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Q: How to fill in missing values in a matrix?
– Traffic matrix
– Delay matrix
– Social proximity matrix
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Internet Traffic MatricesInternet Traffic Matrices
• Traffic Matrix (TM)

– Gives traffic volumes between origins and destinations
• Essential for many networking tasks 

– what-if analysis, traffic engineering, anomaly detection

• Lots of prior research
– Measurement, e.g. 

[FGLR+01, VE03]

– Inference, e.g. 
[MTSB+02, ZRDG03, ZRLD03, 
ZRLD05, SLTP+06, ZGWX06]

– Anomaly detection, e.g.
[LCD04, ZGRG05, RSRD07]
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Missing Values: Why Bother?Missing Values: Why Bother?
• Missing values are common in TM measurements

– Direct measurement is infeasible/expensive
– Measurement and data collection are unreliable
– Anomalies/outliers hide non-anomaly-related traffic
– Future traffic has not yet appeared

• The need for missing value interpolation
– Many networking tasks are sensitive to missing values
– Need non-anomaly-related traffic for diagnosis
– Need predicted TMs in what-if analysis, traffic 

engineering, capacity planning, etc.
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The ProblemThe Problem

1

3

2router

route 1

route 3

route  2
link 2

link 1

link 3


















6,3

6,2

6,1

5,3

5,2

5,1

4,13,32,3

4,13,22,2

4,13,12,1

1,3

1,2

1,1

x
x
x

x
x
x

xxx
xxx
xxx

x
x
x

X

xr,t :  traffic volume on route r at time t 
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,t,t,t xxy 321  indirect: only measure at links
The ProblemThe Problem
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The ProblemThe Problem

E.g., link loads only: AX=Y
• A: routing matrix; 

Y: link load matrix

E.g., direct measurements 
only: M.*X=M.*D

• M(r,t)=1  X(r,t) exists;
D: direct measurements

1

3

2router

route 1

route 3

route  2
link 2

link 1

link 3

A(X)=B
Challenge: In real networks, the problem is 

massively underconstrained!
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SpatioSpatio--Temporal Compressive SensingTemporal Compressive Sensing
• Idea 1: Exploit low-rank nature of TMs

– Observation: TMs are low-rank [LPCD+04, LCD04]:  

Xnxm  Lnxr * Rmxr
T (r « n,m)

• Idea 2: Exploit spatio-temporal properties
– Observation: TM rows or columns close to each 

other (in some sense) are often close in value

• Idea 3: Exploit local structures in TMs
– Observation: TMs have both global & local 

structures
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SpatioSpatio--Temporal Compressive SensingTemporal Compressive Sensing
• Idea 1: Exploit low-rank nature of TMs

– Technique: Compressive Sensing

• Idea 2: Exploit spatio-temporal properties
– Technique: Sparsity Regularized Matrix 

Factorization (SRMF)

• Idea 3: Exploit local structures in TMs
– Technique: Combine global and local 

interpolation
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Compressive SensingCompressive Sensing
• Basic approach: find X=LRT s.t. A(LRT)=B

– (m+n)*r unknowns (instead of m*n)

• Challenges
– A(LRT)=B may have many solutions  which to pick?
– A(LRT)=B may have zero solution, e.g. when X is 

approximately low-rank, or there is noise

• Solution: Sparsity Regularized SVD (SRSVD)
– minimize |A(LRT) – B|2 // fitting error

+  (|L|2+|R|2) // regularization
– Similar to SVD but can handle missing values and 

indirect measurements
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SparsitySparsity Regularized Matrix FactorizationRegularized Matrix Factorization
• Motivation

– The theoretical conditions for compressive sensing to 
perform well may not hold on real-world TMs

• Sparsity Regularized Matrix Factorization
– minimize |A(LRT) – B|2 // fitting error

+  (|L|2+|R|2) // regularization
+ |S(LRT)|2 // spatial constraint 
+ |(LRT)TT|2 // temporal constraint

– S and T capture spatio-temporal properties of TMs
– Can be solved efficiently via alternating least-squares
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SpatioSpatio--Temporal ConstraintsTemporal Constraints
• Temporal constraint matrix T

– Captures temporal smoothness
– Simple choices suffice, e.g.:

• Spatial constraint matrix S
– Captures which rows of X are close to each other
– Challenge: TM rows are ordered arbitrarily
– Our solution: use a initial estimate of X to 

approximate similarity between rows of X
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Combining Global and Local MethodsCombining Global and Local Methods
• Local correlation among individual elements 

may be stronger than among TM rows/columns
– S and T in SRMF are chosen to capture global 

correlation among entire TM rows or columns

• SRMF+KNN: combine SRMF with local 
interpolation
– Switch to K-Nearest-Neighbors if a missing 

element is temporally close to observed elements
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Generalizing Previous MethodsGeneralizing Previous Methods
• Tomo-SRMF: find a solution that is close 

to LRT yet satisfies A(X)=B

solution subspace 
A(X)=B

Tomo-SRMF solution

SRMF solution: LRT

Tomo-SRMF generalizes the tomo-gravity 
method for inferring TM from link loads 
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ApplicationsApplications
• Inference (a.k.a. tomography)

– Can combine both direct and indirect measurements 
for TM inference

• Prediction
– What-if analysis, traffic engineering, capacity 

planning all require predicted traffic matrix
• Anomaly Detection

– Project TM onto a low-dimensional, spatially & 
temporally smooth subspace (LRT)  normal traffic

Spatio-temporal compressive sensing provides a 
unified approach for many applications
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Evaluation MethodologyEvaluation Methodology
• Data sets

• Metrics
– Normalized Mean Absolute Error for missing values

– Other metrics yield qualitatively similar results.
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Algorithms ComparedAlgorithms Compared
DescriptionAlgorithm

Generalization of tomo-gravityTomo-SRMF

Hybrid of SRMF and KNNSRMF+KNN

Sparsity Regularized Matrix FactorizationSRMF

Hybrid of SRSVD-base and KNNSRSVD-base+KNN

K-Nearest-NeighborsKNN

Nonnegative Matrix FactorizationNMF

SRSVD with baseline removalSRSVD-base

Sparsity Regularized SVDSRSVD

Baseline estimate via rank-2 approximationBaseline
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Interpolation: Random LossInterpolation: Random Loss

Our method is
always the best

Only ~20% error 
even with 98% loss

Dataset: Abilene
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Interpolation: Structured LossInterpolation: Structured Loss

Our method is always 
the best; sometimes 
dramatically better

Only ~20% error 
even with 98% loss

Dataset: Abilene
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Tomography PerformanceTomography Performance
Dataset: Commercial ISP

Can halve the error of Tomo-Gravity 
by measuring only 2% elements!
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Other ResultsOther Results
• Prediction

– Taking periodicity into account helps prediction
– Our method consistently outperforms other methods

• Smooth, low-rank approximation improves prediction

• Anomaly detection
– Generalizes many previous methods

• E.g., PCA, anomography, time domain methods
– Yet offers more

• Can handle missing values, indirect measurements
• Less sensitive to contamination in normal subspace
• No need to specify exact # of dimensions for normal subspace

– Preliminary results also show better accuracy
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ConclusionConclusion
• Spatio-temporal compressive sensing

– Advances ideas from compressive sensing
– Uses the first truly spatio-temporal model of TMs
– Exploits both global and local structures of TMs

• General and flexible
– Generalizes previous methods yet can do much more
– Provides a unified approach to TM estimation, 

prediction, anomaly detection, etc.

• Highly effective
– Accurate: works even with 90+% values missing
– Robust: copes easily with highly structured loss
– Fast: a few seconds on TMs we tested
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Lots of Future WorkLots of Future Work

• Other types of network matrices
– Delay matrices, social proximity matrices

• Better choices of S and T
– Tailor to both applications and datasets

• Extension to higher dimensions
– E.g., 3D: source, destination, time

• Theoretical foundation
– When and why our approach works so well?
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Thank you!Thank you!
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Alternating Least SquaresAlternating Least Squares
• Goal: minimize |A(LRT) – B|2 +  (|L|2+|R|2)

• Step 1: fix L and optimize R
– A standard least-squares problem

• Step 2: fix R and optimize L
– A standard least-squares problem

• Step 3: goto Step 1 unless MaxIter is reached


