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Q: How to fill in missing values in a matrix?
- Traffic matrix
- Delay matrix
- Social proximity matrix



Internet Traffic Matrices
+ Traffic Matrix (TM)

- Gives traffic volumes between origins and destinations

+ Essential for many networking tasks
- what-if analysis, traffic engineering, anomaly detection

4 - Lots of prior research

- Measurement, e.q.
[FGLR+01, VEO3]

- Inference, e.qg.
[MTSB+02, ZRDGO03, ZRLDO3,
ZRLDO5, SLTP+06, ZGWXO06]

- Anomaly detection, e.g.
[LCDO04, ZGRGO5, RSRDO7]




Missing Values: Why Bother?

* Missing values are common in TM measurements
- Direct measurement is infeasible/expensive

- Measurement and data collection are unreliable

- Anomalies/outliers hide non-anomaly-related traffic
- Future traffic has not yet appeared

* The need for missing value interpolation
- Many networking tasks are sensitive o missing values
- Need non-anomaly-related traffic for diagnosis

- Need predicted TMs in what-if analysis, traffic
engineering, capacity planning, etc.



The Problem
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The Problem

E.g., link loads only: AX=Y

3 v, foute 3 * A! routing matrix;
Y: link load matrix

link 2

®

route 1

E.g., direct measurements
only: M.*X=M.*D
e M(r,t)=1 < X(r,t) exists;
D: direct measurements

A(X)=B

Challenge: In real networks, the problem is
massively underconstrained!




Spatio-Temporal Compressive Sensing

+ Tdea 1: Exploit low-rank nature of TMs
- Observation: TMs are low-rank [Lpcp+04, LcDo4]:

~ * T
anm ~ Lnxr Rmxr (I‘ « n’m)

» Idea 2: Exploit spatio-temporal properties

- Observation: TM rows or columns close to each
other (in some sense) are often close in value

» Idea 3: Exploit local structures in TMs

- Observation: TMs have both global & local
structures
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Spatio-Temporal Compressive Sensing

» Idea 1: Exploit low-rank nature of TMs
- Technique: Compressive Sensing

» Idea 2: Exploit spatio-temporal properties

- Technique: Sparsity Regularized Matrix
Factorization (SRMF)

+ Idea 3: Exploit local structures in TMs

- Technique: Combine global and local
interpolation



Compressive Sensing

» Basic approach: find X=LRT s.t. A(LR")=B
— (m+n)*r unknowns (instead of m*n)

* Challenges
— A(LRT)=B may have many solutions > which to pick?

— A(LRT)=B may have zero solution, e.g. when X is
approximately low-rank, or there is noise

» Solution: Sparsity Regularized SVD (SRSVD)
- minimize | A(LRT) — BJ? // fitting error
+ A (JL]2+]|R]?) // regularization

- Similar to SVD but can handle missing values and
indirect measurements
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Sparsity Reqularized Matrix Factorization

- Motivation

- The theoretical conditions for compressive sensing to
perform well may not hold on real-world TMs

» Sparsity Reqgularized Matrix Factorization

- minimize | A(LRT) — BJ? [/ fitting error
+ A (|L]2+]|R]|D /I regularization
+ |S(LRT)|? // spatial constraint
+ |(LRT)TT|2 // temporal constraint

— S and T capture spatio-temporal properties of TMs
- Can be solved efficiently via alternating least-squares



Spatio-Temporal Constraints

+ Temporal constraint matrix T, _; |,
- Captures temporal smoothness

- Simple choices suffice,e.g: T = 01 -1

0O 0 1

- Spatial constraint matrix S
- Captures which rows of X are close to each other
- Challenge: TM rows are ordered arbitrarily

- Our solution: use a initial estimate of X to
approximate similarity between rows of X




Combining Global and Local Methods

» Local correlation among individual elements
may be stronger than among TM rows/columns

- Sand T in SRMF are chosen to capture global
correlation among entire TM rows or columns

- SRMF+KNN: combine SRMF with local

interpolation

- Switch to K-Nearest-Neighbors if a missing
element is temporally close to observed elements
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Generalizing Previous Methods

- Tomo-SRMF: find a solution that is close

to LRT yet satisfies A(X)=B

~
™ < Tomo-SRMF solution
~
~
~

SRMF solutionf LRT N o |
~ Solution subspace
N o A(X)=B

~

- —

N~

Tomo-SRMF generalizes the tomo-gravity
method for inferring TM from link loads
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Applications

* Inference (a.k.a. fomography)

- Can combine both direct and indirect measurements
for TM inference

- Prediction

- What-if analysis, traffic engineering, capacity
planning all require predicted traffic matrix
 Anomaly Detection

- Project TM onto a low-dimensional, spatially &
temporally smooth subspace (LRT) = normal traffic

Spatio-temporal compressive sensing provides a
unified approach for many applications

15



Evaluation Methodology

Data sets
Network Date Duration | Resolution | Size
Abilene 03/2003 |1 week 10 min. 121x1008
Commercial ISP |10/2006 |3 weeks |1 hour 400x504
GEANT 04/2005 |1 week 15 min. 529x672
Metrics

- Normalized Mean Absolute Error for missing values

- Other metrics yield qualitatively similar results.
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Algorithms Compared

Algorithm Description

Baseline Baseline estimate via rank-2 approximation
SRSVD Sparsity Regularized SVD

SRSVD-base SRSVD with baseline removal

NMF Nonnegative Matrix Factorization

KNN K-Nearest-Neighbors
SRSVD-base+KNN | Hybrid of SRSVD-base and KNN

SRMF Sparsity Regularized Matrix Factorization
SRMF+KNN Hybrid of SRMF and KNN

Tomo-SRMF

Generalization of tomo-gravity
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Interpolation: Random Loss

Dataset: Abilene

- SRMF
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Interpolation: Structured Loss

Dataset: Abilene
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even with 98% loss

Our method is always
the best; sometimes
dramatically better




Tomography Performance )

Dataset: Commercial ISP
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Can halve the error of Tomo-Gravity
by measuring only 2% elements!
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Other Results

* Prediction
- Taking periodicity into account helps prediction

- Our method consistently outperforms other methods
+ Smooth, low-rank approximation improves prediction

*+ Anomaly detection
- Generalizes many previous methods
* E.g., PCA, anomography, time domain methods

- Yet offers more
* Can handle missing values, indirect measurements
- Less sensitive to contamination in normal subspace
* No need to specify exact # of dimensions for normal subspace

- Preliminary results also show better accuracy
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Conclusion

- Spatio-temporal compressive sensing
- Advances ideas from compressive sensing
- Uses the first truly spatio-temporal model of TMs
- Exploits both global and local structures of TMs

* General and flexible
- Generalizes previous methods yet can do much more

- Provides a unified approach to TM estimation,
prediction, anomaly detection, etc.

» Highly effective
- Accurate: works even with 90+% values missing
- Robust: copes easily with highly structured loss
- Fast: a few seconds on TMs we tested
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Lots of Future Work

* Other types of network matrices

- Delay matrices, social proximity matrices

* Better choicesof Sand T

- Tailor to both applications and datasets

+ Extension to higher dimensions

- E.g., 3D: source, destination, time

* Theoretical foundation

- When and why our approach works so well?



Thank you!



Alternating Least Squares

» Goal: minimize | A(LRT) — B2+ A (JL]?>+|R]?)

+ Step 1: fix L and optimize R
- A standard least-squares problem

+ Step 2: fix R and optimize L
- A standard least-squares problem

+ Step 3: goto Step 1 unless MaxIter is reached
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