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ABSTRACT

IP forwarding anomalies, triggered by equipment failures, imple-
mentation bugs, or configuration errors, can significantly disrupt
and degrade network service. Robust and reliable detection of such
anomalies is essential to rapid problem diagnosis, problem mitiga-
tion, and repair. We propose a simple, robust method that integrates
routing and traffic data streams to reliably detect forwarding anoma-
lies. The overall method is scalable, automated and self-training.
We find this technique effectively identifies forwarding anomalies,
while avoiding the high false alarms rate that would otherwise result
if either stream were used unilaterally.

1. INTRODUCTION

Anomaly detection is useful in network management for a range
of applications, from detecting security threats (e.g. denial of ser-
vice attacks), to detecting vendor implementation bugs, network
misconfigurations or faults. One wishes to detect times where the
network is behaving abnormally, as action may then be required to
correct a problem. Anomaly detection can be particularly useful in
the context of reliability. Reliability is a critical objective in large IP
networks, but many factors (for instance code bugs) are outside of
an operator’s ability to control. An alternative to preventing outages
is to rapidly recover from these [1, 2]. In order to recover quickly,
one must detect and localize a problem quickly.

However, while detection and alarming on real problems is im-
portant, it is equally important to keep the rate of false alarms low.
A high false alarm rate results in genuine events being lost in the
“snow” of false events. Statistical anomaly detection tests are run
often (e.g., every five minutes), on large networks (with ten’s of
thousands of links), and so even a seemingly low false alarm rate
may result in enough false alarms to overwhelm network operations
staff. In the worst case, false alarms undermine anomaly detection,
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as operations staff tire of reacting to false alarms, and ignore or turn
the system off entirely.

IP forwarding anomalies represent a large class of network anoma-
lies, that relate to problems in forwarding packets to their desti-
nations. More precisely, a forwarding anomaly is a period during
which a significant number of packets fail to successfully exit the
network at an appropriate point. Network component failures (line
card, optical amplifier, or router outages, and fiber cuts) are not
usually within the class of such anomalies. During such events, IP
traffic is rerouted along alternate paths, resulting in at most a short
transient anomaly while the routing protocols reconverge. Also,
such failures are typically isolated, and easily detectable via other
means, e.g. the Simple Network Management Protocol (SNMP).
However, as we note below, component failures may trigger some
larger network error, or occur simultaneously.

Forwarding anomalies can be the result of several problems:

e Bugs: Bugs in router software may cause forwarding problems
that do not register via any hardware alerts, or may further be
related to bugs in the instrumentation itself.

e Misconfigurations: The IP control plane — the distributed pro-
tocols that coordinate the building of forwarding tables through-
out the network — is very complex. In such systems it is hard for
an operator to understand the state of the system, and therefore
the possible impacts of their actions [2]. The result is that routers
may be configured in such a way that packets do not reach their
destinations, even though the network may appear to be work-
ing normally. Such misconfigurations are not entirely under the
control of a single operator, as BGP allows network operators
to misconfigure their systems in a way that may impact another
network. Note that in [3] the authors found that operator errors
in the form of misconfiguration was the major cause of service
affecting outages, and BGP in particular has been seen to be hard
to administer.

e Cascading network failures: In a cascading network failure, a
simple failure (such as that of a line card) results in widespread
disruption of the network. Although, the possibility of such a
collapse is not anticipated in the Internet, such failures are dif-
ficult to predict, or control, and certainly have been observed
in other network systems, for instance the power grid in North
America in August 2003, and in the telephone network [4].

e Latenterrors: Itis possible to have latent errors: problems that
are not significant until another error triggers them. A simple
example might be a backup path that has been misconfigured,
so that it does not work. Without careful testing such a problem
might not come to light until after failure of the primary link.
The failure of the primary link would be dealt with using normal
procedures for detection and re-mediation, but without anyone
realizing that the backup path was also failed, they might not
give this task the priority it requires.



e Exogenous factors: Although Networking equipment is gen-
erally held in tightly controlled environments, with redundant
power supplies, and A/C, rare events, for instance the Sept 11
attack on the World Trade Center, are large enough to effect a
large part of the network. Obviously, detection of such impacts
will be secondary to the event in question, but may none-the-less
be useful in order to quickly assess the scale of the impact.

e Simultaneous failures: Most networks plan for single com-
ponent failures, for instance, by providing pairs of redundant
links. Given independent failures (consideration must be given
to shared risk link groups when making such assumptions [5])
simultaneous failures should be unlikely, but can occur, with se-
vere consequences, e.g. [6].

A consistent property in the above problems is that the standard
methods for detecting network problems, for instance SNMP traps,
syslog messages, etc., either do not detect such events, or see the
true extent of the problem. Understanding the extent of a problem
quickly is important in order to prioritize the event appropriately.

A large outage of a major tier-1 provider that happened on Oc-
tober 3rd 2002 [7], was found to have a large impact on routing
data (from a BGP monitor) data, and traffic data (from SNMP mea-
surements), and this motivated the investigation of using these data
sources, in conjunction, to detect and localize such anomalies. Each
data source provides a different view of such anomalies, with both
having problems in data quality and in missing causality informa-
tion that lead naturally to false alarms. On the other hand, if such
problems are suitably uncorrelated in two data sources, then the
false alarm rate can effectively be diminished by alarming only if
both data sources indicate the anomaly concurrently.

First, we transform each data set individually to create useful
anomaly metrics. Though SNMP usage data is relatively simple —
the number of packets or bytes that traverse an interface between
successive polling intervals — operational measurements for large
networks can be relatively complex and noisy. We use two methods
to extract the anomaly indicators from this data: a standard tech-
nique called Holt-Winters[8], and a second novel method based on a
decomposition of the traffic into a trend, a periodic component, and
stochastic components comprising normal variation, and anomalies
(similarly to [9]). BGP dynamic updates, on the other hand, provide
a rich, high-dimensional data source, with considerable volatility.
Here, to extract a useful anomaly indicator, we transform the raw
data to simulate and track BGP tables at locations throughout the
network. We then form the dynamic count of the number of routes
in these tables satisfying a given predicate, and use a modified expo-
nentially weighted moving average technique [10] to signal anoma-
lies. Last, we correlate the SNMP and BGP anomaly indicators in
time to produce a combined indicator.

2. RESULTS

The anomaly detection techniques were tested on a large volume
of data from am operating tier-1 network. We first show, in Figure 1,
an example set of data, with anomalies in the individual datasets
shown, along with the time of the real anomaly: the failure of a peer.
During this failure, the peer dropped traffic along its peering links
in a number of locations. In the Figure, we focus on a PoP where
nearly half of the traffic (and corresponding routes) arose from that
peer, and so the failure stands out clearly. However, the failure was
also detected in a number of other locations. The example is highly
illustrative for two reasons. Firstly, it shows the the fact that the
two datasets give good indications of the fault. Secondly, it shows a
number of false alarms in one of the datasets, that are avoided using
the pair.

We have performed statistical study of the results, to find that
firstly, the methods (using either Holt-Winters, or the Decomposi-
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Figure 1: Example of joint anomaly detection (SNMP shown in
top plot, BGP in lower plot).

tion technique on the SNMP data, and the EWMA on the BGP data)
had perfect detection of the known events, but that Holt-Winters had
a slightly larger false alarm rate. However, the key point of the re-
sults was a dramatic reduction in the false alarm rate through using
both sets of data. We still retain the perfect detection probability,
but with a reduction in false alarms by more than a factor of one
hundred, to the point where the results are operationally useful.

3. CONCLUSION

This paper has described an important class of network anoma-
lies — forwarding anomalies — and specific methods for combin-
ing routing and traffic data to perform accurate forwarding anomaly
detection. The method is very simple, and so despite its power,
there are opportunities for improvement: for instance, by including
new dataset, e.g. OSPF data, netflow, router logs, or active probes.
The method might also be improved by new algorithms for detect-
ing anomalies (e.g. see [11]), or for combining the data from such.
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