�

1

(0)

i

= !

n

g

1

� e

1

g

t

+ e

1

(I� !P

k

)

�1

g

t

o

= !

n

g

1

� g

1

+ e

1

(I� !P

k

)

�1

g

t

o

:

Now g

t

= (I�P

k

)1

t

so that we get (again using Lemma B.0.1) that

E

h

!

�

1

(0)

i

= !e

1

(I� !P

k

)

�1

(I�P

k

)1

t

= e

1

(I� !P

k

)

�1

(!I� !P

k

)1

t

= e

1

(I� !P

k

)

�1

(I� !P

k

)1

t

+ e

1

(I� !P

k

)

�1

(!I� I)1

t

= 1 + (! � 1)e

1

(I� !P

k

)

�1

1

t

:

This is the desired result. 2

Remark: It can be seen that this has the desirable properties of a probability generating

function. When ! = 1, E

h

!

�

1

(0)

i

= 1 and when we take the derivative with respect to

! at ! = 1 we get the mean time until the threshold is reached

E [�

1

(0)] = e

1

(I�P

k

)

�1

1

t

;

which agrees with (4.29) of Section 4.6.1.

Note that we now have the constraint necessary for the almost sure �niteness and

regularity of � (0). Next we provide the value of R

(U)

k

(z) from the value of E

h

z

X

�

1

(0)

i

� z.

Theorem 4.3 For �

a

> 0, z 2 [0; 1), X

0

= 0 and the threshold k 2 IN we get

E

h

z

X

�

1

(0)

i

� z = [a(z)� z]R

(U)

k

(z);

where

R

(U)

k

(z) =

1

z

e

1

(I�P

k

)

�1

z

t

and P

k

is the k x k sub-stochastic matrix de�ned in (4.2).
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Proof: We can write E

h

z

X

�

1

(0)

i

as

E

h

z

X

�

1

(0)

i

=

1

X

i=1

k

X

j=0

E

h

z

X

i

I(�

1

(0) = i)

�

�

�X

i�1

= j; �

1

(0) � i

i

pfX

i�1

= j; �

1

(0) � ig

= E

h

z

X

1

I(�

1

(0) = 1)

�

�

�X

0

= 0

i

pfX

0

= 0g

+

1

X

i=2

k

X

j=1

E

h

z

X

i

I(�

1

(0) = i)

�

�

�X

i�1

= j; �

1

(0) � i

i

pfX

i�1

= j; �

1

(0) � ig

= E

h

z

X

1

I(�

1

(0) = 1)

�

�

�X

0

= 0

i

+

1

X

i=2

k

X

j=1

E

h

z

X

i

I(�

1

(0) = i)

�

�

�X

i�1

= j; �

1

(0) � i

i

pfX

i�1

= j; �

1

(0) � ig

as we have X

0

= 0. Now for i = 1 and j = 0, E

h

z

X

i

I(�

1

(0) = i)

�

�

�X

i�1

= j; �

1

(0) � i

i

is

E

h

z

X

1

I(�

1

(0) = 1)

�

�

�X

0

= 0

i

= a

0

+

1

X

l=k+1

a

l

z

l

= a(z)�

k

X

l=1

a

l

z

l

:

For i > 1 and j = 1 the result is

E

h

z

X

i

I(�

1

(0) = i)

�

�

�X

i�1

= 1; �

1

(0) � 1

i

= a

0

+

1

X

l=k+1

a

l

z

l

= a(z)�

k

X

l=1

a

l

z

l

;

and for j > 1 and i > 1 it is

E

h

z

X

i

I(�

1

(0) = i)

�

�

�X

i�1

= j; �

1

(0) � i

i

=

1

X

l=k+1

a

l�j+1

z

l

= a(z)z

j�1

�

k

X

l=j�1

a

l�j+1

z

l

:

From the previous two equations we get for j = 1; : : : ; k and i > 1 the following

E

h

z

X

i

I(�

1

(0) = i)

�

�

�X

i�1

= j; �

1

(0) � i

i

= a(z)z

j�1

�

k

X

l=(j�1)_1

a

l�j+1

z

l

;

which we shall call g

j

(z). Thus we arrive at the equation

E

h

z

X

�

1

(0)

i

=

 

a(z)�

k

X

l=1

a

l

z

l

!

+

1

X

i=1

k

X

j=1

0

@

a(z)z

j�1

�

k

X

l=(j�1)_1

a

l�j+1

z

l

1

A

pfX

i

= j; �

1

(0) � ig

= g

1

(z) +

1

X

i=1

0

@

k

X

j=1

pfX

i

= j; �

1

(0) � igg

j

(z)

1

A

:
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In order to �nd

1

X

i=1

pfX

i

= j; �

1

(0) � ig we de�ne v

i

and P

k

as in (4.11) and

(4.2) respectively and v

1

= (a

1

; a

2

; : : : ; a

k

). These are respectively the probability vector

after the ith transition in phase 1, the sub-stochastic probability transfer matrix and

the vector of initial probabilities for the subset f1; 2; : : : ; kg, of the state-space of X

n

.

Immediately from this we get

v

i

= v

1

P

i�1

k

:

Theorem B.2 shows that summing this from i = 1 to 1 gives

1

X

i=1

v

i

= v

1

(I�P

k

)

�1

:

Now v

1

= e

1

P

k

and so we can see (using Lemma B.0.1) that

v

1

(I�P

k

)

�1

= e

1

P

k

(I�P

k

)

�1

= �e

1

+ e

1

(I�P

k

)

�1

: (4.12)

Take g(z) = (g

1

(z); g

2

(z); � � � ; g

k

(z)) and g(z)

t

the corresponding column vector and we

get

E

h

z

X

�

1

(0)

i

= g

1

(z) +

1

X

i=1

0

@

k

X

j=1

v

i

j

g

j

(z)

1

A

= e

1

g(z)

t

+

1

X

i=1

v

i

g(z)

t

=

�

e

1

+ v

1

(I�P

k

)

�1

�

g(z)

t

; (4.13)

which from (4.12) gives

E

h

z

X

�

1

(0)

i

=

�

e

1

� e

1

+ e

1

(I�P

k

)

�1

�

g(z)

t

= e

1

(I�P

k

)

�1

g(z)

t

:

Now we can simplify g

j

(z) and hence g(z)

t

as follows

g

j

(z) =

a(z)

z

z

j

� e

j

P

k

z

t

;

) g(z)

t

=

a(z)

z

z

t

�P

k

z

t

:

Hence we can write E

h

z

X

�

1

(0)

i

as

E

h

z

X

�

1

(0)

i

= e

1

(I�P

k

)

�1

 

a(z)

z

z

t

�P z

t

!

=

a(z)

z

e

1

(I�P

k

)

�1

z

t

� e

1

(I�P

k

)

�1

P

k

z

t
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=

a(z)

z

e

1

(I�P

k

)

�1

z

t

+ e

1

I z

t

� e

1

(I�P

k

)

�1

z

t

=

a(z)

z

e

1

(I�P

k

)

�1

z

t

+ z � e

1

(I-P )

�1

z

t

=

 

a(z)

z

� 1

!

e

1

(I�P

k

)

�1

z

t

+ z

=

1

z

(a(z)� z) e

1

(I�P

k

)

�1

z

t

+ z;

using Lemma B.0.1. This leads easily to the desired result. 2
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4.2.1 Some limiting cases

There are several special cases of this system which have been examined in detail in

the literature, the simplest of which is the M/G/1 queue. The probability generating

function for the equilibriumnumber in the M/G/1 queueing system is expressed in (3.11).

In the following special cases we expect the same solution as in the M/G/1 model. If

a(z) = b(z) the solution is immediate. If k ! 1 and �

a

< 1 we also expect (3.11).

As k ! 1, F

�

(1; y), which is the generation function for the time spent in phase 2,

approaches 1. This is because the probability that zero time is spent in the second phase

approaches one. Hence

E[z

X

] =

1

m

2

4

1 � z

1�

z

a(z)

3

5

=

1

m

a(z)(1� z)

a(z)� z

:

We shall next consider what happens if a customer arriving at an empty server

has a di�erent service-time distribution from that of customers arriving when the server

is busy. The solution to this type of problem can also be found in Yeo (1962). The result

given by Yeo is

E

h

z

X

i

=

1

m

"

b(z)� za(z)

b(z)� z

#

;

where m =

1+(�

a

��

b

)

1��

b

. This might occur if there was some overhead associated with

restarting the server or if there are server vacations. The two-phase M/G/1 queue with

a �xed upward threshold should be the same as this when k = 0. We have not included

this in the previous results but it is an easy case since Corollary 3.6 gives F

�

(1; y) as

F

�

 

1;

z

b(z)

!

= E

h

z

X

�

1

(0)

i

;

the right-hand side of which is a(z) in this case. Once F

�

(1; y) is known we can write

the solution using Theorem 3.8 as

E[z

X

] =

1

m

2

4

(a(z)� z)(1�

z

b(z)

) + (1� a(z))(1�

z

a(z)

)

(1�

z

a(z)

)(1�

z

b(z)

)

3

5

=

1

m

"

b(z)� za(z)

b(z)� z

#

:
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4.2.2 Modi�cations

As noted in Section 3.4 some modi�cations may be needed to deal with other possible

descriptions of the server's behaviour. We shall consider here some such modi�cations.

(I) Modi�cations during phase 1.

If we consider properties other than the service-time distribution of the server to vary

between phases then we may need to modify the previous work slightly. We use the

relevant expression for a(z) in the solution. However wemust, in some cases, make further

modi�cations to the solution. Cases (i), (ii) and (iv) require no further modi�cation to

the solution. Case (v) is covered by Jun Huek Park (1990) for a queue with one phase

and can be dealt with here by an obvious extension. Case (vi) will not be used. This

leaves (iii) as the interesting example and we shall consider this here.

(iii) During phase 1 the server allows only the �rst N

1

� 1 arrivals during each service,

the remaining arrivals (if there are any) are blocked. (We shall simply write N = N

1

here.) In this case

a(z) =

N�1

X

i=0

a

i

(z

i

� z

N

) + z

N

:

The only other modi�cation necessary in the calculation of E

h

z

X

�

1

(0)

i

. We de�ne the

sub-stochastic probability transfer matrix

N

P

k

for 1 � N � k by

N

P

k

=

0

B

B

B

B

B

B

B

@

a

1

a

2

� � � a

N�1

P

1

i=N

a

i

0 � � � 0

a

0

a

1

� � � a

N�2

a

N�1

P

1

i=N

a

i

� � � 0

0 a

0

� � � a

N�3

a

N�2

a

N�1

� � � 0

.

.

.

0 0 � � � 0 0 0 � � � a

1

1

C

C

C

C

C

C

C

A

: (4.14)

Note that when N > k this modi�cation is trivial as

N

P

k

= P

k

. Having done this, the

same procedure as in Theorem 4.3 produces the result

E

h

z

X

�

1

(0)

i

� z =

1

z

(a(z)� z) e

1

(I�

N

P

k

)

�1

z

t

;

which gives the solution

E

h

z

X

i

=

1

m

2

4

b(z)(1� z) + fb(z)� a(z)g z

N

R

(U)

k

(z)

b(z)� z

3

5

;

where

m =

2

4

1 + f�

a

� �

b

g

N

R

(U)

k

(1)

1 � �

b

3

5

and

N

R

(U)

k

(z) = e

1

(I�

N

P

k

)

�1

z

t

:

(II) Modi�cations during phase 2.

Modi�cations to the behaviour in phase two are relatively inconsequential. We take b(z)

as de�ned in the relevant part of Section 3.4 and then �

b

= b

0

(1). The condition for

recurrence, �

b

� 1, remains the same. With b(z) given by the relevant function the

solution remains the same as that in Theorem 4.2.
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4.3 The geom.-distributed random-time threshold

This is the case in which the switch between the two service-time distributions occurs

at a random time. We assume that the probability of the switch occurring at the end of

a service is p. That is to say given the process is in phase 1 at time n and X

n+1

6= 0

pf�

1

(n) = n + 1g = p;

where p is a constant 0 < p < 1. Thus we can write, at some time n 2 ZZ

+

�

1

(n) =

(

� (n) ^ (n+R); if phase(n) = 1;

n; if phase(n) = 2;

= I

C

1

n

[� (n) ^ (n+R)] + I

C

2

n

n;

where R is a random variable with the geometric distribution

pfR = ig = (1 � p)

i�1

p:

Thus we could consider the threshold to occur at a random time which is geometrically

distributed. From this we can write

�

1

(0) = � (0) ^R: (4.15)

The following lemma provides the constraint necessary for regularity.

Lemma 4.3.1 When �

a

> 0, �

b

� 1 and

p > 1 �

1

�

;

condition (�) is satis�ed and furthermore for ! 2 [0; �]

E

h

!

�

1

(0)

i

=

!p+ (1 � !)F

�

(!(1� p))

1� !(1 � p)

;

where F

�

(�) is the unique solution to the equation z = �a(z) in the interval [0; 1).

Proof: When �

a

� 1 and hence � = 1, condition (�) is trivially true. When �

a

> 1 and

hence � > 1 the following is true

�

�

1

(0)

� �

R

a:s:;

therefore

E

h

�

�

1

(0)

i

� E

h

�

R

i

=

1

X

i=1

�

i

pfR = ig

=

1

X

i=1

�

i

(1 � p)

i�1

p

= p�

1

X

i=0

[�(1� p)]

i

=

p�

1 � �(1� p)

;
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when this converges. It converges for �(1� p) < 1 and so

p > 1 �

1

�

:

For the second part of the proof we consider

E

h

!

�

1

(0)

i

=

1

X

n=1

E

h

!

�

1

(0)

�

�

�R = n

i

pfR = ng

=

p

1 � p

1

X

n=1

E

h

!

�

1

(0)

I(� (0) � R)

�

�

�R = n

i

(1� p)

n

+

p

1 � p

1

X

n=1

E

h

!

�

1

(0)

I(� (0) < R)

�

�

�R = n

i

(1 � p)

n

:

When � (0) � R, �

1

(0) = R so that

E

h

!

�

1

(0)

I(� (0) � R)

�

�

�R = n

i

= !

n

pf� (0) � RjR = ng

= !

n

 

1 �

n�1

X

i=1

pf� (0) = ig

!

:

When � (0) < R, �

1

(0) = � (0) and I(� (0) < R) =

P

n�1

i=1

I(� (0) = i) so we get

E

h

!

�

1

(0)

i

=

p

1 � p

1

X

n=1

 

1�

n�1

X

i=1

pf� (0) = ijR = ng

!

!

n

(1 � p)

n

+

p

1� p

1

X

n=1

n�1

X

i=1

E

h

!

�(0)

I(� (0) = i)

�

�

�R = n

i

(1 � p)

n

;

which when we rearrange and swap the order of summands gives

E

h

!

�

1

(0)

i

=

p

1� p

1

X

i=1

!

n

(1 � p)

n

�

p

1� p

1

X

i=1

1

X

n=i+1

!

n

pf� (0) = ijR = ng(1� p)

n

+

p

1� p

1

X

i=1

1

X

n=i+1

!

i

pf� (0) = ijR = ng(1� p)

n

:

When n > i, pf� (0) = ijR = ng is simply pf�

0

(0) = ig where �

0

(0) is de�ned by

�

0

(0) = inffm > 0jX

0

m

= 0g;

where X

0

m

is the process formed by X

0

0

= 0 and

X

0

m+1

= X

0

m

+A

m+1

� I(X

0

m

6= 0);

for all m 2 ZZ

+

. Hence we get

E

h

!

�

1

(0)

i

=

!p

1� !(1 � p)

�

p

1 � p

1

X

i=1

pf�

0

(0) = ig

1

X

n=i+1

!

n

(1 � p)

n
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+

p

1� p

1

X

i=1

pf�

0

(0) = ig!

i

1

X

n=i+1

(1� p)

n

=

!p

1� !(1 � p)

�

!p

1 � !(1� p)

1

X

i=1

pf�

0

(0) = ig!

i

(1 � p)

i

+

1

X

i=1

pf�

0

(0) = ig!

i

(1� p)

i

=

!p

h

1 �E

h

(!(1 � p))

�

0

(0)

ii

1� !(1 � p)

+ E

h

(!(1 � p))

�

0

(0)

i

:

As X

0

m

is analogous to the embedded process of the M/G/1 queue we can see that �

0

(0)

is the number of customers served during the �rst busy period and so E

h

!

�

0

(0)

i

= F

�

(!);

where F

�

(z) is the probability generating function for the number of customers served

during the busy period of the M/G/1 queue with service-time distribution A(�) (see 3.13

on page 49). Thus we get

E

h

!

�

1

(0)

i

=

!p

h

1� F

�

�

!(1 � p)

�i

+ F

�

�

!(1� p)

�

[1� !(1 � p)]

1 � !(1� p)

=

!p + (1� !)F

�

�

!(1 � p)

�

1� !(1� p)

;

which is the desired result. 2

Note that the condition p 2

�

1 �

1

�

; 1

�

is a su�cient condition, not a necessary

one. We have said nothing about the case when p < 1 �

1

�

. It provides regularity and

recurrence as does Lemma 4.2.1 in Section 4.2. It is important for us to note also that

this is the only one of the three examples in which there is a constraint placed upon the

threshold parameter p. Because, however, we have chosen this as a model for a server

which may breakdown this causes no problems. In such a system �

a

would be the normal

tra�c intensity of the system and as such would normally be chosen to be less than one.

Hence �

a

(z) � 1 for z 2 [0; 1] and hence � = 1. This means that for such an example

there is only the restriction that p be positive. This is a trivial restriction as when p = 0

we have a degenerate case with only one phase. We next proceed to �nd the value of

R

(G)

p

(z).

Theorem 4.4 For �

a

> 0, p > 1�

1

�

with � = sup

z2[0;1]

�

1

(z) and z 2 [0; 1),

E

h

z

X

�

1

(0)

i

� z = [a(z)� z]R

(G)

p

(z);

where

R

(G)

p

(z) =

z � F

�

(1 � p)

z � a(z)(1� p)

and F

�

(�) is the unique solution Z(�) to z = �a(z), for z 2 [0; 1).
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Proof: First for n 2 IN

E

h

z

X

�

1

(0)

�

�

�R = n

i

= E

h

[I(� (0) � n) + I(� (0) > n)] z

X

�

1

(0)

�

�

�R = n

i

= E [I(� (0) � n)jR = n] + E

h

I(� (0) > n)z

X

�

1

(0)

�

�

�R = n

i

= pf� (0) � njR = ng+ E

h

I(� (0) > n)z

X

n

�

�

�R = n

i

;

because when � (0) � R, X

�

1

(0)

= 0 and when � (0) > R, X

�

1

(0)

= X

R

. As in the previous

proof we use the process de�ned by X

0

0

= 0 and

X

0

n+1

= X

0

n

+A

n+1

� I(X

0

n

6= 0);

where the random variables A

n

are the number of arrivals during the nth service given

that the process is in phase 1. We have X

0

n

= X

n

for n � �

1

(0). Thus if we de�ne

�

0

(n) = inffm > njX

0

m

= 0g when this set is non-empty and �

0

(n) =1 when the set is

empty we can see that pf� (0) � njR = ng = pf�

0

(0) � ng which gives

E

h

z

X

�

1

(0)

�

�

�R = n

i

= pf�

0

(0) � ng+ E

h

I(� (0) > n)z

X

n

�

�

�R = n

i

: (4.16)

Now we consider X

n

for n � R and � (0) > n. In this case X

n

= X

0

n

Thus we can use

the following process slightly modi�ed from Baccelli and Makowski (1989). We de�ne

for the standard M/G/1 queue (a single-phase queue with embedded process X

0

n

)

g(y; n) = E

h

y

�

1

(n)

I(� (0) > n)

i

:

We can use the Remark on page 39 to show (in a similar manner to Theorem 3.5) that

g(�

a

(z); n) = E

h

z

X

0

n

I(� (0) > n)

i

:

Thus we get

1

X

n=1

E

h

I(� (0) > n)z

X

n

�

�

�R = n

i

t

n

=

1

X

n=1

E

h

z

X

0

n

I(� (0) > n)

i

t

n

=

1

X

n=1

g

�

�

a

(z); n

�

t

n

;

which is de�ned to be G

�

�

�

a

(z); t

�

� 1. Now Baccelli and Makowski also show (2.30)

that

G

�

(y; t) = 1 +

tF

�

(y)� yF

�

(t)

y � t

:

From this we can deduce that

1

X

n=1

E

h

I(� (0) > n)z

X

n

�

�

�R = n

i

t

n

=

tF

�

(�

a

(z))� �

a

(z)F

�

(t)

�

a

(z)� t

=

tz � �

a

(z)F

�

(t)

�

a

(z)� t

; (4.17)
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as F

�

(�

a

(z)) = z from (3.12). We can also write

1

X

n=1

pf�

0

(0) � ng t

n

=

1

X

n=1

n

X

i=1

pf�

0

(0) = ig t

n

=

1

X

i=1

pf�

0

(0) = ig t

i

1

X

n=i

t

n�i

=

1

1� t

1

X

i=1

pf�

0

(0) = ig t

i

=

F

�

(t)

1 � t

: (4.18)

We note that

E

h

z

X

�

1

(0)

i

=

1

X

n=1

E

h

z

X

�

1

(0)

�

�

�R = n

i

pfR = ng

=

1

X

n=1

E

h

z

X

�

1

(0)

�

�

�R = n

i

p(1 � p)

n�1

=

p

1� p

1

X

n=1

E

h

z

X

�

1

(0)

�

�

�R = n

i

(1� p)

n

=

p

1� p

1

X

n=1

pf�

0

(0) � ng(1� p)

n

+

p

1 � p

1

X

n=1

E

h

I(� (0) > n)z

X

n

�

�

�R = n

i

(1� p)

n

;

from (4.16). If we now substitute the results of (4.18) and (4.17) with t = (1� p) we get

E

h

z

X

�

1

(0)

i

=

p

1 � p

:

F

�

(1� p)

p

+

p

1 � p

:

(1� p)z � �

a

(z)F

�

(1 � p)

�

a

(z)� (1� p)

:

This may be simpli�ed in the following manner (where we have written for brevity

� = �

a

(z)).

E

h

z

X

�

1

(0)

i

� z =

F

�

(1� p)[� � (1� p)] + p(1 � p)z � p�F

�

(1� p)

(1 � p)(� � (1 � p))

� z

=

F

�

(1� p)(� � 1)(1 � p) + p(1 � p)z � z(1� p)(� � (1 � p))

(1 � p)(� � (1� p))

=

F

�

(1� p)(� � 1)(1 � p) + (1 � p)z � z(1� p)�

(1� p)(� � (1� p))

=

F

�

(1� p)(� � 1) + z � z�

� � (1� p)

=

[z � F

�

(1� p)](1 � �)

� � (1� p)

=

z � F

�

(1 � p)

� � (1� p)

(1� �)

=

z � F

�

(1� p)

z � (1 � p)a(z)

(a(z)� z); (4.19)
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which is the required result. 2

Remark: From (3.13), F

�

(1� p) is the unique solution to

z = (1 � p)a(z)

for unknown z 2 [0; 1). Thus when the denominator of (4.19) is zero the numerator is

also zero.

4.3.1 Some limiting cases

When �

a

� 1 and hence � = 1 the condition is simply that p > 0. If we then take the

limit as p # 0 we should get the result for the standard M/G/1 queue with � = �

a

. From

the solution we get

E

h

z

X

i

=

1

m

2

4

b(z)(1� z) + z fb(z)� a(z)g

z�F

�

(1�p)

z�(1�p)a(z)

b(z)� z

3

5

which when we take the limit as p # 0 gives

E

h

z

X

i

=

1

m

2

4

b(z)(1� z) + z fb(z)� a(z)g

z�1

z�a(z)

b(z)� z

3

5

=

1

m

"

b(z)(1� z)(a(z)� z) + z fb(z)� a(z)g (1 � z)

(a(z)� z)(b(z)� z)

#

=

1

m

2

4

n

b(z)(a(z)� z) + zb(z)� za(z)

o

(1� z)

(a(z)� z)(b(z)� z)

3

5

=

1

m

2

4

n

b(z)a(z)� za(z)

o

(1� z)

(a(z)� z)(b(z)� z)

3

5

=

1

m

"

(b(z)� z)a(z)(1� z)

(a(z)� z)(b(z)� z)

#

=

1

m

"

a(z)(1� z)

a(z)� z

#

;

which is the solution we expect for the M/G/1 queue. When p = 1 the system is the

same as the M/G/1 queue with a di�erent service-time distribution when a customer

arrives at an empty server. From the result we get

E

h

z

X

i

=

1

m

2

4

b(z)(1� z) + z fb(z)� a(z)g

z�F

�

(0)

z

b(z)� z

3

5

:

Now F

�

(0) = 0 so that we get

E

h

z

X

i

=

1

m

"

b(z)(1� z) + z fb(z)� a(z)g

b(z)� z

#

=

1

m

"

b(z)� za(z)

b(z)� z

#

;

which is what we expect.
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4.3.2 Modi�cations

No modi�cation to the solution is necessary for any of the examples of modi�ed server be-

haviour except using the correct generating functions for a(z) and b(z) from Section 3.4.
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4.4 Fixed-Time Threshold

In this case the threshold is passed after a �xed number of customers have been served

during the busy period. We label the number of customers served before the switch by

S 2 IN . Note that if the system clears before this threshold is reached then it is reset

when the next busy period begins. This is so that times spent in phases in di�erent busy

periods will be independent. We can write

�

1

(n) =

8

<

:

� (n) ^

�

n+ S � �(n)

�

; if phase(n) = 1;

n; if phase(n) = 2;

= � (n) ^

h

n+ (S � �(n))

+

i

;

where �(n) is the number of customers served since the beginning of the current busy

period. The second equation occurs as (S � �(n)) will be negative when phase(n) = 2.

Thus

�

1

(0) = � (0) ^ S: (4.20)

It is worth noting at this point that condition (�) is trivially satis�ed for this type of

threshold. This can be seen as when � > 1 we have �

S

� �

�

1

(0)

with probability one.

Theorem 4.5 For �

a

> 0, S 2 IN and z 2 [0; 1] we arrive at

E

h

z

X

�

1

(0)

i

� z = [a(z)� z]R

(T )

S

(z);

where R

(T )

S

(z) can be de�ned recursively by

R

(T )

S+1

(z) =

1

z

n

R

(T )

S

(z)a(z)� a

0

R

(T )

S

(0)

o

+ 1;

and R

(T )

1

(z) = 1.

Proof: We use the stopped process Z

n

de�ned in the following way.

Z

n

= X

n^�(0)

:

Note that

E

h

z

X

�

1

(0)

i

= E

h

z

Z

S

i

;

so we shall consider Z

S

rather than X

�

1

(0)

throughout this proof. When S = 1

E

h

z

X

�

1

(0)

i

� z = E

h

z

Z

1

i

� z

= E

h

z

A

1

i

� z

= a(z)� z;

where A

1

is the number of arrivals during the �rst service. Clearly then R

(T )

1

(z) = 1.

This provides the starting point for an inductive proof. Assume the lemma is true for

S = n > 1, so that

E

h

z

Z

n

i

� z = [a(z)� z]R

(T )

n

(z):
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Consider the case S = n+ 1. We want to show that

E

h

z

Z

n+1

i

� z = [a(z)� z]R

(T )

n+1

(z):

Now we can see for S = n+ 1 that

E

h

z

X

�

1

(0)

i

� z = E

h

z

Z

n+1

i

� z

=

1

X

i=0

E

h

z

Z

n+1

�

�

�Z

n

= i

i

pfZ

n

= ig � z:

We deduce that

E

h

z

Z

n+1

�

�

�Z

n

= i

i

=

(

z

i�1

a(z); i > 0;

1; i = 0;

from the fact that when Z

n

= 0, Z

n+1

must also be zero and when Z

n

= i > 0 then

Z

n+1

= i+A

n+1

� 1 where A

n+1

is the number of arrivals during the (n + 1)th service.

This means that

E

h

z

Z

n+1

i

� z = pfZ

n

= 0g + a(z)

1

X

i=1

z

i�1

pfZ

n

= ig � z

= pfZ

n

= 0g +

a(z)

z

n

E

h

z

Z

n

i

� pfZ

n

= 0g

o

� z:

We can see that pfZ

n

= 0g will be a

0

R

(T )

n

(0) and we have assumed E

h

z

Z

n

i

� z to be

[a(z)� z]R

(T )

n

(z) so

E

h

z

Z

n+1

i

� z = a

0

R

(T )

n

(0) +

a(z)

z

n

[a(z)� z]R

(T )

n

(z) + z � a

0

R

(T )

n

(0)

o

� z

= [a(z)� z]

R

(T )

n

(z)a(z)

z

+ a

0

R

(T )

n

(0) �

a(z)a

0

R

(T )

n

(0)

z

+ a(z)� z

= [a(z)� z]

(

R

(T )

n

(z)a(z)

z

�

a

0

R

(T )

n

(0)

z

+ 1

)

;

with some rearrangement. Thus we have inductively proved that E

h

z

X

�

1

(0)

i

� z contains

a factor of a(z)� z and also demonstrated the stated recursion. 2

We still require a closed form for R

(T )

S

(z) for Theorem 4.2 equation (4.5). The

following theorem provides it.

Theorem 4.6 For the process discussed above

R

(T )

S

(z) =

"

1 � �

a

(z)

S

�

a

(z)

S�1

(1� �

a

(z))

#

�

(1� �

S1

)

z

S�1

X

k=1

"

1� �

a

(z)

S�k

�

a

(z)

S�k�1

(1� �

a

(z))

#

a

(k)

;

and

R

(T )

n

(0) =

1

a

0

n

X

k=1

a

(k)

;
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where

a

(k)

=

Z

1

0

e

��x

(�x)

k�1

k!

dA

(k)

(x);

A

(k)

(�) being the k-fold convolution of A(�).

Proof: When we consider the geometrically-distributed random-time threshold the so-

lution for E

h

z

X

�

1

(0)

i

� z could be written as

E

h

z

X

�

1

(0)

i

� z =

1

X

n=1

h

E

h

z

X

�

1

(0)

�

�

�R = n

i

� z

i

pfR = ng

=

1

X

n=1

h

E

h

z

X

�

1

(0)

�

�

�R = n

i

� z

i

p(1 � p)

n�1

=

p

1 � p

1

X

n=1

h

E

h

z

X

�

1

(0)

�

�

�R = n

i

� z

i

(1 � p)

n

:

Now

h

E

h

z

X

�

1

(0)

�

�

�R = n

i

� z

i

is just (a(z) � z)R

(T )

n

(z) where R

(T )

n

(z) is de�ned for a

�xed-time threshold at S = n. Thus we can write

R

(G)

p

(z) =

p

1� p

[a(z)� z]

1

X

n=1

R

(T )

n

(z)(1� p)

n

=

p

1� p

[a(z)� z]R(z; 1� p); (4.21)

where

R(z; p) =

1

X

n=1

R

(T )

n

(z)p

n

:

By comparing this with the answer in Theorem 4.4 which states

E

h

z

X

�

1

(0)

i

� z =

z � F

�

(1� p)

z � (1 � p)a(z)

(a(z)� z);

we get

R(z; 1 � p) =

1 � p

p

:

z � F

�

(1 � p)

z � (1 � p)a(z)

R(z; p) =

p

1 � p

:

z � F

�

(p)

z � pa(z)

:

This in itself is interesting but it also gives us a way of calculating R

(T )

n

(z) explicitly,

namely by expanding the right-hand side in terms of p and equating coe�cients of p.

First we expand 1=(1 � p) as p < 1 to get

R(z; p) =

p

1� p

z � F

�

(p)

z � pa(z)

= p

1

X

i=0

p

i

1 �

1

z

F

�

(p)

1 � p

a(z)

z

:
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Next we expand

1

1�pa(z)=z

which we can do for some interval [z

0

; 1] as when z tends to

one, a(z)=z tends to one and p < 1. This gives

R(z; p) = p

1

X

i=0

p

i

1

X

j=0

 

p

a(z)

z

!

j
�

1�

1

z

F

�

(p)

�

= p

1

X

i=0

p

i

i

X

j=0

 

a(z)

z

!

j
�

1 �

1

z

F

�

(p)

�

=

1

X

i=1

p

i

2

6

4

1�

�

a(z)

z

�

i

1�

a(z)

z

3

7

5

�

1�

1

z

F

�

(p)

�

:

Now from Tak�acs's lemma

F

�

(p) =

1

X

k=1

p

k

Z

1

0

e

��x

(�x)

k�1

k!

dA

(k)

(x);

where A

(k)

(�) is the k-fold convolution of A(�) with itself. We shall write

a

(k)

=

Z

1

0

e

��x

(�x)

k�1

k!

dA

(k)

(x):

Thus

R(z; p) =

1

X

i=1

p

i

2

6

4

1�

�

a(z)

z

�

i

1 �

a(z)

z

3

7

5

�

1

z

1

X

i=1

p

i

2

6

4

1�

�

a(z)

z

�

i

1�

a(z)

z

3

7

5

F

�

(p)

=

1

X

i=1

p

i

2

6

4

1�

�

a(z)

z

�

i

1 �

a(z)

z

3

7

5

�

1

z

1

X

i=1

p

i

2

6

4

1�

�

a(z)

z

�

i

1�

a(z)

z

3

7

5

1

X

k=1

p

k

a

(k)

=

1

X

i=1

p

i

2

6

4

1�

�

a(z)

z

�

i

1 �

a(z)

z

3

7

5
�

1

z

1

X

i=2

p

i

i�1

X

k=1

2

6

4

1�

�

a(z)

z

�

i�k

1�

a(z)

z

3

7

5
a

(k)

:

By equating coe�cients we get

R

(T )

n

(z) =

2

4

1�

�

a(z)

z

�

n

1 �

a(z)

z

3

5

�

(1� �

n1

)

z

n�1

X

k=1

2

6

4

1 �

�

a(z)

z

�

n�k

1 �

a(z)

z

3

7

5
a

(k)

;

for z 2 (z

0

; 1] where pa(z

0

)=z

0

= 1. Now as R

(T )

n

(z) should not in any way be dependent

on p we can take the limit as p tends to zero. Thus the above is true for z 2 (0; 1]

To get R

(T )

n

(0) we can use the fact that R

(T )

n

(z) satis�es the recursive relationship

R

(T )

n+1

(z) =

1

z

h

R

(T )

n

(z)a(z)�R

(T )

n

(0)a

0

i

+ 1;

with R

(T )

1

(z) = 1. This can be used as follows. We set

R(z; p) =

1

X

n=1

R

(T )

n

(z)p

n
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= p +

1

X

n=2

R

(T )

n

(z)p

n

= p +

1

X

n=2

�

1

z

h

R

(T )

n�1

(z)a(z)�R

(T )

n�1

(0)a

0

i

+ 1

�

p

n

= p +

1

z

1

X

n=2

h

R

(T )

n�1

(z)a(z)�R

(T )

n�1

(0)a

0

i

p

n

+

1

X

n=2

p

n

= p +

p

2

1� p

+ p

1

z

1

X

n=1

h

R

(T )

n

(z)a(z)�R

(T )

n

(0)a

0

i

p

n

=

p

1 � p

+ p

1

z

[R(z; p)a(z)�R(0; p)a

0

] p

n

;

which with some rearrangement gives

R(z; 1 � p)

(

1 � p

a(z)

z

)

= p

"

1

p

�

a

0

z

R(0; 1 � p)

#

;

R(z; 1� p) = p

h

1

p

�

a

0

z

R(0; 1 � p)

i

1� p

a(z)

z

= p

h

z

1

p

� a

0

R(0; 1 � p)

i

z � pa(z)

:

From the geometrically-distributed random-time threshold we have (4.21)

E

h

z

X

�

1

(0)

i

� z =

p

1 � p

R(z; 1 � p)[a(z)� z]

=

z � pa

0

R(0; 1 � p)

z � (1� p)a(z)

[a(z)� z]: (4.22)

By comparing (4.22) and Theorem 4.4 we see that

pa

0

R(0; 1 � p) = F

�

(1� p);

and so

R(0; p) =

1

a

0

(1 � p)

F

�

(p)

=

1

a

0

1

X

i=0

p

i

1

X

k=1

p

k

a

(k)

=

1

a

0

1

X

i=1

p

i

i

X

k=1

a

(k)

:

By equating coe�cients we get

R

(T )

n

(0) =

1

a

0

n

X

k=1

a

(k)

;

which is the required value. 2
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4.4.1 Some limiting cases

The case of the M/G/1 queue with a di�erent service-time distribution for customers

arriving at an empty server is the same as the case with S = 1. In this case we get

R

(T )

1

(z) = 1 so that the solution is simply

E

h

z

X

i

=

1

m

"

b(z)(1� z) + fb(z)� a(z)g z

b(z)� z

#

=

1

m

"

b(z)� za(z)

b(z)� z

#

;

which is as expected.

4.4.2 Modi�cations

As before no modi�cations to the solution are necessary for any of the examples save

using the correct generating functions for a(z) and b(z).
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4.5 Other random thresholds

We would like to be able to �nd a solution if the random variable R is not geometrically

distributed, for instance if the time of a breakdown in the system depends in some way

on the number of customers served in the current busy period.

If the random variable R has probability function h(�) then the solution will be

of the form

E

h

z

X

i

=

1

m

2

4

b(z)(1� z) + fb(z)� a(z)g zR

(R)

h

(z)

b(z)� z

3

5

;

for z 2 [0; 1) where

R

(R)

h

(z) =

1

X

n=1

h(n)R

(T )

n

(z);

providing we can satisfy condition (�). Condition (�) is easily satis�ed if there exists an

N such that h(n) = 0 for all n > N . Otherwise it might be di�cult to provide condition

(�). This would have to be dealt with on an individual basis.
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4.6 The probability of a given phase

One thing that may be of use in these results is the probability of being in a given phase.

For example in order to calculate the cost of running the queue, given the costs for

running it in phase 1 and 2. This might be used to optimise a queueing system. Another

situation in which this information might prove useful is the breakdown model, in which

we may want to know how many customers are a�ected by a breakdown. In this section

we shall use Little's law to calculate these probabilities. Little's law (1961) states

L = �W; (4.23)

where L is the mean number of customers in the system, � is the arrival rate to the

system and W is the mean time spent by a customer in the system. If we apply this

to the server alone we can see that L is the probability that there is a customer in the

system and W is the mean service time so

L = pfX 6= 0g = 1 �

1

m

;

W =

1� �

�

a

+

�

�

b

;

where � is the probability of of being in phase 2. We have from Theorem 4.2 that

m =

"

1 + f�

a

� �

b

gR

(F )

q

(1)

1 � �

b

#

;

where R

(F )

q

(z) is determined by the speci�c type of threshold between the phases. Thus

L =

�

b

+ (�

a

� �

b

)R

(F )

q

(1)

1 + (�

a

� �

b

)R

(F )

q

(1)

;

�W = �(�

b

� �

a

) + �

b

:

Substituting in (4.23) we get an equation for � (when �

a

6= �

b

)

� =

"

�

b

+ (�

a

� �

b

)R

(F )

q

(1)

1 + (�

a

� �

b

)R

(F )

q

(1)

� �

a

#

1

�

b

� �

a

=

"

�

b

� �

a

+ (1 � �

a

)(�

a

� �

b

)R

(F )

q

(1)

1 + (�

a

� �

b

)R

(F )

q

(1)

#

1

�

b

� �

a

=

1 + (�

a

� 1)R

(F )

q

(1)

1 + (�

a

� �

b

)R

(F )

q

(1)

: (4.24)

This is the probability of being in phase 2. It is worth noting that this is insensitive

to the actual distribution B(�) except through �

b

, the tra�c intensity during phase 2.

Because of this insensitivity we can calculate � even when �

a

= �

b

by taking a set a

distributions such that lim�

b

! �

a

and using L'Hôpital's rule in the previous working

to get

� = 1 + (�

a

� 1)R

(F )

q

(1):
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As an example we investigate the random threshold where

R

(F )

q

(z) = R

(R)

p

(z)

=

z � F

�

(1� p)

z � (1 � p)a(z)

;

which when we take z = 1 gives

R

(F )

q

(1) =

1

p

[1� F

�

(1 � p)]:

When we substitute this back into (4.24) we get

� =

p + (�

a

� 1)[1� F

�

(1� p)]

p + (�

a

� �

b

)[1� F

�

(1� p)]

:

In the breakdown model where all of the customers in the system at the time of a

breakdown are discarded �

b

= 0. In this case � is the probability that a customer is

discarded because of a breakdown and it is given by

� =

p + (�

a

� 1)[1� F

�

(1� p)]

p+ �

a

[1� F

�

(1 � p)]

= 1 �

1 � F

�

(1� p)

p + �

a

[1� F

�

(1� p)]

:

4.6.1 The length of the phases

Another thing that might be of interest is the time spent in each of the two phases. As we

have seen in the previous sections the generating functions E

h

z

�

1

(0)

i

are quite complex

and depend on the speci�c threshold and we may suppose the same about E

h

z

�

2

(0)

i

.

We shall just consider the averages which are relatively easy to calculate. �

1

(0) and

�

2

(0) give the number of customers served during phase 1 and 2 respectively of the busy

period. We calculate the expected values which are given by equations (4.29) and (4.30).

The calculation of these values is as follows

d

dz

"

F

�

 

z

a(z)

;

z

b(z)

!#

=

 

a(z)� za

0

(z)

a(z)

2

!

E

2

4

�

1

(0)

 

z

a(z)

!

�

1

(0)�1

 

z

b(z)

!

�

2

(0)

3

5

+

 

b(z)� zb

0

(z)

b(z)

2

!

E

2

4

�

2

(0)

 

z

a(z)

!

�

1

(0)

 

z

b(z)

!

�

2

(0)�1

3

5

;

d

dz

"

F

�

 

1;

z

b(z)

!#

=

 

b(z)� zb

0

(z)

b(z)

2

!

E

2

4

�

2

(0)

 

z

b(z)

!

�

2

(0)�1

3

5

;

from which we get

d

dz

"

F

�

 

z

a(z)

;

z

b(z)

!#

z=1

= (1 � �

a

)E [�

1

(0)] + (1 � �

b

)E [�

2

(0)] ; (4.25)

d

dz

"

F

�

 

1;

z

b(z)

!#

z=1

= (1 � �

b

)E [�

2

(0)] : (4.26)
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Now we have, from previous working, the following two equations

F

�

 

z

a(z)

;

z

b(z)

!

= z;

F

�

 

1;

z

b(z)

!

= [a(z)� z]R

(F )

q

(z) + z:

Taking the derivatives of these and taking lim

z"1

we get from equations (4.25) and (4.26).

(1 � �

a

)E[�

1

(0)] + (1� �

b

)E[�

2

(0)]; = 1; (4.27)

(1 � �

b

)E[�

2

(0)] = (�

a

� 1)R

(F )

q

(1) + 1: (4.28)

Substituting (4.28) into (4.27) and then using the resultant expression for E[�

1

(0)] in

(4.27) we arrive at

E[�

1

(0)] = R

(F )

q

(1); (4.29)

E[�

2

(0)] =

1 + (�

a

� 1)R

(F )

q

(1)

1 � �

b

: (4.30)

Note that by adding (4.29) and 4.30) together we get

E[�(0)] =

1 + (�

a

� �

b

)R

(F )

q

(1)

1 � �

b

;

which agrees with our value for m.

4.7 Summary

As this chapter contains solutions to problems using the technique described in Chap-

ter 3 now would seem an appropriate moment to summarise what has been done so

far. Chapters 2 and 3 provide a powerful result using Markov renewal theory and some

martingale results. This has been applied to a number of di�erent two-phase problems

in this chapter. The equilibrium probability generating functions for three problems are

given in Theorem 4.2. In this chapter, three examples, each with a di�erent type of

threshold between the phases, are considered and a general form of solution is found.

The three thresholds considered are the �xed upward threshold, the �xed-time threshold

and a geometrically-distributed random-time threshold. Each of these has a di�erent

technique for �nding the �nal solution and so each is considered in its own section of

this chapter. For each of the thresholds two major results must be obtained.

The �rst is simply to demonstrate when condition (�) is satis�ed. This condition

being su�cient to use the results of Chapter 3. In conjunction with this result we have

also calculate the values of E

h

!

�

1

(0)

i

the probability generating function for the length

of the �rst phase.

The second result necessary for a useful solution is the value of E

h

z

X

�

1

(0)

i

� z.

This can be given in each case in the following form

E

h

z

X

�

1

(0)

i

� z = [a(z)� z]R(z);
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and so we have throughout used the notation R

(F )

q

(z) to denote R(z) where F gives the

type of threshold and q is replaced with the type of parameter relevant to the threshold.

Both this and the previous result are proven using a number of standard probabilistic

techniques.

The results we have obtained are then used to calculate a number of quantities

of interest in the study of such systems, namely the probability of being in a particular

phase during equilibrium and the mean number of customers served in each phase during

a busy period.

Finally we shall comment upon the solutions obtained. The �nal result is in an

elegant form. The equilibrium distribution of customers in the queue is given by the

probability generating function

E

h

z

X

i

=

1

m

"

b(z)(1� z) + fb(z)� a(z)g zR

(F )

q

(z)

b(z)� z

#

;

for z 2 [0; 1) and with

m =

"

1 + f�

a

� �

b

gR

(F )

q

(1)

1 � �

b

#

;

where R

(F )

q

(z) is a non-negative function bounded above on the interval [0; 1] and is

determined by the speci�c type of threshold between the phases. The value F speci�es

the type of threshold used and q is a parameter associated with the type of threshold.

A standard M/G/1 queue with service-time distribution given by B(�) would have the

probability generating function for the equilibriumdistribution of customers in the queue

given by

E

h

z

X

i

= (1� �)

"

b(z)(1� z)

b(z)� z

#

:

Thus we can see that our solution is a modi�cation of this solution. The modi�cation

is proportional to the di�erence of the probability generating functions b(z) and a(z).

This can be seen to make sense by considering the following. Our systems are all simply

M/G/1 queues with modi�ed initial behaviour. (The behaviour during phase 1.) Thus we

should expect the solution to be that of a M/G/1 queue with some sort of modi�cation.

That this modi�cation is proportional to b(z)� a(z) is of some interest.

We should, at this time, note the work of Fuhrmann and Cooper (1985) which

deals with the stochastic decomposition of the M/G/1 queue with generalised vacations.

This is an M/G/1 queue in which the server is unavailable for certain periods of time.

For certain of these systems they obtain a result which states;

The (stationary) number of customers in the system at a random point in time

is distributed as the sum of two or more independent random variables, one

of which is the (stationary) number of customers present in the corresponding

M/G/1 queue at a random point in time.

We might, using some imagination, rearrange the scheme we have used herein to describe

multi-phase M/G/1 queues in terms of generalised vacations. To do this the queueing
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system must satisfy Assumptions 1-5 of Fuhrmann and Cooper. However, Proposition 2

of Fuhrmann and Cooper`s paper require a further assumption, Assumption 6, which our

systems violate and it is not clear how the other propositions could be usefully applied.

(This assumption requires the number of arrivals during a vacation to be independent of

the number of customers in the system at the start of the vacation.) We have, in a sense,

obtained our own decomposition result however. This is not in terms of independent

random variables but dependent random variables as we sum two generating function,

not multiply. This could in itself be of interest in future research.

The solutions may look complex but they are not computationally hard to calcu-

late. For instance the solution for the �xed upward threshold requires the inversion of a

k x k matrix, however, the matrix is already in lower Hessenburg form. Putting a matrix

into Hessenburg form is a major part of one of the better computational procedures for

inverting matrices (Golub and van Loan (1983)) and so this matrix inversion is roughly

an order of magnitude easier than an ordinary inversion. The solution for the �xed-time

threshold is not di�cult either. It can be done through a set of discrete convolutions

using the fact that a

(k)

is 1=k times the probability that there are (k� 1) arrivals during

k services so that

a

(1)

= a

0

;

a

(2)

= a

1

a

0

;

a

(3)

= a

2

1

a

0

+ a

2

a

1

a

2

0

;

.

.

.

Also the geometrically distributed random threshold relies on F

�

(z) which is a standard

function for the M/G/1 queue, the probability generating function for the number of

customers served during the busy period. Thus the results are in a useful form for

calculation.

In the next chapter we shall consider the slightly more complex case of three

phases.
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Chapter 5

Three-phase examples

In this chapter we consider an example with three phases. This is a simple extension of

the �xed upward threshold example considered in the previous chapter. In this case we

have two �xed upward thresholds at k

1

and k

2

. The ends of phases 1 and 2 correspond

to the times at which the system has more than k

1

and k

2

customers in it respectively.

We also describe a new type of threshold in Section 5.2, the �xed downward

threshold. This is the case when a phase ends if there are fewer than a certain number

of customers in the system immediately after a service completion.

We use a three-phase MRP which is shown in Figure 5.1 and we use the standard

notation de�ned in Chapter 3. Throughout this chapter we use the matrix

P

k

i

=

0

B

B

B

B

B

B

B

@

a

i

1

a

i

2

a

i

3

� � � a

i

k

2

�1

a

i

k

2

a

i

0

a

i

1

a

i

2

� � � a

i

k

2

�2

a

i

k

2

�1

0 a

i

0

a

i

1

� � � a

i

k

2

�3

a

i

k

2

�2

.

.

.

0 0 0 � � � a

i

0

a

i

1

1

C

C

C

C

C

C

C

A

; (5.1)

which is analogous to the matrix P

k

in the previous chapter. Several of the proofs that

follow are also analogous to those in the previous chapter because each of the thresholds

is not qualitatively di�erent from the single upward threshold in Section 4.2.
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τ 3

2

1

τ2τ1

Figure 5.1: A three-phase MRP. 2 denotes a renewal point while 
 denotes a non-

renewal point
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5.1 Two �xed upward thresholds

In this case we take the end of phase i, (i=1,2) to be when the system �rst has more than

k

i

customers in it immediately after a service, or of course the end of the busy period.

So we can write

�

1

(n) = I

C

1

n

�

� (n) ^ inffm > njX

m

> k

1

g

�

+

�

I

C

2

n

+ I

C

3

n

�

n;

�

2

(n) =

�

I

C

1

n

+ I

C

2

n

� �

� (n) ^ inffm > njX

m

> k

2

g

�

+ I

C

3

n

n:

If �

1

> 0 and �

3

> 1, Lemma 3.1.2 shows that the queue is unstable. Thus we

shall consider the case with �

3

� 1. We must show that condition (�) is satis�ed. We

do this in the following lemma.

Lemma 5.0.1 For �

1

� 0, �

2

� 0 and �

3

� 1 condition (�) is satis�ed.

Proof: In this case condition (�) is satis�ed if E

h

�

�

1

(0)

1

�

�

2

(0)��

1

(0)

2

i

<1; where

�

i

= sup

z2[0;1]

�

i

(z).

E

h

�

�

1

(0)

1

�

�

2

(0)��

1

(0)

2

i

=

1

X

i=0

E

h

�

�

1

(0)

1

�

�

2

(0)��

1

(0)

2

I(X

�

1

(0)

= i)

i

=

1

X

i=0

E

h

�

�

1

(0)

1

I(X

�

1

(0)

= i)

i

E

h

�

�

2

(0)��

1

(0)

2

I(X

�

1

(0)

= i)

i

;

as the times �

1

(0) and �

2

(0)� �

1

(0) are independent given the value of X

�

1

(0)

. We know

from Lemma 4.2.1 that E

h

�

�

1

(0)

1

i

exists and is �nite and therefore E

h

�

�

1

(0)

1

I(X

�

1

(0)

= i)

i

also exists and is �nite. It can be shown in exactly the same fashion as in Lemma 4.2.1

that E

h

�

�

2

(0)��

1

(0)

2

I(X

�

1

(0)

= i)

i

exists and is �nite and so we have condition (�). 2

Theorem 5.1 For �

1

> 0, �

2

� 0 and �

3

< 1, z 2 [0; 1) the probability generating

function for the equilibrium number of customer in the system is

E

h

z

X

i

=

1

m

2

4

a

3

(z)(1� z) + fa

3

(z)� a

1

(z)gzR

(U)

k

1

(z) + fa

3

(z)� a

2

(z)gzR

(UU)

k

1

;k

2

(z)

a

3

(z)� z

3

5

;

where R

(U)

k

1

(z) is de�ned in Theorem 4.2 and

R

(UU)

k

1

;k

2

(z) = w

1

(I�P

k

2

)

�1

z

t

;

w

1

=

�

pfX

�

1

(0)

= 1g; pfX

�

1

(0)

= 2g; : : : ; pfX

�

1

(0)

= k

2

g

�

, P

k

i

is de�ned by (5.1) and

m =

2

4

1 + f�

1

� �

3

gR

(U)

k

1

(1) + f�

2

� �

3

gR

(UU)

k

1

;k

2

(1)

1� �

3

3

5

:
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Proof: Note that as condition (�) is satis�ed (Lemma 5.0.1), Theorem 3.9 gives

E

h

z

X

i

=

1

m

2

4

E

h

z

X

�

1

(0)

i

� z

1 � �

1

(z)

+

E

h

z

X

�

2

(0)

i

� E

h

z

X

�

1

(0)

i

1 � �

2

(z)

+

1� E

h

z

X

�

2

(0)

i

1� �

3

(z)

3

5

=

1

m

2

4

E

h

z

X

�

1

(0)

i

� z

1 � �

1

(z)

�

E

h

z

X

�

1

(0)

i

� z

1� �

2

(z)

+

E

h

z

X

�

2

(0)

i

� z

1� �

2

(z)

�

E

h

z

X

�

2

(0)

i

� z

1� �

3

(z)

+

1� z

1 � �

3

(z)

3

5

=

1

m

2

4

h

�

1

(z)� �

2

(z)

i h

E

h

z

X

�

1

(0)

i

� z

i

(1� �

1

(z))(1� �

2

(z))

+

h

�

2

(z)� �

3

(z)

i h

E

h

z

X

�

2

(0)

i

� z

i

(1� �

2

(z))(1� �

3

(z))

+

1� z

1 � �

3

(z)

3

5

=

1

m

2

4

z

n

a

2

(z)� a

1

(z)

o h

E

h

z

X

�

1

(0)

i

� z

i

(a

1

(z)� z)(a

2

(z)� z)

+

z

n

a

3

(z)� a

2

(z)

oh

E

h

z

X

�

2

(0)

i

� z

i

(a

2

(z)� z)(a

3

(z)� z)

+

a

3

(z)(1� z)

a

3

(z)� z

3

5

: (5.2)

The following lemma gives the important values of E

h

z

X

�

1

(0)

i

� z and E

h

z

X

�

2

(0)

i

� z.

Lemma 5.1.1 For �

1

> 0, z 2 [0; 1], X

0

= 0 and the thresholds 1 � k

1

< k

2

we get

E

h

z

X

�

1

(0)

i

� z = (a

1

(z)� z)R

(U)

k

1

(z);

E

h

z

X

�

2

(0)

i

� z = (a

1

(z)� z)R

(U)

k

1

(z)� (a

2

(z)� z)R

(UU)

k

1

;k

2

(z);

where R

(U)

k

1

(z) is de�ned in Theorem 4.2,

R

(UU)

k

1

;k

2

(z) = w

1

(I�P

k

2

)

�1

z

t

and w

1

=

�

pfX

�

1

(0)

= 1g; pfX

�

1

(0)

= 2g; : : : ; pfX

�

1

(0)

= k

2

g

�

and P

k

i

is de�ned by (5.1).

Proof: The derivation of E

h

z

X

�

1

(0)

i

remains unchanged from Theorem 4.3 in Section 4.2

except for the slightly altered notation. Hence

E

h

z

X

�

1

(0)

i

� z = (a

1

(z)� z)R

(U)

k

1

(z);

where R

(U)

k

1

(z) =

1

z

e

1

(I �P

k

1

)

�1

z

t

and P

k

1

is the k

1

x k

1

sub-stochastic matrix de�ned

in (5.1). However E

h

z

X

�

2

(0)

i

must be dealt with slightly di�erently.

There are three possible outcomes for X

�

1

(0)

.
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(i) X

�

1

(0)

= 0 which implies X

�

2

(0)

= X

�

1

(0)

= 0.

(ii) X

�

1

(0)

> k

2

which implies X

�

2

(0)

= X

�

1

(0)

.

(iii) X

�

1

(0)

= k

1

+ 1; : : : ; k

2

.

Thus we arrive at the following result.

E

h

z

X

�

2

(0)

i

� z = E

h

z

X

�

1

(0)

i

� z

+

k

2

X

i=k

1

+1

pfX

�

1

(0)

= ig

�

E

h

z

X

�

2

(0)

�

�

�X

�

1

(0)

= i

i

� E

h

z

X

�

1

(0)

�

�

�X

�

1

(0)

= i

i

�

= (a

1

(z)� z)R

(U)

k

1

(z) +

k

2

X

i=k

1

+1

pfX

�

1

(0)

= ig

�

E

h

z

X

�

2

(0)

�

�

�X

�

1

(0)

= i

i

� z

i

�

:

Now for i = k

1

+ 1; : : : ; k

2

we can write E

h

z

X

�

2

(0)

�

�

�X

�

1

(0)

= i

i

as

1

X

m=�

1

(0)+1

k

X

j=1

E

h

z

X

m

I(�

2

(0) = m)

�

�

�X

m�1

= j; �

2

(0) > m� 1;X

�

1

(0)

= i

i

x pfX

m�1

= j; �

2

(0) > m� 1jX

�

1

(0)

= ig:

The value of E

h

z

X

m

I(�

2

(0) = m)

�

�

�X

m�1

= j; �

2

(0) > m� 1;X

�

1

(0)

= i

i

is given by

g

2

j

(z) = a

2

(z)z

j�1

�

k

2

X

l=(j�1)_1

a

2

l�j+1

z

l

:

Thus we arrive at the equation

E

h

z

X

�

2

(0)

�

�

�X

�

1

(0)

= i

i

=

1

X

m=�

1

(0)

0

@

k

X

j=1

pfX

m

= j; �

2

(0) > mjX

�

1

(0)

= igg

2

j

(z)

1

A

:

Now pfX

m

= j; �

2

(0) > mjX

�

1

(0)

= ig is the probability of being in state j and still in

phase 2 after the mth service, given that m � �

1

(0) and X

�

1

(0)

= i for i = k

1

+1; : : : ; k

2

.

In order to �nd

1

X

m=�

1

(0)

pfX

m

= j; �

2

(0) > mjX

�

1

(0)

= ig we de�ne v

m

i

as the row vector

v

m

i

=

( pfX

m

= 1; �

2

(0) > mjX

�

1

(0)

= ig;

pfX

m

= 2; �

2

(0) > mjX

�

1

(0)

= ig

; : : : ; pfX

m

= k

2

; �

2

(0) > mjX

�

1

(0)

= ig );

(5.3)

which is the probability vector for phase 2 after the mth transition given that X

�

1

(0)

= i

and m � �

1

(0). The initial probability vector v

�

1

(0)

i

= e

i

. If P

k

2

is the sub-stochastic

probability transfer matrix de�ned by (5.1) then

v

�

1

(0)+m

i

= e

i

P

m

k

2

;

so that

1

X

m=�

1

(0)

pfX

m

= j; �

2

(0) > m� 1jX

�

1

(0)

= ig = e

i

1

X

m=0

P

m

k

2

= e

i

(I�P

k

2

)

�1

:
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Taking g(z) = (g

1

(z); g

2

(z); � � � ; g

k

2

(z)), we can see that

E

h

z

X

�

2

(0)

�

�

�X

�

1

(0)

= i

i

= e

i

(I�P

k

2

)

�1

g

2

(z)

t

: (5.4)

We can simplify g

2

(z)

t

as in the proof of Theorem 4.3 to get

g

2

(z)

t

=

a

2

(z)

z

z

t

�P

k

2

z

t

:

Hence we can write E

h

z

X

�

2

(0)

�

�

�X

�

1

(0)

= i

i

as

E

h

z

X

�

2

(0)

�

�

�X

�

1

(0)

= i

i

= e

i

(I�P

k

2

)

�1

 

a

2

(z)

z

z

t

�P

k

2

z

t

!

;

which can be simpli�ed as in Theorem 4.3 to get

E

h

z

X

�

2

(0)

�

�

�X

�

1

(0)

= i

i

=

1

z

(a

2

(z)� z) e

i

(I�P

k

2

)

�1

z

t

+ z

i

:

(Note that we get z

i

not just z as the extra term.) Now using this result gives us

E

h

z

X

�

2

(0)

i

= (a

1

(z)� z)R

(U)

k

1

(z)

+

k

2

X

i=k

1

+1

pfX

�

1

(0)

= ig

�

1

z

(a

2

(z)� z)e

i

(I�P

k

2

)

�1

z

t

+ z

i

� z

i

�

= (a

1

(z)� z)R

(U)

k

1

(z) +

1

z

(a

2

(z)� z)

k

2

X

i=1

pfX

�

1

(0)

= ige

i

(I�P

k

2

)

�1

z

t

;

because for i = 1; : : : ; k

1

we get pfX

�

1

(0)

= ig = 0. From this we get

E

h

z

X

�

2

(0)

i

= (a

1

(z)� z)R

(U)

k

1

(z) + (a

2

(z)� z)

1

z

w

1

(I�P

k

2

)

�1

z

t

;

where w

1

=

�

pfX

�

1

(0)

= 1g; pfX

�

1

(0)

= 2g; : : : ; pfX

�

1

(0)

= k

2

g

�

. Thus we get the result

E

h

z

X

�

2

(0)

i

� z = (a

1

(z)� z)R

(U)

k

1

(z) + (a

2

(z)� z)R

(UU)

k

1

;k

2

(z);

which proves Lemma 5.1.1. 2

Now substituting the results of Lemma 5.1.1 into (5.2) we get

E

h

z

X

i

=

1

m

2

4

h

a

2

(z)� a

1

(z)

i

z (a

1

(z)� z)R

(U)

k

1

(z)

(a

1

(z)� z)(a

2

(z)� z)

+

h

a

3

(z)� a

2

(z)

i

z (a

1

(z)� z)R

(U)

k

1

(z)

(a

2

(z)� z)(a

3

(z)� z)

+

h

a

3

(z)� a

2

(z)

i

z (a

2

(z)� z)R

(UU)

k

1

;k

2

(z)

(a

2

(z)� z)(a

3

(z)� z)

+

a

3

(z)(1� z)

a

3

(z)� z

3

5

=

1

m

2

4

h

(a

2

(z)� a

1

(z))(a

3

(z)� z) + (a

3

(z)� a

2

(z))(a

1

(z)� z)

i

z R

(U)

k

1

(z)

(a

2

(z)� z)(a

3

(z)� z)
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+

h

a

3

(z)� a

2

(z)

i

z R

(UU)

k

1

;k

2

(z)

a

3

(z)� z

+

a

3

(z)(1� z)

a

3

(z)� z

3

5

=

1

m

2

4

h

a

2

(z)a

3

(z) + za

1

(z)� a

2

(z)a

1

(z)� za

3

(z)

i

z R

(U)

k

1

(z)

(a

2

(z)� z)(a

3

(z)� z)

+

h

a

3

(z)� a

2

(z)

i

z R

(UU)

k

1

;k

2

(z)

a

3

(z)� z

+

a

3

(z)(1� z)

a

3

(z)� z

3

5

=

1

m

2

4

h

(a

3

(z)� a

1

(z))(a

2

(z)� z))

i

z R

(U)

k

1

(z)

(a

2

(z)� z)(a

3

(z)� z)

+

h

a

3

(z)� a

2

(z)

i

z R

(UU)

k

1

;k

2

(z)

a

3

(z)� z

+

a

3

(z)(1� z)

a

3

(z)� z

3

5

=

1

m

2

4

h

a

3

(z)� a

1

(z)

i

z R

(U)

k

1

(z)

a

3

(z)� z

+

h

a

3

(z)� a

2

(z)

i

z R

(UU)

k

1

;k

2

(z)

a

3

(z)� z

+

a

3

(z)(1� z)

a

3

(z)� z

3

5

;

which proves Theorem 5.1. 2

Remark: In order to make use of this result we need to calculate w

1

in the above

solution. Now pfX

�

1

(0)

= ig = 0 for i = 1; : : : ; k

1

and for i = k

1

+1; : : : ; k

2

the following

holds

pfX

�

1

(0)

= ig =

d

i

dz

i

E

h

z

X

�

1

(0)

i

z=0

:

Now we know that

E

h

z

X

�

1

(0)

i

= (a

1

(z)� z)R

(U)

k

1

(z) + z:

When we di�erentiate this i times we get

pfX

�

1

(0)

= ig =

1

i!

i

X

m=0

i!

m!(i�m)!

d

m

dz

m

�

R

(U)

k

1

(z)

�

z=0

d

i�m

dz

i�m

�

a

1

(z)� z

�

z=0

+ �

i1

=

i

X

m=0

1

m!(i�m)!

d

m

dz

m

�

R

(U)

k

1

(z)

�

z=0

�

a

1

i�m

(i�m)!� �

i�m;1

�

+ �

i1

:

Now R

(U)

k

1

(z) =

1

z

e

1

(I�P

k

1

)

�1

z

t

so we get

d

m

dz

m

�

R

(U)

k

1

(z)

�

z=0

=

(

e

1

(I�P

k

1

)

�1

e

m+1

m!; m = 0; : : : ; k

1

� 1;

0; otherwise.

(5.5)

Thus as i = k

1

+ 1; : : : ; k

2

we have i > k

1

� 1 and hence i � m > 1 whenever (5.5) is

positive and also i > 1 (as we assume k

1

2 IN) and hence

pfX

�

1

(0)

= ig =

k

1

�1

X

m=0

1

m!

d

m

dz

m

e

1

(I�P

k

1

)

�1

e

m+1

m!

�

a

1

i�m

� �

i�m;1

�

+ �

i1
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=

k

1

�1

X

m=0

e

1

(I�P

k

1

)

�1

e

m+1

a

1

i�m

=

k

1

X

m=1

e

1

(I�P

k

1

)

�1

e

m

a

1

i�m+1

:

This can then be used to perform the necessary calculations as we have already inverted

(I�P

k

1

). This could also be calculated directly using probabilistic arguments but as we

need R

(U)

k

1

(z) in the solution it makes sense to use this.

The obvious extension to this chapters result, although not proved here, is

Proposition 5.1 For n thresholds at k

1

< k

2

< � � � < k

n

we �nd

E

h

z

X

i

=

1

m

2

4

a

n+1

(z)(1� z) +

P

n

i=1

[a

n+1

(z)� a

i

(z)]z R

(iU)

k

1

;::;k

i

(z)

a

n+1

(z)� z

3

5

;

where

R

(iU)

k

1

;::;k

i

(z) =

1

z

w

i�1

(I�P

k

i

)

�1

z

t

and w

i

=

�

pfX

�

i

(0)

= 1g; pfX

�

i

(0)

= 2g; : : : ; pfX

�

i

(0)

= k

i+1

g

�

and w

0

= e

1

.
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5.2 Downward thresholds

One type of threshold has not been mentioned in previous examples, the �xed downward

threshold. This threshold occurs when the number of customers in the system becomes

less than or equal to say l 2 IN .

We did not consider this type of threshold in Chapter 4 for the simple reason

that it makes little sense to consider this type of threshold in isolation. The busy period

begins with the number of customers in the system being zero and hence the threshold

would automatically be passed before the process even began. Thus processes with two

phases and hence only one threshold have little use for the �xed downward threshold.

We shall consider this type of threshold in the following context. The transition

from phase 1 to phase 2 will have a threshold of the �xed upward type at k. The

transition from phase 2 to phase 3 will occur at the �rst time subsequent to the process

entering phase 2 at which there are no more than l customers in the system. The system

then continues in phase three until the end of the busy period.

We shall limit our investigation to the case when l � k. This is because if

l > k the process would be equivalent to one with l = k and so the case with l > k is

unnecessary. Further it makes little sense to consider the case with l = 0 as this will

simply be the two-phase case because the third phase always takes zero time.

From the description above we are able to see that

�

1

(n) = I

C

1

n

�

� (n) ^ inffm > n jX

m

> kg

�

+

�

I

C

2

n

+ I

C

3

n

�

n;

�

2

(n) = I

C

1

n

�

� (n) ^ inffm > n jX

m

� l; I

C

2

m�1

= 1g

�

+I

C

2

n

�

� (n) ^ inffm > n jX

m

� lg

�

+ I

C

3

n

n:

This type of process has an interesting feature. The GMRP that corresponds to

the phase structure of the process is shown in Figure 5.2. In this GMRP state 3 is also

a renewal state. This is because the embedded process obtained from considering the

queueing process at departures is skip-free to the left. This means that if we consider

the embedded process to be a random walk, the walk never skips a state while moving

to the left. This is the result of only one customer being served at a time. If the process

begins above state l it must pass through state l before entering any lower state and

hence in this case X

�

2

(0)

= l. State 3 is then a renewal state because the time spent in

this state will no longer be in any way dependent upon the time spent in states 1 or 2.

The alternative is that the system never passes the �rst threshold. If this is the

case then it cannot pass the second threshold either and hence X

�

1

(0)

= 0 and X

�

2

(0)

= 0.

When we convert this GMRP to a three-phase MRP by considering transitions

from state 1 to state 1 to pass through states 2 and 3 spending zero time in each we

loose this renewal structure. However, it is still su�cient to enable some simpli�cation

of the results. The resulting three-phase MRP is shown in Figure 5.3

One further thing to note is that in this process neither �

2

nor �

3

can be greater

than one if the queue is to be stable. Thus this is not perhaps a queue of great interest.

What is more interesting is the process which may make repeated transitions between
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nX =0

2

n nX >K X < L

1 3
nX =0 

Figure 5.2: The MRP for one upwards and one downwards threshold.

phases as it passes above and below the thresholds. We shall consider this type of process

in Chapter 7. Thus we shall consider a few results here which will contribute to that

later problem but we shall not bother to obtain the probability generating function for

the equilibrium behaviour of the system.

It is obvious that X

�

1

(0)

= 0 implies that X

�

2

(0)

= 0. Also when X

�

1

(0)

6= 0 we

can see from the skip-free to the left nature of the embedded process that X

�

2

(0)

= l.

Hence we get

E

h

z

X

�

2

(0)

i

= pfX

�

1

(0)

= 0g+ z

l

�

1� pfX

�

1

(0)

= 0g

�

:

We can calculate pfX

�

1

(0)

= 0g from the following

pfX

�

1

(0)

= 0g = E

h

z

X

�

1

(0)

i

z=0

= R

(U)

k

(0)

= a

0

e

1

(I�P

k

)

�1

e

1

t

:

From this we could obtain the solution but it would be of little use at this stage and so

we shall adjourn this discussion until Chapter 7.
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nX =0
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1 3
nX =0 

Figure 5.3: The three-phase MRP for one upwards and one downwards threshold. 2

denotes a renewal point while 
 denotes a non-renewal point
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Chapter 6

A breakdown/repair model

In this chapter we consider a four-phase M/G/1 queue. This is intended to model a

simple breakdown/repair queue. We have a single-server queueing process with generally-

distributed service times, with probability distribution functionA(�), and Poisson arrivals

with rate �. The process considered is one in which a breakdown occurs after a random

number of customers has been served in the busy period. A major assumption we make

here is that the server can only breakdown once per busy period. This may be a realistic

approximation if the probability of a breakdown is small. If not, a more complex model

must be considered.

We assume that during each idle period the server is checked and any necessary

repairs are made. Thus at the beginning of the busy period we can ignore how many cus-

tomers have previously been served, making the beginning of the busy period a renewal

point. This checkup takes a random time with distribution S(�). Checking the server can

in many cases be considered to be a set task or sequence of tasks, such as checking certain

components and replacing them if worn. Each task in this sequence takes either zero or

a deterministic amount of time and so we may consider the checkup-time distribution to

be a probabilistic mixture of deterministic distributions. That is S(t) =

X

i

�

i

�(x

i

� t).

A breakdown occurs during a service with some probability which is dependent

on how many customers have been served in the current busy period. When the server

breaks down, the service currently in progress is interrupted and a repair is begun. The

repair time has probability distribution function R(�). When the repair is completed the

interrupted service may begin again in two ways. It may resume where it left o� or it may

have to repeat the work done before the interruption. In these cases the Laplace-Stieltjes

transform of the total time spent during the service and repair is

(i) resume: B

�

(s) = A

�

(s)R

�

(s);

(ii) repeat: B

�

(s) = A

�

(s)R

�

(s)C

�

(s);

where C(�) is the probability distribution function for the amount of work done before a

breakdown. The function C(�) will depend on the service time and where in this service

the breakdown occurs. For our purposes here it is easier and more natural to use the

resume model.

Once the breakdown and repair have occurred the process continues normally

until the end of the busy period.
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We use, for this process, a four-phase model. The �rst phase is only a single

service long. A customer arriving at the empty queue must �rst wait until the server's

check is completed before it can begin service. Thus we add to this customer's service

time the remaining checkup-time. The Laplace-Stieltjes transform of this remaining time

is

^

S

�

(s) =

X

i

��

i

e

��x

i

s� �

:

From this we get A

1�

(s) = A

�

(s)

^

S

�

(s).

The second phase is the normal service period with a random threshold. During

this phase customers are served normally. Thus A

2�

(s) = A

�

(s) where A(�) is the service-

time distribution. This phase ends at the breakdown. Phases must obey the rules of

Chapter 3 but we have said that breakdowns may occur during services in this model.

In this case phase rules (i) and (ii) appear to be broken. We can get around this by

saying that when a breakdown occurs during a particular service, the decision that the

breakdown occurs during that service is made before the service begins. Thus the phase

change occurs before the service in which the breakdown occurs. With this model in

mind we take the probability of the phase change occurring between the nth service and

the (n+ 1)th service of a busy period to be h(n).

The third phase is a repair phase, consisting of a single service in which the

customer waits for the repair time and then has its normal service. Thus A

3�

(s) = B

�

(s).

As we are assuming the service resumption model of breakdowns it does not matter at

what point the breakdown occurs during the service time.

The �nal phase is again a normal phase which ends when the system is empty.

Hence A

4�

(s) = A

2�

(s) = A

�

(s). We de�ne the tra�c intensity during this phase and

phase 2 to be �

a

.

We shall consider only the case when �

a

< 1. It makes sense to do this because

we are considering an M/G/1 queue that may break down. For this to be stable the

corresponding M/G/1 queue without breakdowns must also be stable.

One �nal assumption we make to simplify the problem is to assume that a

breakdown will not occur during the �rst service of a busy period. (i.e. h(0) = 0) This is

not an unreasonable assumption as we have assumed the server gets checked during the

idle period. This is to avoid the possibility that the �rst service has extra time added to

it from the left over checking and repair. Removing this assumption makes the problem

harder but not insoluble.

If �

a

< 1 we might still have a case when �

1

> 1 or �

3

> 1 in which case we must

consider condition (�). However as phases 1 and 3 last only one service each, condition

(�) is easily satis�ed. The equilibrium distribution of customers in the system is then

given by the following theorem.

Theorem 6.1 For �

a

< 1 and z 2 [0; 1)

E

h

z

X

i

=

1

m

2

4

a

2

(z)� za

1

(z) +

�

a

2

(z)� a

3

(z)

��

z � a

2

0

R

(H)

h

(0)

�

a

2

(z)� z
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+R

(H)

h

(z)

�

a

2

(z)� a

3

(z)

�

#

;

where R

(H)

h

(z) is de�ned to be

P

1

n=1

h(n)R

(T

0

)

n

(z) where R

(T

0

)

n

(z) is de�ned by the recursive

relationship

R

(T

0

)

n+1

(z) =

1

z

n

R

(T

0

)

n

(z)a(z)� a

0

R

(T

0

)

n

(0)

o

+ 1

and R

(T

0

)

1

(z) =

a

1

(z)�z

a

2

(z)�z

. Also the mean length of the busy period is given by

m =

1 + (�

1

� �

2

) + (�

3

� �

2

)

h

1 � a

2

0

R

(H)

h

(0)

i

1� �

2

:
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Proof: From Theorem 3.9 we get the the equilibrium probability generating function to

be

E

h

z

X

i

=

1

m

2

4

E

h

z

X

�

1

(0)

i

� z

1� �

1

(z)

+

E

h

z

X

�

2

(0)

i

�E

h

z

X

�

1

(0)

i

1 � �

2

(z)

+

E

h

z

X

�

3

(0)

i

�E

h

z

X

�

2

(0)

i

1 � �

3

(z)

+

1 �E

h

z

X

�

3

(0)

i

1� �

4

(z)

3

5

:

Now because the �rst phase lasts for only one service

E

h

z

X

�

1

(0)

i

= a

1

(z):

Thus we get

E

h

z

X

i

=

1

m

2

4

a

1

(z)� z

1� �

1

(z)

+

E

h

z

X

�

2

(0)

i

� a

1

(z)

1 � �

2

(z)

+

E

h

z

X

�

3

(0)

i

�E

h

z

X

�

2

(0)

i

1 � �

3

(z)

+

1 �E

h

z

X

�

3

(0)

i

1� �

4

(z)

3

5

:

Using �

2

(z) = �

4

(z) and rearranging we get

E

h

z

X

i

=

1

m

2

4

a

1

(z) +

E

h

z

X

�

2

(0)

i

� E

h

z

X

�

3

(0)

i

1� �

2

(z)

+

E

h

z

X

�

3

(0)

i

� E

h

z

X

�

2

(0)

i

1 � �

3

(z)

+

1� a

1

(z)

1� �

2

(z)

3

5

;

which, as in similar arguments, gives

E

h

z

X

i

=

1

m

2

6

6

4

�

E

h

z

X

�

3

(0)

i

� E

h

z

X

�

2

(0)

i

�

z

�

a

2

(z)� a

3

(z)

�

(a

2

(z)� z)(a

3

(z)� z)

+

a

2

(z)� za

1

(z)

a

2

(z)� z

3

7

7

5

: (6.1)

Now, since X

�

2

(0)

= 0 implies that X

�

3

(0)

= 0, we get

E

h

z

X

�

3

(0)

i

� E

h

z

X

�

2

(0)

i

= E

h

z

X

�

3

(0)

I(X

�

2

(0)

6= 0)

i

�E

h

z

X

�

2

(0)

I(X

�

2

(0)

6= 0)

i

: (6.2)

Furthermore we spend exactly one service time in phase 3 and so �

3

(0) = �

2

(0)+1. This

means that when X

�

2

(0)

6= 0 we get X

�

3

(0)

= X

�

2

(0)

+A

3

�

2

(0)+1

� 1 so that

E

h

z

X

�

3

(0)

I(X

�

2

(0)

6= 0)

i

= E

�

z

X

�

2

(0)

+A

3

�

2

(0)+1

�1

I(X

�

2

(0)

6= 0)

�

:

Now A

3

�

2

(0)+1

is independent of X

�

2

(0)

so that

E

h

z

X

�

3

(0)

I(X

�

1

(0)

6= 0)

i

= E

h

z

X

�

2

(0)

I(X

�

1

(0)

6= 0)

i

E

�

z

A

2

�

2

(0)+1

�

z

�1

;
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and E

�

z

A

3

�

2

(0)+1

�

z

�1

= a

3

(z)=z so we get

E

h

z

X

�

3

(0)

I(X

�

2

(0)

6= 0)

i

=

a

3

(z)

z

E

h

z

X

�

2

(0)

I(X

�

2

(0)

6= 0)

i

:

Using this result in (6.2) we get

E

h

z

X

�

3

(0)

i

� E

h

z

X

�

2

(0)

i

=

1

z

�

a

3

(z)� z

�

E

h

z

X

�

2

(0)

I(X

�

2

(0)

6= 0)

i

: (6.3)

By the same arguments used in Section 4.5

E

h

z

X

�

2

(0)

i

� z = (a

2

(z)� z)

1

X

n=1

h(n)R

(T

0

)

n

(z);

where by the same recurrence arguments of Theorem 4.5 we can show that

R

(T

0

)

n+1

(z) =

1

z

n

R

(T

0

)

n

(z)a(z)� a

0

R

(T

0

)

n

(0)

o

+ 1;

and R

(T

0

)

1

(z) =

a

1

(z)�z

a

2

(z)�z

. The di�erent initial value R

(T

0

)

1

(z) arises from the di�erent

behaviour of the server during the �rst service of a busy period. We shall write R

(H)

h

(z) =

P

1

n=1

h(n)R

(T

0

)

n

(z) and so

E

h

z

X

�

2

(0)

i

= (a

2

(z)� z)R

(H)

h

(z) + z:

From the fact that pfX

�

2

(0)

= 0g = E

h

z

X

�

2

(0)

i

z=0

we get

pfX

�

2

(0)

= 0g = a

2

0

R

(H)

h

(0);

and so

E

h

z

X

�

2

(0)

I(X

�

2

(0)

6= 0)

i

= (a

2

(z)� z)R

(H)

h

(z)� a

2

0

R

(H)

h

(0) + z:

Substituting this into (6.3) and thence into (6.1) we get
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E

h

z

X

i

=

1

m

2

6

6

4

1

z

�

a

3

(z)� z

�

�

(a

2

(z)� z)R

(H)

h

(z)� a

2

0

R

(H)

h

(0) + z

�

z

�

a

2

(z)� a

3

(z)

�

(a

2

(z)� z)(a

3

(z)� z)

+

a

2

(z)� za

1

(z)

a

2

(z)� z

#

=

1

m

2

6

6

4

�

(a

2

(z)� z)R

(H)

h

(z)� a

2

0

R

(H)

h

(0) + z

�

�

a

2

(z)� a

3

(z)

�

+ a

2

(z)� za

1

(z)

a

2

(z)� z

3

7

7

5

=

1

m

2

4

a

2

(z)� za

1

(z) +

�

a

2

(z)� a

3

(z)

� �

z � a

2

0

R

(H)

h

(0)

�

a

2

(z)� z

+R

(H)

h

(z)

�

a

2

(z)� a

3

(z)

�

#

:

If we now take the limit as z " 1 then we shall get an expression for m. This is

m =

1 + (�

1

� �

2

) + (�

3

� �

2

)

h

1 � a

2

0

R

(H)

h

(0)

i

1 � �

2

;

as desired. 2

Remarks:

(i)As in Theorem 4.6 we could obtain a closed form for R

(T

0

)

n

(z) and thence write R

(H)

h

(z)

explicitly. For brevity we have omitted such a derivation in this case.

(ii) It is noteworthy that if we take the repair times to be zero with probability one then

a

3

(z) = a

2

(z) and so the solution is

E

h

z

X

i

=

1

m

"

a

2

(z)� za

1

(z)

a

2

(z)� z

#

;

which is the expected result for a queue with a di�erent service-time distribution for a

server arriving at an empty server. (See Section 4.2.1.)
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Chapter 7

A two-threshold, in�nite-phase

example.

In Section 5.2 we described the downwards threshold. Used in conjunction with an

upwards threshold this can produce an interesting example. We noted in Section 5.2

that the three-phase process with an upwards threshold at k and a downwards threshold

at l is of limited interest. The process we are interested in is the one in which the

server can switch between service-time distributions each time a threshold is crossed

and not just the �rst time the thresholds are crossed each busy period. This presents

a problem, the thresholds can be crossed an in�nite number of times during one busy

period, admittedly with probability zero. Thus the process we are interested in has an

in�nite number of phases. Another way of viewing this is given below.

The example can be considered as a process with two regimes. In regime one the

service-time distribution is A(�) while in regime two the service-time distribution is B(�).

If the process starts at time zero with no customers in the system and in regime one then

we can describe the transitions between regimes in the following way. The �rst time the

system has more than K customers in it at a service completion epoch it enters regime

two. When next the queue has no more than L customers in it at a service completion

epoch it returns to regime one. It makes sense to take only values of L;K 2 IN such

that L � K. If L = 0 then we simply have the system of Chapter 4 with a �xed upwards

threshold. If L > K transitions to the second regime (which spend a positive time in

that regime) would only occur when there were more than L customers in the system at

the transition point and so we may as well increase K so that it equals L.

We can model this process by a three state GMRP as in Figure 7.1. This is

a natural description of the process involved. This, however, would not �t the general

theory we have developed. Thus we consider a di�erent process in which each subsequent

transition past a threshold is represented by a transition into a new phase. This procedure

results in the multi-phase MRP of Figure 7.2. We obtain this multi-phase process by

using the procedure of Section 3.6 on the GMRP of Figure 7.1.

Thus we consider an in�nite-phase process. Clearly phases 1; 3; 5; : : : will all

correspond to the system being in regime 1 and hence A

1

(�); A

3

(�); A

5

(�); : : : = A(�)

while phases 2; 4; 6; : : : correspond to regime two and so A

2

(�); A

4

(�); A

6

(�); : : : = B(�).

100



X >K
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X =0

X >K
n

nX =0

2

31

X <Ln

Figure 7.1: GMRP type II. 2 denotes a renewal point while 
 denotes a non-renewal

point

Thus we can write, by extending the notation,

A

1

n

; A

3

n

; A

5

n

; : : : = A

n

; A

2

n

; A

4

n

; A

6

n

; : : : = B

n

;

a

1

(z); a

3

(z); a

5

(z); : : : = a(z); a

2

(z); a

4

(z); a

6

(z); : : : = b(z);

�

1

(z); �

3

(z); �

5

(z); : : : = �

a

(z); �

2

(z); �

4

(z); �

6

(z); : : : = �

b

(z);

a

1

i

; a

3

i

; a

5

i

; : : : = a

i

; a

2

i

; a

4

i

; a

6

i

; : : : = b

i

;

�

1

; �

3

; �

5

; : : : = �

a

; �

2

; �

4

; �

6

; : : : = �

b

:

(7.1)

In this example we have not demonstrated that condition (�) is satis�ed. When

�

a

� 1 it is satis�ed but when �

a

> 1 there are problems. It is easy to prove the regularity

of the stopping times �

i

(0) (when �

b

� 1) using the same type of arguments as used in

Section 4.2 but in this case it is hard to show that � (0) is regular, due to the in�nite

number of phases. Thus we present the results we get for this problem in the proposition

below. In Section 7.3 of this chapter we provide a number of numerical examples to

support the result. While these do not prove the proposition it is to be hoped that they

remove any immediate doubts about its veracity.

7.1 Motivation

There are several reasons for studying such systems. The case where K = L appears in

the literature. For instance, Morrison (1990) investigates a system in which the service

times are negative exponentially distributed and instead of changing this between the

two regimes he allows two servers to operate in the second regime. Because of the

exponential service times, two servers are equivalent to one server with twice the service

rate (for the purpose of queue length calculation). Another example is Gong et al (1992).

In this case they consider the system with the arrival rate dependent on the number of
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Figure 7.2: Multi-phase MRP with an in�nite number of phases. 2 denotes a renewal

point while 
 denotes a non-renewal point

customers in the queue. The example in this chapter, with K = L is a particular case

of this. A major reason why such models are considered is to allow customer balking.

This is when a customer can refuse to enter a queue if it believes the queue is too long.

A way of modelling this is by giving the customers a probability of balking when the

queue has more than a set number of customers in it. Another reason for considering

such a problem is if more than one type of customer arrives at a system. If these types

have di�erent priorities we may wish to block some types when the queue has more than

a certain number of customers in it.

The unusual feature, in terms of queueing theory, of this chapter's example is

that L can be less than K. What is particularly unusual about this is the fact that the

embedded process is no longer a Markov chain as in most conventional examples. We

might want L < K because in the case with K = L it is possible that the system will

spend much of its time switching between the two regimes, for example if �

a

> 1 and

�

b

<< 1. If there is an overhead associated with swapping between regimes it is desirable
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for frequent swapping to be avoided. An alternative to changing the tra�c intensities

is to have L < K which will reduce the number of times that swaps between regimes

occur.

This type of policy occurs in inventory problems, for example Morse (1967). We

consider the queue to be a store of some resource and the service times to be the times

between orders for the resource. The store does not want to run out of the resource, but

neither does it want to store more than is necessary. A possible policy is to start ordering

when the store falls below a certain level L, and stop ordering when above another level

K. This is the type of process we consider although the exponential arrival times are

not usual for ordered resources.
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7.2 Results

Proposition 7.1 For the process above the following hold

(i) When �

a

> 0 and �

b

> 1 the process is transient.

(ii) When �

a

> 0 and �

b

= 1 the process is null recurrent.

(iii) When �

a

> 0 and �

b

< 1 the probability generating function for the equilibrium

number of customers in the system is given by

E

h

z

X

i

=

1

m

8

<

:

b(z)(1� z) + fb(z)� a(z)gzR

(UD)

KL

(z)

b(z)� z

9

=

;

;

for z 2 [0; 1), where

R

(UD)

KL

(z) =

1

z

" 

e

1

+

 

h

1

1 � h

!

e

L

!

(I�P

k

)

�1

z

t

#

;

h = 1� a

0

e

L

(I�P

k

)

�1

e

1

t

;

h

1

= 1� a

0

e

1

(I�P

k

)

�1

e

1

t

and m, the mean number of customers served in one busy period, is given by

m =

2

4

1 + f�

a

� �

b

gR

(UD)

KL

(1)

1 � �

b

3

5

:

Proof: (i) When �

a

> 0 there is a positive probability that the process will get to the

second regime at some stage in the busy period. While in regime two the tra�c intensity

is �

b

> 1 and so the probability that the number of customers in the system goes below

L again is less than one (from the behaviour of the standard M/G/1 queue). Thus in

the long term the process will be unstable.

(ii) This follows from the value of m as �

b

" 1.

(iii) From Theorem 3.9 we get the solution to be

E

h

z

X

i

=

1

m

2

4

E

h

z

X

�

1

(0)

i

� z

1� �

1

(z)

+

E

h

z

X

�

2

(0)

i

� E

h

z

X

�

1

(0)

i

1� �

2

(z)

+ � � �

3

5

:

We take h

n

= pfX

�

n

(0)

> 0g, the probability that phase n+ 1 is reached before the end

of the busy period. The process is skip-free to the left so that the transitions below L

will always be to L and so

h

2n

= pfX

�

2n

(0)

= Lg;

h

2n+1

= pfX

�

2n+1

(0)

> Kg:

It is easy to see that the thresholds must alternate. Thus a jump above K is always

followed by a jump down to L at some time before the end of the busy period so that

h

2n

= h

2n�1

:
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Also from the theorem of total probability we can write

h

2n+1

= pfX

�

2n+1

(0)

> KjX

�

2n

(0)

= LgpfX

�

2n

(0)

= Lg

+ pfX

�

2n+1

(0)

> KjX

�

2n

(0)

= 0g

| {z }

k

0

pfX

�

2n

(0)

= 0g

= pfX

�

2n+1

(0)

> KjX

�

2n

(0)

= Lgh

2n

= pfX

�

2n=1

(0)

> KjX

�

2n

(0)

= Lgh

2n�1

:

Thus if we set h = pfX

�

2n+1

(0)

> KjX

�

2n

(0)

= Lg then

h

2n+1

= h

1

h

n

;

h

2n+2

= h

2n+1

= h

1

h

n

:

For n > 1 we get

E

h

z

X

�

n

(0)

i

= E

h

z

X

�

n

(0)

I(X

�

n�1

(0)

= 0)

i

+ E

h

z

X

�

n

(0)

I(X

�

n�1

(0)

6= 0)

i

= pfX

�

n�1

(0)

= 0g++pfX

�

n�1

(0)

6= 0gE

h

z

X

�

n

(0)

�

�

�X

�

n�1

(0)

6= 0

i

= (1� h

n�1

) + h

n�1

E

h

z

X

�

n

(0)

�

�

�X

�

n�1

(0)

> 0

i

: (7.2)

From (7.2) this gives

E

h

z

X

�

2n

(0)

i

= (1� h

2n�1

) + h

2n�1

z

L

; n > 0;

E

h

z

X

�

2n+1

(0)

i

=

8

<

:

E

h

z

X

�

1

(0)

i

; n = 0;

(1 � h

2n

) + h

2n

E

h

z

X

�

2n+1

(0)

�

�

�X

�

2n

(0)

= L

i

; n > 0:

:

As in Lemma 4.3

E

h

z

X

�

1

(0)

i

� z =

h

a(z)� z

i

R

(U)

k

(z):

We can see that for n > 0

E

h

z

X

�

2n+1

(0)

�

�

�X

�

2n

(0)

= L

i

= r(z);

where r(z) is independent of n. Now this means that for n > 0

E

h

z

X

�

2n+1

(0)

i

�E

h

z

X

�

2n

(0)

i

= (1 � h

2n

) + h

2n

r(z)� (1� h

2n�1

)� h

2n�1

z

L

= h

2n

r(z) � h

2n�1

z

L

= h

1

h

n�1

(r(z)� z

L

);

E

h

z

X

�

2n+2

(0)

i

� E

h

z

X

�

2n+1

(0)

i

= (1 � h

2n+1

) + h

2n+1

z

L

� (1� h

2n

)� h

2n

r(z)

= �h

2n+1

+ h

2n+1

z

L

+ h

2n

� h

2n

r(z)

= h

1

h

n�1

n

�h+ hz

L

+ 1� r(z)

o

= h

1

h

n�1

(1� h) + h

1

h

n�1

n

hz

L

� r(z)

o

:
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We can now write the probability generating function for the number of customers in

the system as follows.

E

h

z

X

i

=

1

m

8

<

:

E

h

z

X

�

1

(0)

i

� z

1� �

1

(z)

+

E

h

z

X

�

2

(0)

i

�E

h

z

X

�

1

(0)

i

1 � �

2

(z)

9

=

;

+

1

m

1

X

n=1

8

<

:

E

h

z

X

�

2n+1

(0)

i

�E

h

z

X

�

2n

(0)

i

1 � �

1

(z)

9

=

;

+

1

m

1

X

n=1

8

<

:

E

h

z

X

�

2n+2

(0)

i

�E

h

z

X

�

2n+1

(0)

i

1 � �

2

(z)

9

=

;

=

1

m

8

<

:

E

h

z

X

�

1

(0)

i

� z

1� �

1

(z)

+

(1� h

1

) + h

1

z

L

� E

h

z

X

�

1

(0)

i

1� �

2

(z)

9

=

;

+

1

m

1

X

n=1

8

<

:

h

1

h

n�1

�

r(z)� z

L

�

1� �

1

(z)

9

=

;

+

1

m

1

X

n=1

8

<

:

h

1

h

n�1

(1� h) + h

1

h

n�1

n

hz

L

� r(z)

o

1� �

2

(z)

9

=

;

=

1

m

8

<

:

E

h

z

X

�

1

(0)

i

� z

1� �

1

(z)

+

1� E

h

z

X

�

1

(0)

i

1� �

2

(z)

+

h

1

(z

L

� 1)

1 � �

2

(z)

9

=

;

+

1

m

8

<

:

h

1

�

r(z) � z

L

�

1� �

1

(z)

9

=

;

1

X

n=1

h

n�1

+

1

m

8

<

:

h

1

(1 � h) + h

1

n

hz

L

� r(z)

o

1 � �

2

(z)

9

=

;

1

X

n=1

h

n�1

=

1

m

8

<

:

E

h

z

X

�

1

(0)

i

� z

1� �

1

(z)

+

1� E

h

z

X

�

1

(0)

i

1� �

2

(z)

+

h

1

(z

L

� 1)

1 � �

2

(z)

9

=

;

+

1

m(1� h)

8

<

:

h

1

�

r(z)� z

L

�

1 � �

1

(z)

9

=

;

+

1

m(1� h)

8

<

:

h

1

(1� h) + h

1

n

hz

L

� r(z)

o

1� �

2

(z)

9

=

;

:

Now the �rst two terms in this are the same as in the M/G/1 queue with a single �xed

threshold at K (apart from the di�erent normalising constant m). We shall replace these

two terms with Y (z) for the moment.

E

h

z

X

i

=

Y (z)

m

+

h

1

m(1� h)

(

r(z) � z

L

1 � �

1

(z)

)

+

h

1

m

z

L

� 1

1� �

2

(z)

+

h

1

m(1� h)

8

<

:

(1� h) +

n

hz

L

� r(z)

o

1� �

2

(z)

9

=

;

106



=

Y (z)

m

+

h

1

m(1� h)

(

r(z)� z

L

1� �

1

(z)

)

+

h

1

m(1� h)

8

<

:

(z

L

� 1)(1 � h) + (1� h) +

n

hz

L

� r(z)

o

1� �

2

(z)

9

=

;

=

Y (z)

m

+

h

1

m(1� h)

(

r(z)� z

L

1� �

1

(z)

)

+

h

1

m(1� h)

(

z

L

(1 � h) + hz

L

� r(z)

1 � �

2

(z)

)

=

Y (z)

m

+

h

1

m(1� h)

(

r(z)� z

L

1� �

1

(z)

)

+

h

1

m(1� h)

(

z

L

� r(z)

1 � �

2

(z)

)

=

Y (z)

m

+

h

1

m(1� h)

(

(r(z)� z

L

)[�

1

(z)� �

2

(z)]

(1 � �

1

(z))(1� �

2

(z))

)

=

Y (z)

m

+

h

1

m(1� h)

(

z(r(z)� z

L

)[b(z)� a(z)]

(a(z)� z)(b(z)� z)

)

: (7.3)

We must now calculate r(z). As before we expect r(z) = (a(z) � z)R(z) + z

L

for some

bounded function R(z). We use the technique used in Section 4.2, Theorem 4.3 of

expanding the expectation to get

r(z) = E

h

z

X

�

2n+1

(0)

�

�

�X

�

2n

(0)

= L

i

=

1

X

i=0

v

i

g(z)

t

;

where we take g(z) = (g

1

(z); g

2

(z); � � � ; g

K

(z)),

g

j

(z) =

0

@

a(z)z

j�1

�

K

X

l=(j�1)^1

a

l�j+1

z

l

1

A

;

and v

i

= (v

i

1

; v

i

2

; : : : ; v

i

K

) where

v

i

j

= pfX

�

2n

(0)+i

= j; �

2n+1

> �

2n

+ ijX

�

2n

(0)

= Lg:

Again we use the sub-stochastic transition matrix P

k

de�ned in (4.2) with the initial

vector v

0

= e

L

. Now as before we can write

1

X

i=0

v

i

= v

0

(I�P

k

)

�1

= e

L

(I�P

k

)

�1

;

g(z)

t

=

a(z)

z

z

t

+P

k

z

t

:

Then we can see that

r(z) =

a(z)

z

�

e

L

(I�P

k

)

�1

�

z

t

�

�

e

L

(I�P

k

)

�1

�

P

k

z

t

=

a(z)

z

�

e

L

(I�P

k

)

�1

�

z

t

+

�

e

L

(I�P

k

)

�1

�

(I�P

k

)z

t

�

�

e

L

(I�P

k

)

�1

�

z

t

=

1

z

fa(z)� zg e

L

(I�P

k

)

�1

z

t

+ z

L

: (7.4)
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Substituting (7.4) into (7.3) we get

E

h

z

X

i

=

Y (z)

m

+

h

1

m(1� h)

(

fa(z)� zge

L

(I�P

k

)

�1

z

t

[b(z)� a(z)]

(a(z)� z)(b(z)� z)

)

=

Y (z)

m

+

h

1

m(1� h)

(

fb(z)� a(z)ge

L

(I�P

k

)

�1

z

t

(b(z)� z)

)

:

Now Y (z) is given by

Y (z) =

8

<

:

E

h

z

X

�

1

(0)

i

� z

1� �

1

(z)

+

1 �E

h

z

X

�

1

(0)

i

1 � �

2

(z)

9

=

;

;

which we know, from the M/G/1 queue with a single upwards threshold at K, to be

Y (z) =

(

b(z)(1� z) + fb(z)� a(z)g e

1

(I�P

k

)

�1

z

t

b(z)� z

)

;

and so

E

h

z

X

i

=

1

m

8

<

:

b(z)(1� z) + fb(z)� a(z)g

h�

e

1

+

�

h

1

1�h

�

e

L

�

(I�P

k

)

�1

z

t

i

b(z)� z

9

=

;

m is calculated as before by taking lim

z"1

and using L'Hôpital's rule. From this we get

m =

2

4

�b(1) + fb

0

(1) � a

0

(1)gR

(UD)

KL

(1)

b

0

(1) � 1

3

5

=

2

4

1 + f�

a

� �

b

gR

(UD)

KL

(1)

1 � �

b

3

5

:

Now from the de�nitions of h and h

1

we get

h

1

= 1� E

h

z

X

�

1

(0)

�

�

�X

0

= 0

i

z=0

= 1�

�

1

z

(a(z)� z) e

1

(I�P

k

)

�1

z

t

+ z

�

z=0

= 1� a

0

e

1

(I�P

k

)

�1

e

1

t

;

h = 1� E

h

z

X

�

2n+1

(0)

�

�

�X

�

2n

(0)

= L

i

z=0

= 1�

�

1

z

fa(z)� zg e

L

(I�P

k

)

�1

z

t

+ z

L

�

z=0

= 1� a

0

e

L

(I�P

k

)

�1

e

1

t

:

Thus we have the proposition. 2

Remark: Note that as condition (�) is automatically true for �

a

� 1 and �

b

� 1 the

proposition has been proved over this range. It would be nice to be able to prove it is

true for �

a

> 1. This, however, is somewhat elusive. If the connection between regularity

and stability could be made into a necessary and su�cient relationship then this problem

would be solved as this queue we have described above remains stable when �

a

> 1 so

long as �

b

� 1.
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7.3 Numerical examples

In this section we investigate a number of numerical examples. As was noted in the pre-

vious section the conditions necessary for the result have not all been proved. However,

we shall support the conclusion with a number of examples. Obviously these do not form

any sort of proof of the result but they lend support to our proposition.

We show in the graphs the probabilities of having zero to twelve customers in

the system. The dots show the results as calculated using our method, while the bars

show 95% con�dence intervals for these probabilities, produced through simulations of

the systems involved. We calculated the probabilities from the generating functions using

Maple. This is a matter of expanding the generating function as a Taylor series about

z = 0.

I have tried to present a spectrum of results. Each page has a di�erent combi-

nation of service-time distributions and values of the thresholds K and L. Also within

this I have varied the value of �

a

the tra�c intensity during the �rst regime. All of the

examples are limited to �

b

= 0:5 in order that comparisons between di�erent systems

might be made.

Of interest might be the fact that these show some nice behaviour in some cases.

For instance the probability of having the system empty is quite small in some cases while

the probability of having more than say ten customers is equally small. This type of

control over the system was one of the stated aims of using this type of threshold and

so these results are encouraging.
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Figure 7.3: The two-regime process with K=7, L=4 and deterministic service times.
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Figure 7.4: The two-regime process with K=3, L=1 and negative exponential service

times.
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Figure 7.5: The two-regime process with K=3, L=3 and negative exponential service

times.
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Figure 7.6: The two-regime process with K=5, L=5 and negative exponential service

times.
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Figure 7.7: The two-regime process with K=6, L=3 and negative exponential service

times.
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Figure 7.8: The two-regime process with K=7, L=4 and negative exponential service

times.
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Figure 7.9: The two-regime process with K=7, L=7 and negative exponential service

times.
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Figure 7.10: The two-regime process with K=7, L=7 and Erlang order 2 service times.
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Figure 7.11: The two-regime process with K=5, L=4 and Erlang order 4 service times.
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7.4 The probability of a given regime

We can extend the technique of Chapter 4 for �nding the probability of a given phase to

�nding the probability of a given service regime, the technique is almost the same. We

apply Little's law to the server so

L = pfX 6= 0g = 1 �

1

m

;

W =

1�  

�

a

+

 

�

b

;

where  is the probability of of being in the second regime. For the case we have

described

L =

�

b

+ (�

a

� �

b

)R

(UD)

KL

(1)

1 + (�

a

� �

b

)R

(UD)

KL

(1)

;

�W =  (�

b

� �

a

) + �

a

:

Substituting in (4.23) we get an equation for  when �

a

6= �

b

 =

2

4

�

b

+ (�

a

� �

b

)R

(UD)

KL

(1)

1 + (�

a

� �

b

)R

(UD)

KL

(1)

� �

a

3

5

1

�

b

� �

a

=

2

4

(�

b

� �

a

) + (1� �

a

)(�

a

� �

b

)R

(UD)

KL

(1)

1 + (�

a

� �

b

)R

(UD)

KL

(1)

3

5

1

�

b

� �

a

=

1 + (�

a

� 1)R

(UD)

KL

(1)

1 + (�

a

� �

b

)R

(UD)

KL

(1)

: (7.5)

This is the probability of being in regime 2.

When K = L this gives the special result, the probability that there are more

than K customers in the system. This can be used in the M/G/1 queue to calculate the

equilibriumdistribution of customers in the system. Note that we can consider  =  (�

b

)

as the only dependence on B(�) is through �

b

. If we then take a series of distributions

such that �

b

! �

a

we get

 (�

a

) = 1 + (�

a

� 1)R

(UD)

KK

(1):

When B(t) = A(t) for all t 2 IR this simply gives the probability that there are more than

K customers in the M/G/1 queue. Note that this is insensitive to the actual distribution

B(�) except through its mean. We can then immediately deduce that w

n

, the probability

that there are n customers in the system, is given by

w

0

= (1 � �

a

); (7.6)

w

n

= (1 � �

a

)[R

(UD)

KK

(1) �R

(UD)

K�1;K�1

(1)]; (7.7)

with R

(UD)

00

(1) = 1. ( When K = L = 0 we have the situation where a customer arriving

at the empty server has a di�erent service-time distribution from all other customers. In

Section 4.2.1 the solution is given for this and in order to be consistent with this we set

R

(UD)

00

(1) = 1.)
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7.5 The M/G/1/N+1 queue

The M/G/1/N+1 queue is the M/G/1 queue with a �nite waiting room. Any arrivals

that occur when the waiting room is full are blocked. If we take the maximum queue

size to be N then the maximum number of customers in the system is N + 1. As in

the previous examples we consider the process embedded at departure epochs. When

we consider a departure we include customers who are blocked and leave the system

immediately. After a customer that receives service leaves the queue there can be no

more than N customers in the system and so the probability that there are N + 1

customers in the system will give the blocking probability.

We shall not model this in the standard way. We take the system to be an multi-

phase M/G/1 queue as described in this chapter with L = K = N . The probability

generating function for the service times during the second regime is given by

B(t) =

(

0; t < 0;

1; t � 0:

This means that when the process is in regime two customers are served in zero time.

This is equivalent to blocking the customers, except that the customer involved spends

some time in the queue before being expelled.

Note that this would in fact give us a queue in which arrivals can stay in the

system when there are more than N customers in the queue because the system must

wait until the end of the current service before expelling any excess customers. Also the

excess customers are be expelled in the order of service. Thus, as we want to expel the

customers in the correct order (that is, remove those customers who arrived when the

bu�er size was exceeded and not those already in the system), the service discipline must

be the non-preemptive last in �rst out discipline. We can however swap disciplines as

well as service-time distribution at transition points and so we can always swap to this

discipline when needed. Furthermore the service discipline does not e�ect the number

of customers in the system only the waiting time distribution for those customers.

The extra arrivals during the service will a�ect the results. Obviously if we

allow more than N + 1 customers in the system this will a�ect the distribution for the

number of customers in the system. However, if we note that when there are more

than N customers in the queue the extra customers are all served in regime two and

hence correspond to blocked customers, then we can see that the blocking probability

will simply be the probability of being in regime two. We can get this probability from

Section 7.4.

Proposition 7.2 The blocking probability in the M/G/1/N+1 queue,  , is given by

 =

1 + (�

a

� 1)R

(UD)

NN

(1)

1 + �

a

R

(UD)

NN

(1)

;

where

R

(UD)

NN

(1) =

 

e

1

+

 

h

1

1� h

!

e

N

!

(I�P

N

)

�1

1

t

:
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Proof: From Proposition 7.1 for 0 � z < 1 and �

b

< 1 the generating function for the

equilibrium behaviour of the queueing process described above is given by

E

h

z

X

i

=

1

m

8

<

:

b(z)(1� z) + fb(z)� a(z)g zR

(UD)

NN

(z)

b(z)� z

9

=

;

;

where m, the mean number of customer's served in one busy period, is given by

m =

2

4

1 + f�

a

� �

b

gR

(UD)

NN

(1)

1� �

b

3

5

:

Now b(z) = 1 so �

b

= 0 and

E

h

z

X

i

=

1

1 + �

a

R

(UD)

NN

(1)

8

<

:

(1� z) + f1� a(z)g zR

(UD)

NN

(z)

1� z

9

=

;

: (7.8)

Note that from (7.5) we get the probability of being in the second regime  by

 =

1 + (�

a

� 1)R

(UD)

NN

(1)

1 + (�

a

� �

b

)R

(UD)

NN

(1)

=

1 + (�

a

� 1)R

(UD)

NN

(1)

1 + �

a

R

(UD)

NN

(1)

;

where

R

(UD)

NN

(1) =

 

e

1

+

 

h

1

1� h

!

e

N

!

(I�P

N

)

�1

1

t

:

This is the blocking probability. 2

Now in our multi-phase M/G/1 queue we know that the probability that there

are more than N customers in the system is the blocking probability, which in turn is

the probability that there are more than N customers in the M/G/1/N+1 system. Also

the probability that there are zero customers in the system is the same for both systems.

Furthermore the behaviour of the two systems when the number of customers in the

system is less than N +1 is identical. Thus the equilibrium distributions for the number

of customers in the systems, given this number is less than N + 1, are the same. Thus

we have a successful model of the M/G/1/N+1 queue.

7.5.1 A check of the blocking probabilities

In order to check this result we use some results from Cooper (1972) and Cohen (1969).

We de�ne

p

n

= pf a customer leaving the M/G/1/N+1 queue leaves n customers behindg;

q

n

= pf a customer who receives service in the M/G/1/N+1 queue leaves n customersg;

w

n

= pf a customer leaving the M/G/1 queue leaves n customersg:
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Note that p

n

includes customers who are blocked and therefore leave N + 1 customer

behind. Cooper, pages 179-182 gives us

p

n

=

q

n

q

0

+ �

a

; 0 � n � N;

p

N+1

=

q

0

+ �

a

� 1

q

0

+ �

a

:

Cohen, 6.26, page 560 gives for 0 � n � N that

q

n

=

w

n

w

0

+ � � � + w

N

:

From (7.6) and (7.7) we get

w

0

= (1� �

a

);

w

n

= (1� �

a

)[R

(UD)

nn

(1)�R

(UD)

n�1;n�1

(1)];

and so

N

X

n=0

w

n

= (1 � �

a

) +

N

X

n=1

(1� �

a

)[R

(UD)

nn

(1)�R

(UD)

n�1;n�1

(1)]

= (1 � �

a

) + (1 � �

a

)[R

(UD)

NN

(1)�R

(UD)

00

(1)]

= (1 � �

a

)R

(UD)

NN

(1):

Substituting back we get

q

0

=

(1� �

a

)

(1 � �

a

)R

(UD)

NN

(1)

=

1

R

(UD)

NN

(1)

;

and from this we get from Cooper, 179-182,

p

0

=

1

R

(UD)

NN

(1)

1

R

(UD)

NN

(1)

+ �

a

=

1

1 + �

a

R

(UD)

NN

(1)

;

which agrees with the value of p

0

derived from p

0

= 1=m. We also get

p

N+1

=

q

0

+ �

a

� 1

q

0

+ �

a

=

1

R

(UD)

NN

(1)

+ �

a

� 1

1

R

(UD)

NN

(1)

+ �

a

=

1 + (�

a

� 1)R

(UD)

NN

(1)

1 + �

a

R

(UD)

NN

(1)

;

which agrees with our blocking probability.
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Chapter 8

Conclusion

8.1 Further work

There are a number of ways in which this work can be generalised. In this section we

investigate some of the potential areas for future work. The most obvious is further use

of the results of Chapter 3 to examine more problems. The examples of systems that

we have considered here are, in some cases, a little too simple to model real situations.

There are many possible systems which �t the multi-phase model and examination of

these cases is not trivial as they require work to obtain condition (�) and the values of

E

h

X

�

j

(0)

i

.

One of the examples that might prove interesting immediately are the extension

of the results of Section 4.2 to deal with n upward thresholds at k

1

; : : : ; k

n

. A suggested

result is given for this case in Proposition 5.1, but we have not proved this here.

Another example of interest would be that of Chapter 7 extended to multiple

upward and downward thresholds at k

1

; : : : ; k

n

and l

1

; : : : ; l

n

. This would link up nicely

with the previous case.

Further examples could be considered with di�erent thresholds. One possibility

is the combination of two or more thresholds in some way. For instance if we take the

�rst time either one of two di�erent conditions is satis�ed. One way of dealing with this

might be to add in extra phases, with the same service-time distribution in order to take

account of the two di�erent thresholds.

Considering other types of system may provide motivations for various types of

thresholds and blocking patterns. For example it may be useful to consider the systems

with discrete time services and batch arrivals. This has been suggested as a model for

some parts of ATM networks. For instance we consider packets arriving as a Poisson

stream containing a number of cells, and the server takes unit time to serve each packet.

Another direction for continuation of this work is simply to consider processes

based on queues other than the M/G/1 queue. This is more di�cult as it requires more

theoretical results. However, in simple cases they should be analogous to the results in

this thesis.

A further area that needs work is condition (�). We have shown in Section 3.2.2

that this is a su�cient condition for the regularity of the relevant stopping times. We

have yet to �nd a necessary condition for the types of process considered. This would

be a worthwhile task. Closely related to this is the issue of stability. When condition
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(�) is satis�ed the queue is stable. It would be both elegant and useful to demonstrate

that the reverse is also true, or to provide some other condition for which this holds.

One �nal and important way is to generalise the results of Chapter 2 frommulti-

phase MRPs to GMRPs. This would allow the calculation of results without the need

to resort to modifying the phase structure to give a multi-phase MRP. It would also

eliminate a large proportion of the in�nite phase examples, making it easier to obtain

results. This would be invaluable but requires some work. Namely the multi-phase

MRP results must be extended and the results of Chapter 3 must also be extended. The

hardest part of this seems to be �nding an equivalent condition to condition (�).

8.2 Block-matrix geometric techniques

The type of problem we have considered in this thesis has strong similarities with many

of the systems discussed by Neuts. One important point to make is that we use `phase'

slightly di�erently herein. Phase often refers to phase-type distributions for the service

times or arrival process. This is not the same as our use of phase which refers to the

phase of the whole process.

Secondly we note that many of the problems considered herein could be exam-

ined through block-matrix type methods.

For example in the single �xed-upward threshold case we could write the tran-

sition matrix as in Table 8.1 where in this matrix the state is the number of customers

in the system and the substates give the current phase. Even in this simple case this

matrix is not trivial. Block matrix methods could be applied by some partitioning of

the state space but this would be quite complex, especially in more complicated cases.

8.3 D�enoûement

In conclusion there are three main points I would like to make.

The �rst is that we have succeeded in our aim, which was to apply a martingale

technique to queueing theory. The main part of the theory, developed in Chapter 3, and

supported by Chapter 2, provides a major new technnique for investigating single server

queues with some sort of phase structure.

The second point I would like to make is that we have proved the utility of this

method. We have done this by considering a number of example in Chapters 4 to 7.

Further we have mentioned several recent papers in which processes which �t our model

are investigated.

Finally I would like to note that this is a fruitful area for further study. In the

Section 8.1 we point out just a few of the areas in which this theory has potential for

expansion.
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States 0 1 2 � � � k k + 1 k + 2 � � �

0

a

0

0

0 0

a

1

0

0 0

a

2

0

0 0

� � �

a

k

0

0 0

0 a

k+1

0 0

0 a

k+2

0 0

� � �

1

a

0

0

b

0

0

a

1

0

0 b

1

a

2

0

0 b

2

� � �

a

k

0

0 b

k

0 a

k+1

0 b

k+1

0 a

k+2

0 b

k+2

� � �

2

0 0

0 0

a

0

0

0 b

0

a

1

0

0 b

1

� � �

a

k�1

0

0 b

k�1

0 a

k

0 b

k

0 a

k+1

0 b

k+1

� � �

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

k

0 0

0 0

0 0

0 0

0 0

0 0

� � �

a

1

0

0 b

1

0 a

2

0 b

2

0 a

3

0 b

3

� � �

k + 1

0 0

0 0

0 0

0 0

0 0

0 0

� � �

0 0

0 b

0

0 0

0 b

1

0 0

0 b

2

� � �

k + 2

0 0

0 0

0 0

0 0

0 0

0 0

� � �

0 0

0 0

0 0

0 b

0

0 0

0 b

1

� � �

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Table 8.1: The transition matrix for the two-phase M/G/1 queue with a �xed-upward

threshold at k.
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Appendix A

Probability and Martingales

In this appendix we examine some of the basic concepts and theorems upon which the

work in this thesis is based. The experienced reader will �nd this to a large degree

uninteresting. It is included for completeness and to remove any possible doubt about

the form of various theorems or notation.

In most cases the theorems herein are presented without proof but reference to

the proof is provided.

The basic theory can be found in many places. We have used here as the chief

reference Williams (1991) with smatterings from Neveu (1975) and Br�emaud (1981).

A.1 Elementary probability theory and notation

Take a set 
. A sigma-algebra F on this set is any collection of subsets of 
 which

satis�es the following properties.

(i) 
 2 F .

(ii) F is closed under complements, that is, A 2 F ) 
nA 2 F .

(iii) F is closed under countable unions, that is, A

n

2 F ; n 2 IN )

S

n

A

n

2 F .

Note that property (ii) combined with properties (i) and (iii) implies

(i) � 2 F ,

(ii) F is closed under countable intersections, that is , A

n

2 F ; n 2 IN

)

T

n

A

n

2 F ,

respectively. A �-algebra generated by a collection of subsets C of 
 is the smallest

�-algebra that includes all of the subsets in C, and is written �(C).

We de�ne a set-function P : F ! [0; 1] to be a probability measure if it satis�es

the following properties.

(i) P (
) = 1,

(ii) For all series A

n

, n 2 IN , of disjoint members of F ,

P

 

[

n

A

n

!

=

X

n

P (A

n

):

Note that these properties imply P (�) = 0. A F -measurable subset of 
, is any set

A 2 F . The F -measurable subsets of 
 are called events. P (A) is called the probability

of event A, 8A 2 F . We shall also write this as pf�g where f�g 2 F . The triple (
;F ; P )
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is then called a probability space. Throughout, where it is not explicitly stated, we assume

that all stochastic elements have some underlying probability space. An event A, is said

to be almost sure (a.s.), or to occur with probability one (w.p.1), if P (A) = 1. We assume

also that all �-algebras are completed, that is, if A 2 F with P (A) = 0 and A

0

� A then

A

0

2 F .

A.1.1 Random variables

A function h : 
! IR is called F -measurable if h

�1

: B ! F , where we de�ne h

�1

by

h

�1

(B) = f! 2 
jh(!) 2 Bg; 8B 2 B;

and B denotes the Borel sets of the real line. This may be simpli�ed slightly to the

condition that

h

�1

(B) = f! 2 
jh(!) 2 Bg; for all intervals B of the form (�1; a];

as the mapping preserves intersections and unions and a �-algebra is closed under such

operations. A real-valued F -measurable function X, on 
 is called a random variable.

That is, a function X : 
 ! IR such that f! 2 
jX(!) � xg 2 F . Given a family

(X




j
 2 C) of maps X




: 
! IR we de�ne the �-algebra generated by the family,

F = �(X




j
 2 C);

to be the smallest �-algebra F on 
 such that all of the maps X




(
 2 C) are F -

measurable.

A random variable X is called lattice if pfwjX(!) = b + kn; n 2 ZZg = 1.

Written simply a random variable is lattice or discrete if X = b + kn; n 2 ZZ almost

surely. If k is the largest number for which this is true then k is called the span of the

random variable.

We de�ne a random variable called the indicator function I, of an event A 2 F ,

by

I

A

(!) =

(

1; ! 2 A;

0; ! 62 A:

In some cases we shall write I(A) for I

A

where A 2 F .

Given a random variable X on (
;F ; P ), we can de�ne the probability distribu-

tion function F : IR! [0; 1] of the random variable X by

F (x) = pfX � xg = pf!jX(!) � xg:

F (x) must satisfy the following properties,

(i) lim

x!�1

F (x) = 0.

(ii) lim

x!1

F (x) = 1.

(iii) F (x) is non-decreasing.

(iv) F (x) is right-continuous.

If F (x) is di�erentiable we de�ne f(x) =

dF

dx

to be the probability density function of X.

Where ambiguity exists we shall write F

X

(x) for the probability distribution function of

X.
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A.1.2 Independence

Independence of random variables and �-algebras will be important in a number of

places. Simply, we call two random variable's X and Y independent, if

PfX � x; Y � yg = PfX � xgPfY � yg:

More technical de�nitions are included here to cover events and �-algebras.

(i) Events

Events E

1

; E

2

; E

3

; : : : are independent if for i

1

; ::i

n

2 IN distinct,

P (E

i

1

\ E

i

2

\ � � � \ E

i

n

) =

n

Y

k=1

P (E

i

k

):

(ii) �-algebras

Sub-�-algebras G

1

;G

2

;G

3

; : : : of F are called independent if 8G

i

2 G

i

; (i 2 IN) and

i

1

; ::i

n

2 IN distinct, the events G

i

1

; G

i

2

; : : : ; G

i

n

are independent.

(iii) Random Variables

Random variables X

1

;X

2

; : : : are independent if the �-algebras �(X

1

); �(X

2

); : : : are

independent.

(iv) Combinations

Combinations of the three above, are said to be independent if the relevant combinations

of �-algebras are independent. For instance, a random variable X, and an event E, are

said to be independent if �(X) and E are independent, where E = f�;E;
nE;
g, the

�-algebra generated by E.

A.1.3 Expectation

If we have probability space (
;F ; P ) then the expectation of a F -measurable random

variable X, is simply the integral of X on 
 with respect to P . That is

E[X] =

Z




XdP =

Z




X(!)P (d!)

where this is de�ned.

As in all measure theory this integral must be de�ned through a series of ex-

tension from the basic measure P (A) where A 2 F . Brie
y this is done in the following

way.

(i) Simple random variables

A simple random variable is a non-negative random variable which can be written

X =

m

X

i=1

�

i

I

A

i

;

for �

k

2 [0;1] and A

k

2 F . The expectation of such a random variable is simply

E[X] =

m

X

i=1

�

i

P (A

i

);

where 1:0 is de�ned to be 0.
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(ii) Non-negative random variables

The monotone convergence theorem is used here to show that

E[X] = supfP (Y )jY simple; Y � Xg;

is a valid integral for non-negative random variables. This is done by showing that any

non-negative F -measurable random variable X is the limit of a series of simple random

variables.

(iii) F -measurable random variables

We now write a F -measurable random variable X as X = X

+

� X

�

where X

+

(!) =

max(X(!); 0) and X

�

(!) = max(�X(!); 0). Note that jXj = X

+

+ X

�

. A random

variable for which E[jXj] < 1 is said to be integrable and we denote the family of

F -measurable, integrable random variables by L

1

(
;F ; P ). For all random variables

X 2 L

1

(
;F ; P ) we can write the expectation as follows

E[X] = E[X

+

]� E[X

�

]:

Also even if only one of the conditions E[X

+

] <1 or E[X

�

] <1 is satis�ed then the

expectation is de�ned as above. Notationally we take, for A 2 F and integrable random

variable X,

E[XI

A

] =

Z




XI

A

dP =

Z

A

XdP:

For a Borel measurable function f : IR ! IR we de�ne a new random variable

f(X) : 
 ! IR by f(X)(!) = f(X(!)). When f(X) 2 L

1

we de�ne the expectation as

before.

E[f(X)] =

Z




f(X)dP:

By TheoremT15 of Br�emaud (1981) we arrive at the Lebesgue-Stieltjes integral

for the expectation in terms of the probability distribution function of a random variable

Explicitly stated this gives,

E[g(X)] =

Z




g(X(!))P (d!) =

Z

IR

g(x)dF

X

(x):

Theorem A.1 (Jensen's Inequality) If c : H ! IR is a convex function on an open

sub-interval H of the real line, and X is an integrable random variable such that

pfX 2 Hg = 1; E[jc(X)j] <1;

then

E[c(X)] � c(E[X]):

De�nition A.1 For 1 � p <1 we say that X 2 L

p

= L

p

(
;F ; P ) if

E[jXj

p

] <1;

and de�ne

jjXjj

p

= fE[jXj

p

]g

1

p

:
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De�nition A.2 (Laplace-Stieltjes transform) The Laplace-Stieltjes transform of a

random variable X, on the probability space (
;F ; P ) is

E

h

e

�sX

i

=

Z

1

�1

e

�sx

dF

X

(x):

De�nition A.3 (Probability generating function) The probability generating func-

tion of a lattice random variable X, is

E

h

z

X

i

=

1

X

n=�1

z

n

pfX = ndg;

where d is the span of the random variable.

Given a probability distribution function F (x) which is non-lattice or lattice we

can de�ne its Laplace-Stieltjes transform or probability generating function respectively,

as above, and we denote this by F

�

(s) or F

�

(z) respectively. (The probability generating

function is a special case of the Laplace-Stieltjes transform.)

If we take the random variable given by the sum of two independent random

variables X and Y the the probability distribution function for this is given by

F

X+Y

(x) =

Z

x

�1

F

X

(x� y)dF

Y

(y):

De�nition A.4 We de�ne the convolution of two independent probability distribution

functions F

X

(x) and F

Y

(y) by

F

X

� F

Y

(x) =

Z

x

�1

F

X

(x� y)dF

Y

(y):

This is the probability distribution function for the sum of X and Y . The n-fold convo-

lution of F

X

is simply denoted F

(n)

X

(x).

Note that the Laplace-Stieltjes transform of the convolution F

X

� F

Y

is simply

the product of the respective transforms of F

X

and F

Y

.

A.1.4 Convergence

There are a number of di�erent types of convergence. The two used herein are

(i) Almost sure convergence

Suppose that (X

n

) is a sequence of random variables and X is a random variable then

we say that X

n

! X almost surely if, as n!1,

P (X

n

! X) = 1:

(ii) Convergence in mean

Suppose that (X

n

) is a sequence of random variables and X is a random variable then

we say that X

n

! X in mean (in expectation, in L

1

) if, as n!1,

E[jX

n

�Xj]! 0;

and thence as n!1

E[jX

n

j]! E[jXj]:

The following theorems relate the two types of convergence.
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Theorem A.2 (Monotone Convergence Theorem) If (X

n

) is a series of random

variables and X is a random variable such that 0 � X

n

" X a.s. then

E[X

n

] " E[X]:

Proof: Williams pages 211-213. 2

Theorem A.3 (Dominated Convergence Theorem) If (X

n

) is a series of random

variables and Y is a random variable such that jX

n

(!)j � Y (!) for all (n; !) and E[Y ] <

1 then (X

n

) converges to some random variable X in mean as n!1.

Proof: Williams page 55. 2

Theorem A.4 (Bounded Convergence Theorem) If (X

n

) is a series of non-negative

random variables bounded above by M <1, for all (n; !) then (X

n

) converges to some

random variable X in mean as n!1.

Proof: This theorem is an immediate consequence of the Dominated Convergence the-

orem. 2

A.1.5 Conditional expectation

We can de�ne the conditional probability of an event A 2 F given event B 2 F of

positive probability by

P (AjB) =

P (A \ B)

P (B)

:

This can be seen to form a new probability measure on (
;F). From this we may naively

de�ne a new expectation, the expectation of X given the event B, by

E[XjB] =

Z




X(!)P (d!jB)

=

1

P (B)

Z




X(!)P (d! \B)

=

1

P (B)

Z

B

X(!)P (d!)

=

1

P (B)

Z




I

B

X(!)P (d!)

=

E[XI

B

]

P (B)

:

A useful result for dealing with such expectations is as follows. If A

0

; A

1

; A

2

; : : : is a

complete system of events (i.e.: mutually exclusive and exhaustive) then for a random

variable X

E[X] =

1

X

n=0

E[XjA

n

]P (A

n

):

This naive de�nition of conditional expectation does not in general su�ce and so we

must use a more technical de�nition.
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Theorem A.5 (Conditional Expectation) Let (
;F ; P ) be a probability space, and

X an integrable random variable Let G be a sub-�-algebra of F . Then there exists an

integrable G-measurable random variable Y such that for every set G 2 G we have

Z

G

Y dP =

Z

G

XdP:

Moreover if

^

Y is another random variable with these properties then

^

Y = Y a.s. The

random variable Y is called a version of the conditional expectation, E[XjG] of X

given G. We write

Y = E[XjG]; a.s.

Proof: Proof that such a random variable exists and is unique (except for a set of

measure 0) can be found in Williams, page 85. 2

Notationally we normally identify all of the versions of the conditional expectation. In

general we use the notation E[XjG] where X is a random variable to mean the naive

concept of conditional expectation and E[XjY ] where X and Y are random variables to

mean the random variable E[Xj�(Y )].

Properties of conditional expectation:

(i) Jensen's inequality, the monotonic convergence theorem and the dominated

convergence theorem all hold for conditional expectations.

(ii) If Y is any version of E[XjG] then E[Y ] = E[X].

(iii) If X is G-measurable then E[XjG] = X, a.s.

(iv) linearity, E[a

1

X

1

+ a

2

X

2

jG] = a

1

E[X

1

jG] + a

2

E[X

2

jG], a.s.

(v) positivity, if X � 0 then E[XjG] � 0, a.s.

(vi) If H is a sub-�-algebra of G, then

E[E[XjG]jH] = E[XjH]; a:s:

(vii) If Z is a G-measurable, bounded random variable then,

E[ZXjG] = ZE[XjG]; a:s:

(viii) If X is independent of H then

E[XjH] = E[X]; a:s:
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A.2 Martingale theory

This is the essential part of the background theory, but still is only a very small sub-

set of martingale theory. We shall only consider discrete-parameter martingales for a

start. Although many theorems on discrete-parameter martingales can be generalised to

continuous-parameter martingales they require more rigour. We take a probability space

(
;F ; P ) as before. We then take a set of increasing sub-�-algebras of F , (F

n

: n 2 IN).

That is

F

0

� F

1

� � � � � F :

We de�ne

F

1

= �

 

[

n

F

n

!

� F :

We call (F

n

) a �ltration on the probability space and write (
;F ; (F

n

); P ). A process

(X

n

: n 2 IN) is called adapted if for each n, X

n

is F

n

-measurable. In most cases

if we have a stochastic process (X

n

: n 2 IN) we de�ne F

n

= �(X

0

;X

1

; : : : ;X

n

) and

F = F

1

. Thus fF

n

g is automatically a �ltration and the sequence (X

n

) is adapted to

this �ltration. We shall refer, in such a case, to (F

n

), as the history of the process.

De�nition A.5 (Martingale) A process X = (X

n

) is called an integrable martingale

with respect to (fF

n

g; P ) if

(i) X is adapted.

(ii) E(jX

n

j) <1; 8n 2 IN:

(iii) E[X

n+1

jF

n

] = X

n

; a:s:; 8n 2 IN:

Submartingales and supermartingales are de�ned in the same way except that (iii) is

replaced by E[X

n+1

jF

n

] � X

n

and E[X

n+1

jF

n

] � X

n

respectively.

Properties (of martingales)

(i) E[X

n

] = E[X

0

] for all n 2 IN .

(ii) E[X

n+m

jF

n

] = X

n

; a:s:;8n;m 2 IN:

De�nition A.6 (stopping times) A map T : 
 ! IN [ f1g is called a stopping

time if fT � ng if F

n

-measurable. That is,

fT � ng = f!jT (!) � ng 2 F

n

; 8n 2 IN:

Intuitively the idea is that at some point in the process you stop. Your decision

to stop (or not stop if T = 1) can be based only on the information you have up to

that time. Thus your decision to stop the process is made on the basis of the history of

the process up until time n. Note that if S and T are stopping times then so also are

S + T , S ^ T and S _ T . For a stopping time T we de�ne the �-algebra F

T

by

F

T

= fA 2 F

1

jA \ fT � ng 2 F

n

; 8n � 0g:

Now if S and T are two stopping times then

fS < Tg; fS � Tg; fS = Tg; fS � Tg and fS > Tg 2 F

T

;

and by symmetry also in F

S

.
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De�nition A.7 A class C of random variables is called uniformly integrable if given

� > 0, there exists K 2 [0;1) such that

E

�

jXj I

�

jXj > K

�

�

< �; 8X 2 C:

Su�cient Conditions (for the class to be uniformly integrable.)

(i) It is bounded in L

p

; p > 1.

(ii) It is dominated by another integrable random variable.

Theorem A.6 Let M be a uniformly integrable martingale then

M

1

= lim

n!1

M

n

exists a:s: and in L

1

:

Moreover, for every n,

M

n

= E[M

1

jF

n

]; a:s:

Neveu uses the term regular to denote uniformly integrable martingales (Propo-

sition IV 2-3). We shall use the latter appellation here. However he also uses regular in

the following way.

De�nition A.8 (Regularity) A stopping time � , is regular with respect to a martin-

gale M

n

if the martingale formed by M

�^n

is uniformly integrable.

This de�nition is in Neveu, Proposition IV 3 12. Also in this proposition is the following

theorem which is the fundamental result used herein in order to obtain the result crucial

to this thesis. It is a surprisingly elegant theorem referred to elsewhere as the optional

stopping theorem, the optional sampling theorem, or either or these two versions prefaced

by Doob's, after its originator. Versions of this theorem come in several form as well.

Essentially they are either equivalent to or simple corollaries to the following version.

Theorem A.7 (Doob's Optional Sampling Theorem) If the process M

n

is an in-

tegrable martingale and � is a regular stopping time then for every pair of stopping times

�

1

and �

2

such that �

1

� �

2

� � almost surely the random variables X

�

1

and X

�

2

both

exist, are integrable and satisfy

X

�

1

= E [X

�

2

j F

�

1

] :

Proof: Neveu, Proposition IV-3-12. 2

Essentially this means that given a sequence of stopping times (T

n

) which satis�es certain

properties on a martingaleM

n

then the process formed byM

T

n

is also a martingale. Two

results from Neveu that are of use are also given here.

Theorem A.8 (Corollary IV-3-13) Let �

1

and �

2

be two stopping times such that

�

1

� �

2

almost surely. For a given martingale (M

n

), the stopping time �

1

is regular

whenever the stopping time �

2

is regular.

Theorem A.8 shows that for a uniformly integrable martingale all stopping times are

regular.
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Theorem A.9 (Proposition IV-3-16) Let (M

n

) be an integrable martingale. In order

that the stopping time � be regular for the martingale and that also lim

n!1

M

n

= 0 almost

surely on f� = 1g, it is necessary and su�cient that the following two conditions be

satis�ed:

(i)

R

f�<1g

jX

�

jdP < 1;

(ii) lim

n!1

R

f�>ng

jX

n

jdP = 0:

Note that from Neveu, Proposition IV-3-14 condition (i) is satis�ed for all positive

integrable martingales.
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Appendix B

Vectors and matrices

A certain amount of the work presented in this thesis relies on matrix notation and a

number of theorems. For simplicity this section details those parts of matrix theory used

herein. The work on norms presented here is based on Barnett and Storey (1970) and

Householder (1964), while the probabilistic parts come from Gantmacher (1959). Other

speci�cs are referred to within the text. The norm which we present in (B.6) and use in

Lemma 4.2.1 is the only original part of this Appendix.

Throughout this thesis boldface capitals refer to matrices (eg: A) while boldface

lowercase letters denote row-vectors (eg: v). We will be for the most part only concerned

with real square matrices. The following common notational conventions are used.

P

i

= P to the power of i;

P

0

= I, the identity matrix;

P

�1

= the inverse of P;

P

t

= the transpose of P;

v

t

= the column vector corresponding to v;

0 = the zero vector or matrix depending on the context.

Matrix products and determinants are standard and the scalar product of two vectors v

and w is v.w = vw

t

. We can specify a matrix by its elements in the following way

A = fa

ij

g;

where a

ij

is the element in the ith row and jth column. The following standard vectors

will be used throughout.

e

i

= (0; 0; � � � ; 0; 1; 0; � � � ; 0)

= (�

i1

; �

i2

; � � � ; �

in

);

z = (z; z

2

; z

3

; � � � ; z

n

);

1 = (1; 1; � � � ; 1):

Also the following lemma will be of use later on.

Lemma B.0.1 For any matrix P such that (I�P)

�1

exists

P(I�P)

�1

= (I�P)

�1

P = �I+ (I�P)

�1

:

Proof: The proof is trivial. 2
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B.1 Eigenvalues and eigenvectors

For any n xn matrix A a scalar � and vector v that satisfy the equation

vA = �v; (B.1)

are called the eigenvalue and corresponding eigenvector of A, respectively. Note, because

we are working with row vectors by default, we use the left-eigenvector of A. This alters

some of the later work from the texts but only notationally. It is easily seen that the

values � satisfy the equation

det(�I�A) = 0:

This is called the characteristic equation of A. The left-hand side of this equation is

clearly a polynomial of degree n in � and thus a n xn matrix has at most n (possibly

complex) eigenvalues. We de�ne the spectral radius of the n xn matrix A to be

�(A) = max

i=1;::;n

j�

i

(A)j;

where j�

i

(A)j is the absolute value of the ith eigenvalue of A. Note that �(A

n

) =

�(A)

n

and hence the same is true for the spectral radius, namely �(A

n

) = �(A)

n

. Also

�(I�A) = 1 � �(A).

B.2 Norms

A matrix norm is a single non-negative real-valued scalar that provides a measure of the

magnitude of a matrix (or vector), in some sense of magnitude. In general we say that

a real-valued function jjAjj of the elements of the matrix A is a norm if it satis�es the

following four properties.

A 6= 0 ) jjAjj > 0; (B.2)

jj�Ajj = j�jjjAjj; (B.3)

jjA+Bjj � jjAjj+ jjBjj; (B.4)

jjABjj � jjAjjjjBjj; (B.5)

for all n xn matrices and � 2 IR, while a vector norm is a real-valued function of the

elements of a vector x, that satis�es the �rst three properties above. A vector norm is

said to be consistent with a matrix norm if

jjxAjj � jjxjjjjAjj;

for any A and x.

Theorem B.1 If jjAjj is a matrix norm consistent with vector norm jjxjj then the spectral

radius �(A) of a matrix A satis�es the inequality

�(A) � jjAjj:
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A norm of later use is the norm jjPjj

z

for z 2 (0; 1) which is de�ned by

jjPjj

z

= max

i=1;::;n

2

4

n

X

j=1

jp

ij

jz

j�i

3

5

: (B.6)

It satis�es the properties as follows for n x n matrices P and Q and scalar �.

(B.2) (this is obvious)

(B.3)

jj�Pjj

z

= max

i=1;::;n

2

4

n

X

j=1

j�p

ij

jz

j�i

3

5

= j�j max

i=1;::;n

2

4

n

X

j=1

jp

ij

jz

j�i

3

5

(B.4)

jjP+Qjj

z

= max

i=1;::;n

2

4

n

X

j=1

jp

ij

+ q

ij

jz

j�i

3

5

� max

i=1;::;n

2

4

n

X

j=1

jp

ij

jz

j�i

3

5

+ max

i=1;::;n

2

4

n

X

j=1

jq

ij

jz

j�i

3

5

(B.5)

jjPQjj

z

= max

i=1;::;n

2

4

n

X

j=1

�

�

�

�

�

n

X

k=1

p

ik

q

kj

�

�

�

�

�

z

j�i

3

5

� max

i=1;::;n

2

4

n

X

k=1

jp

ik

j

0

@

n

X

j=1

jq

kj

jz

j�k

1

A

z

k�i

3

5

� jjQjj

z

max

i=1;::;n

"

n

X

k=1

jp

ik

jz

k�i

#

:

In a similar manner it can be seen that the vector norm

jjxjj

z

=

n

X

i=1

jx

i

jz

i�1

; (B.7)

satis�es properties (B.2), (B.3) and (B.4) for z 2 (0; 1) and

jjxAjj

z

=

n

X

i=1

�

�

�

�

�

n

X

k=1

x

k

a

ki

�

�

�

�

�

z

i�1

�

n

X

k=1

n

X

i=1

jx

k

jja

ki

jz

i�1

�

n

X

k=1

jx

k

jz

k�1

 

n

X

i=1

ja

ki

jz

i�k

!

�

n

X

k=1

jx

k

jz

k�1

jjAjj

z

;

hence the norms are consistent.
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B.3 Non-negative matrices

The following sections are from Gantmacher (1959). A matrix with real elements is

called non-negative if and only if all of its elements are � 0. We write this as A � 0. A

square matrix A = fa

ij

g is called reducible if the index set 1; 2; : : : ; n can be split into

two complimentary sets i

1

; : : : ; i

�

; k

1

; : : : ; k

�

(� + � = n) such that

a

i

�

k

�

= 0 (� = 1; : : : ; �; � = 1; : : : ; �):

otherwise the matrix is called irreducible.

This may also be expressed as follows. A matrix A is called reducible if there is

a permutation (of the rows and columns) that puts it in the form

A

0

=

 

B C

0 D

!

;

where B and D are square matrices. Otherwise A is called irreducible.

We shall for the most part only be concerned with irreducible matrices. It should

be noted that most results can be generalised in some manner to reducible matrices. A

theorem of Frobenius is used implicitly a great deal. The main result in this context is

that the spectral radius of a non-negative matrix is one of the simple eigenvalues of that

matrix, and that this eigenvalue has a corresponding eigenvector that is positive. We

now state the most useful theorem of this section

Theorem B.2 For any matrix P such that �(P) < 1

1

X

i=0

P

i

= (I�P)

�1

;

and if �(P) � 1 then the series does not converge.

B.4 Matrices and probability

If we consider a system with transitions between states that occur at a countable set of

times we may model this system by a series of random variables (X

n

), n 2 IN where X

0

is the initial state of the system and X

n

, for n > 0, describes the state of the system

immediately after the nth transition. We take X

n

to have values in 
, where 
 is the

state space of the process.

We can then make the further assumption that the process has the Markov

property (or memoryless property). This is essentially

pfX

n+1

= xjX

0

; : : : ;X

n

g = pfX

n+1

= xjX

n

g;

for all x 2 
. Also we assume the process is homogeneous, that is

pfX

n+1

= xjX

n

g = pfX

n+2

= xjX

n+1

g;
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for all n > 0. The theorem of total probability (Tak�acs, pg 230) essentially implies that

for a system with a �nite state space (
 = f1; : : : ; kg) the above equation reduces to the

matrix equation.

p

n+1

= p

n

P:

where p

n

=

�

pfX

n

= 1g; pfX

n

= 2g; : : : ; pfX

n

= kg

�

and P = fp

ij

g where

p

ij

= pfX

n+1

= jjX

n

= ig:

By extending this we arrive at

p

n

= p

0

P

n

;

where p

0

is the vector of initial probabilities of the system. We call P a probability

transition matrix or stochastic matrix. Clearly its elements are all non-negative and its

rows must each sum to 1. Hence a stochastic matrix will always have eigenvalue 1 with

corresponding right-eigenvector 1. Also if we de�ne the matrix norm

jjAjj

r

= max

i=1;::;n

n

X

j=1

ja

ij

j

we can see that jjPjj

r

= 1 for any stochastic matrix. Hence as �(P) � jjPjj

r

= 1 and there

is an eigenvalue at 1 we can see that �(P) = 1.

If we consider the behaviour of the system on a subsetB = fi

1

; i

2

; : : : ; i

�

g; � < n,

of the state space we get

q

n

= q

0

Q

n

;

where q

n

=

�

pfX

n

= i

1

g; pfX

n

= i

2

g; : : : ; pfX

n

= i

�

g

�

and Q is the appropriate transi-

tion matrix. Q is now a sub-stochastic matrix. Its rows must each sum to less than 1.

Clearly, using the same norm we can see that �(Q) < 1.

Of interest in such systems is often equilibrium behaviour. This can be charac-

terised by lim

n!1

P

n

.

For our purposes later in this thesis we will be interested in the total time spent

in a subset of the state space before leaving that subset. This may be written

1

X

i=0

q

n

= q

0

 

1

X

i=0

Q

i

!

:

Thus we need conditions for this to converge, and then determine what it converges to.

We know �(Q) < 1 and so we can see from Theorem B.2 that this converges and that it

converges to q

0

(I�P)

�1

.
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Appendix C

Queueing theory

One of the major uses for stochastic processes is in the study of queues. In this chapter

we describe some of the basic queueing theory which is necessary for the work herein.

In fact this is the principal use of this thesis. Parts of this section are drawn from

Tak�acs (1962), Cohen (1969), Wol� (1982), Kleinrock (1975), Neuts (1989). Again it is

not intended to be anything like a complete survey. We shall concentrate here on the

M/G/1 queue. This has been one of the most studied queues and consequently there

are no shortage of references to it and many of its variants. We shall not attempt to

document these. We devote our time to some standard techniques in order to lay the

groundwork for the results of this thesis. Both in terms of supplying solutions to some

problems and providing the basic models used throughout.

C.1 The Poisson process

Consider a counting process A(t) : t � 0 on ZZ

+

. We take A(0) = 0 and say that A can

only increase by 1, at any particular time. If A(t) increases at the times �

i

, i > 0, (with

�

0

= 0) then

A(�

i

) = i:

For technical reasons we desire A to be right-continuous and have left limits. We de�ne

�

n

= �

n

� �

n�1

for n > 0 to be a series of independent, identically distributed (i.i.d.)

random variable with p.d.f. F (x). If F (x) is given by

F (x) =

(

1� e

��x

; x � 0;

0; x < 0

then we say that A(t) is a homogeneous Poisson process with rate �. (We can de�ne this

more generally, see Br�emaud (1981), but this is unnecessary for our purposes). This is

a very commonly used process. For our purposes we shall use it as an arrival stream to

the queue. It is useful to note that if we remove the time epochs �

n

with probability p

from the Poisson process of rate � we are left with a Poisson process of rate �p. This

is particularly useful when we consider a Poisson arrival process in which an arrival is

blocked with probability p.
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C.2 Queues

A queue, in general, is a stochastic process on the integers, which gives the number of

customers in the system at a given time. The notion of a customer includes such concepts

as a computer job. The process, which can be characterised by a series of arrivals and

departures, usually has the following characteristics. Arrivals increase the number of

customers in the system by one. (In some cases arrivals may come in batches which

increase the number of customers by more than one.) Departures decrease the system

size by one, except for batch departures. The most common reason for a departure is

that a customer has received service although customers may depart for reasons such as

not enough space in the queue. A general form of Notation can be used to describe a

large number of queues. This is the Kendall notation (Kendall, 1951) which is as follows.

Arrival Process/ Service Times/ Number of servers/ Max no. of customers.

Where in the �rst two places we write , M for Poisson arrivals or Negative exponential

services, G for generally distributed arrivals or services and D for deterministic arrivals

or services. This is just the simplest form of this notation but it is all we use herein.

Note that where a number is omitted it is assumed to be in�nity. Some examples are

� GI/M/s - General independent arrivals, Negative exponential service times, s servers.

� M/G/1/n - Poisson arrivals, General service times, 1 server, maximum number of

customers in the system n.

The system of primary interest to us here is the M/G/1 queue and its variants.

C.2.1 Queue discipline

The queueing discipline is the way in which customers get chosen for service from the

queue. Possibilities include First-in First-out, Last-in First-out, and Random Order. We

shall assume throughout that the queueing discipline is non-preemptive. That is, once

a customer is in service it remains there until it is �nished. Other customers do not

pre-empt it.

Essential in the idea of waiting times is the concept of non-scheduled service

disciplines. Basically these are disciplines in which the order of service does not depend

on the amount of service each customer requires. Thus when it gets to the server each

customers service time is taken as a random variable with whose service time is indepen-

dent of the other customers in the queue. All of the above are of this type. An example

of a service discipline that is scheduled is one in which the customer with the smallest

service time in the queue is served �rst.

When considering queue lengths, the choice of discipline is irrelevant except for

the proviso that it be non-scheduled and non-preemptive, which is necessary for the

analysis of the embedded process.

C.3 The embedded process

We use one of the most common approaches to this type of problem which consists of

considering the process at departures epochs. We say that we observe the system size

distribution that the customers see on departure. The equilibrium number of customers
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seen on departures in the stationary distribution can be seen by the following argument

to be the same as the equilibrium number of customers in the system.

A very useful rule called PASTA, Poisson arrivals see time averages, can be used

to see that the distribution seen by arrivals is the same as the stationary distribution of

the queue. (A fact that is not true for general arrivals.) Note that a very neat proof of

PASTA that uses martingales appears in Wol� (1989).

In Cooper (1972) pg 154 the following theorem appears.

Theorem C.1 �(t) is a stochastic process whose sample functions are (almost all) step

functions with unit jumps. Let the points of increase after some time t = 0 be labelled

consecutively t

�

, and points of decrease t

0

�

, � = 0; 1; 2; : : :. Let �(t

�

+) be denoted by �

�

and �(t

0

�

�) be denoted by �

�

. Then if either lim

n!1

Pf�

n

� kg or lim

n!1

Pf�

n

� kg

exists, then so does the other and they are equal.

Because of PASTA and Theorem C.1 considering the queue immediately after

departures is quite valid. By doing this we reduce the problem to the consideration

of a discrete-time stochastic process. This process which we call (X

n

) is in the case

of the M/G/1 queue a Markov process. In the cases we consider it is not in general

a Markov process although a Markov process can be constructed from it by adding

`supplementary' variables. That is by considering a new process (X

n

; Y

n

) where Y

n

adds

some information about the history of the process to the state. This is the normal

approach in such modi�cations to the M/G/1 queue and results usually in the matrix

geometric techniques of Neuts.

C.4 Useful theorems

There a number of useful theorems which we draw upon in this thesis.

Theorem C.2 (Little's Law) For any queueing process the following relationship holds

L = �W;

where L is the mean number of customers in the system, � is the arrival rate to the

system and W is the mean waiting time of a customer.

Proof: Little (1961).

Theorem C.3 If a(z) is the probability generating function for the number of Poisson

events of rate � during a positive time interval with probability distribution function F (x)

then

a(z) = F

�

(� � �z);

where F

�

is the Laplace-Stieltjes transform of F .

Proof:

a(z) =

1

X

i=0

z

i

Z

1

0

e

��t

(�t)

i

i!

dA(t)
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=

Z

1

0

1

X

i=0

e

��t

(�tz)

i

i!

dA(t)

=

Z

1

0

e

��t

1

X

i=0

(�tz)

i

i!

dA(t)

=

Z

1

0

e

��t

e

�tz

dA(t)

=

Z

1

0

e

�t(z�1)

dA(t):

2

We use Lemma 1 from Tak�acs (1962) page 47 at one point in this thesis. For

brevity we do not include this here. We shall however include a direct result of this

lemma.

Theorem C.4 If a(z) is as in theorem C.3 then a(z) > z for all z 2 [0; 1) if and only

if a

0

(1) � 1.

Proof: from Tak�acs (1962) page 47. 2

This could also be derived from convexity arguments.

C.5 Waiting times

In many applications it is useful to know the time spent by a customer before it receives

service. We want to calculate the waiting-time distribution for the system. To do this we

must specify the service discipline. For the First-in, First-out or order of arrival services

there is a neat way of doing this. If we call this waiting-time distribution function W (�),

then its Laplace-Stieltjes transform can be written as

W

�

(s) =

S

�

(s)

A

�

(s)

;

where A(�) is the service-time distribution and S(�) is the sojourn time distribution.

(The sojourn time is the time spent by a customer in the system, clearly the sum of the

waiting time and the service time.) From Theorem C.3 we can see that the probability

generating function of the number of arrivals during the sojourn time of a customer,

s(z), is given by

s(z) = S

�

(�(1 � z)):

For an order of arrival service discipline it is easy to see that the number of customers

left in the queue by a customer who is departing is the number of customers that arrive

during the customer sojourn time. This means that in s(z) = g(z) where g(z) is the

p.g.f. for the number on the system in equilibrium. For the M/G/1 queue this is

g(z) = (1 � �)

A

�

(�(1 � z))(1� z)

A

�

(�(1 � z))� z

:
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Thus we can easily get the Laplace-Stieltjes transform of the waiting time distribution

by taking s = �(1 � z),

W

�

(s) = (1 � �)

1

A

�

(s)

A

�

(s)

s

�

A

�

(s)� 1 +

s

�

= (1 � �)

s

�

A

�

(s)� 1 +

s

�

:

This technique can be used for all single server `order of arrival processes'. In order to

get the actual distribution the Laplace-Stieltjes distribution must be inverted.

This concludes our work on basic theory.

145



Bibliography

[1] F. Baccelli, (1986), Exponential martingales and Wald's formula for two-queue

networks. Journal of Applied Probability, 23, 812{819.

[2] F. Baccelli and A.M. Makowski, (1985), Direct martingale arguments for stability:

the M/GI/1 case. Systems Control Letters, 6, 181{186.

[3] F. Baccelli and A.M. Makowski, (1986), Stability and bounds for single server

queues in a random environment. Communications in Statistics-Stochastic Models,

2 (2), 281{291.

[4] F. Baccelli and A.M. Makowski, (1989), Dynamic, transient and stationary be-

haviour of the M/GI/1 queue via martingales. Annals of Probability, 17 (4), 1691{

1699.

[5] F. Baccelli and A.M. Makowski, (1991), Martingale relations for the M/GI/1 queue

with Markov modulated Poisson input. Stochastic Processes and their Applications,

38, 99{133.

[6] S. Barnett and C. Storey, (1970), Matrix Methods in Stability. Thomas Nelson and

Sons Ltd..

[7] P. Br�emaud, (1981), Point Processes and Queues, Martingale Dynamics. Springer-

Verlag.

[8] S.C. Borst, O.J. Boxma and M.B. Comb�e, (1993), An M/G/1 queue with customer

collection. Communications in Statistics-Stochastic Models, 9 (3), 341{371.

[9] J.W. Cohen, (1969), The Single Server Queue. North-Holland, Amsterdam.

[10] R.B. Cooper, (1972), Introduction to Queueing Theory. The Macmillian Company.

[11] P.F. Courtois and J. Georges, (1971), On a single-server �nite queueing model with

state-dependent arrival and service processes. Operations Research, 19, 424{435.

[12] D.R. Cox, (1962), Renewal Theory. Spottiswoode Ballantyne and Co. Ltd.

[13] J. Dshalalow, (1989), Multi-channel queueing systems with in�nite waiting rooms

and stochastic control. Journal of Applied Probability, 26, 345{362.

[14] J.M. Ferrandiz, (1993), The BMAP/GI/1 queue with server set-up times and server

vacations. Advances in Applied Probability, 25, 235{254.

146



[15] S.W. Fuhrmann and R.B. Cooper, (1985), Stochastic decomposition in the M/G/1

queue with generalised vacations. Operations Research, 33 (5), 1117{1129.

[16] F.R. Gantmacher, (1959), The Theory of Matrices. Chelsea Publishing Company.

[17] G.H. Golub and C.F. van Loan, (1983), Matrix Computations. North Oxford

Academic.

[18] W. Gong, A. Yan and C. G. Cassandras, (1992) The M/G/1 queue with queue-

length dependent arrival rate. Communications in Statistics-Stochastic Models, 8

(4), 733-741.

[19] A.S. Householder, (1964), The Theory of Matrices in Numerical Analysis. Blaisdell

Publishing Company.

[20] O.C. Ibe and K.S. Trivedi, (1990), Two queues with alternating service and server

breakdown. Queueing Systems, 7, 253{268.

[21] O. Kella and W. Whitt, (1992), Useful martingales for stochastic storage processes

with L�evy input. Journal of Applied Probability, 29, 396{403.

[22] D.G. Kendall, (1951), Some problems in the theory of queues. Journal of the Royal

Statistical Society, Series B, 151{185.

[23] M. Kijima and N. Makimoto, (1992a), Computation of the quasi-stationary distribu-

tions in M(n)/GI/1/K and GI/M(n)/1/K queues. Queueing Systems, 11, 255{272.

[24] M. Kijima and N. Makimoto, (1992b), A uni�ed approach to GI/M(n)/1/k and

M(n)/G/1/K queues via �nite quasi-birth-death processes. Communications in

Statistics-Stochastic Models, 8 (2), 269{288.

[25] L. Kleinrock, (1975), Queueing Systems, Volume I: Theory. John Wiley and Sons,

Inc..

[26] R.O. LaMaire, (1992), M/G/1/N vacation model with varying E-limited service

discipline. Queueing Systems, 11, 357{375.

[27] J.D.C. Little, (1961), A proof of the queueing formula: L = � W. Operations

Research, 9 (3), 383{87.

[28] J.A. Morrison, (1990), Two-server queue with one server idle below a threshold.

Queueing systems, 7, 325{336.

[29] P.M. Morse, (1967), Queues, Inventories and Maintenance. John Wiley and Sons,

Inc..

[30] T. Nakagawa and S. Osaki, (1976), Markov renewal processes with some non-

regeneration points and their applications to reliability theory. Microelectronics

and Reliability, 15, 633{636.

[31] M.F. Neuts, (1989), Structured stochastic matrices of M/G/1 type and their appli-

cations. Marcel Dekker.

147



[32] J. Neveu, (1975), Discrete-Time Martingales. North-Holland, Amsterdam.

[33] J.H. Park, (1990), The analysis of the M

X

/G/1 queue by a martingale method, .

Master's Thesis, Korea Advanced Institute of Science and Technology.

[34] R. Pyke, (1961a), Markov renewal processes: De�nitions and preliminary properties.

Annals of Mathematical Statistics, 32, 1231{1242.

[35] R. Pyke, (1961b), Markov renewal processes with �nitely many states. Annals of

Mathematical Statistics, 32, 1242{1259.

[36] W.A. Rosenkrantz, (1983), Calculation of the Laplace transform of the length of

the busy period for the M/G/1 queue via martingales. Annals of Probability, 11

(3), 817{818.

[37] W.A. Rosenkrantz, (1989), Ergodicity conditions for two-dimensionalMarkov chains

on the positive quadrant. Probability Theory and Related Fields, 83, 309{319.

[38] M. Roughan, (1993a), Multi-phase discrete-time renewal processes. pre-print.

[39] M. Roughan, (1993b), An analysis of a modi�ed M/G/1 queue using a martingale

technique. pre-print.

[40] J.A. Schormans, J.M. Pitts, and E.M. Scharf, (1993), A priority queue with super-

imposed geometric batch arrivals. Communications in Statistics-Stochastic Models,

9 (1), 105{122.

[41] R.F. Serfozo, (1990), Point processes. In Stochastic Models, D.P.Heyman and

M.J.Sobel, Editors, Volume 2, Chapter 1. North-Holland, Amsterdam.

[42] L. Tak�acs, (1962), Introduction to the Theory of Queues. Oxford University Press.

[43] H. Takagi, (1992), Time dependent process of M/G/1 vacation models with exhaus-

tive service. Journal of Applied Probability, 29, 418{429.

[44] T. Takine, H. Takagi and T. Hesegawa, (1993), Analysis of an M/G/1/K/N queue.

Journal of Applied Probability, 30, 446{454.

[45] P.D. Welch, (1964), On a generalised M/G/1 queue in which the �rst customer in

each busy period receives exceptional service. Operations Research, 12 (5), 736{752.

[46] D. Williams, (1991), Probability with Martingales. Cambridge University Press.

[47] R.W. Wol�, (1982), Poisson arrivals see time averages. Operations Research, 30,

223{231.

[48] R.W. Wol�, (1989), Stochastic Modelling and the Theory of Queues. Prentice Hall

International.

[49] S.F. Yashkov, (1993), On heavy tra�c limit theorem for the M/G/1 processor-

sharing queue. Communications in Statistics-Stochastic Models, 9 (3), 467{471.

148



[50] G.F. Yeo, (1962), Single server queue with modi�ed service mechanisms. Journal

of the Australian Mathematical Society, 2, 499{507.

149


