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ABSTRACT

Traffic engineeringandtraffic matrix estimationare often treated
asseparatdields, eventhoughoneof the majorapplicationsfor a

traffic matrix is traffic engineering.n caseswvherea traffic matrix

cannotbemeasuredlirectly, it maystill beestimatedrom indirect
data(suchaslink measurementsjut theseestimatesontainer

rors. Yetlittle thoughthasbeengivento theeffectsof inexacttraffic

estimate®ntraffic engineeringln this papemwe considethow well

traffic engineeringvorkswith estimatedraffic matricesn thecon-

text of aspecifictask;namelythatof optimizingnetwork routingto

minimize congestionmeasuredy maximumlink-utilization. Our

basicquestionis: how well is the real traffic routedif the rout-

ing is only optimizedfor an estimatedraffic matrix? We compare
againstoptimal routing of the real traffic usingdataderived from

an operationattier-1 ISP We find that the magnitudeof errorsin

the traffic matrix estimateis not, in itself, a goodindicatorof the

performanceof that estimatein route optimization. Lik ewise, the

optimal algorithmfor traffic engineeringgiven knowledge of the

realtraffic matrixis nolongerthe bestwith only theestimatedraf-

fic matrix asinput. Our main practicalfinding is thatthe combi-

nationof aknown traffic matrix estimationtechniqueanda known

traffic engineerindechniquecangetcloseto theoptimumin avoid-

ing congestiorfor therealtraffic. We evendemonstratstability in

the sensethat routing optimizedon datafrom one day continued
to performwell on subsequentiays. This stability is crucial for

the practicalrelevanceto off-line traffic engineeringasit canbe

performedby ISPstoday

Categoriesand Subject Descriptors

C.2.3[Computer-Communications Network]: Network Opera-
tions—networkmanaementnetworkmonitoring

General Terms
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1. INTRODUCTION

Estimatingan Internettraffic matrix hasreceved considerable
attentionin recentyears. A traffic matrix providesthe volume of
traffic betweerevery pair of ingressandegresspointsover a given
time intenal. Suchinformationis essentiato a variety of oper
ationaltasksrangingfrom router/link failure analysisto capacity
planningand traffic engineering,for instanceby route optimiza-
tion.

Whendirectflow-level measurementmreavailable,accuratdraf-
fic matricescan be derived following the approachesletailedin
[1]. Unfortunately direct measurementequireadditionalinfras-
tructuresupportandit canbeprohibitively expensve to instrument
the entire IP network to collect suchdata. Recently progresshas
beenmadeon traffic matrix estimationand several methodds3, 4,
5] have beenproposedhatattemptto derive traffic matricesfrom
the link load data, which can be easily obtainedvia the Simple
Network ManagemenProtocol(SNMP).We call suchatechnique
an SNMP-basedraffic matrix estimator Thesealgorithmshave
beenvalidatedagainstreal (but partial) traffic matrices(obtained
throughdirectmeasurementsjsingcommonmetricssuchasmean
errorcomputedbverall source-destinatiopairs. Theresultingesti-
matescontainerrorsof varyingmagnitudedependingn thetraffic
matrix estimatorapplied.lt is, however, notdirectly clearwhatim-
pacttheseerrorshave on operationatasks,asdifferenttasksmay
have quite differenttoleranceto the typesandmagnitudeof the er
rors. Forexample,if all errorswereconcentratednasinglecritical
link, this could have a big impacton performanceyet a nggligible
impactusingmoststandarcerrormeasures.

In this paperwe attemptto establistadirectconnectiorbetween
SNMP-basedraffic matrix estimatorsand one particularnetwork
operationatask: traffic engineeringo minimize congestion.That
is, we areinterestedn thefollowing operationaperformancenea-
sure:

If traffic engineeringis donebasedon the estimated
traffic matrix, how well doesit perform on the real
traffic matrix?

Severaltraffic engineeringechniguesave beenpresentedhatop-
timize routingto minimize congestior{6, 7, 8, 9, 10, 11]. We call
suchatechniquearoutingoptimizer It setstheroutingparameters
of a network for a given traffic matrix so asto minimize conges-
tion for thattraffic matrix. The routing parametersietermine for
eachsource-destinatiopair, the fraction of traffic goingon differ-
entpathsfrom the sourceto the destination.Typically, in the past,
routing optimizerswere evaluatedusing synthetictraffic matrices.
In this papemwe feedtheroutingoptimizeranestimatedraffic ma-
trix while measuringthe performanceof the routing on the real
traffic matrix.



In this paperasin [9], max-utilizationis picked asthe easiesto
appreciataneasurdor congestion.The utilization of alink is the
ratio of its loadoverits capacityandthemax-utilizations themax-
imum utilization over all links in the network. Otherworks have
focusedon moresophisticatedostfunctions,summingcostsover
all links in the network (see.e.g.,[8, 7]), but thesearelesseasyto
understandandmightobscurehepointthatthe performancef es-
timationandoptimizationcombineds noteasilyextrapolatedrom
the performanceof one by itself. Someintuition may be gained
from the finding in [12] thattheir routing optimizerwasrobustto
+50% randomerrors,multiplying eachindividual demandwith a
randomvaluefrom [0, 2]. We considet50%alargemeanerror, and
yetit only affectedthe max-utilizationby about10%. For contrast,
if in a large network, we only changedthe demandghat useda
specifichighly utilized link, this would have alargeimpactfor the
max-utilization,yet a negligible impacton theaverageerror.

We deliberatelytreatbothtraffic estimatorsaandroutingoptimiz-
ers as black-boxes that we combinein a plug-and-playmanner
Both sidesarebasedn previously publishecdtechniquesThe con-
tribution of this paperis to seewhat happensvhenthe two sides
are combined. Testswere performedusing simulationsbasedon
datafrom an operationattier-1 ISP We found that, in itself, the
magnitudeof errorsin the traffic matrix estimatewas not a good
indicator of the performanceof that estimatein our traffic engi-
neeringtasks.Lik ewise, thetraffic engineeringalgorithmthatper
forms bestknowing the real traffic matrix wasno longerthe best
with estimatedtraffic matrices. Our main practical finding was
thatcombiningthe OSPFroutingoptimizertechniquerom [7] with
the tomogravity traffic matrix estimatorfrom [4], we got closeto
the minimal max-utilizationfor the realtraffic. The abore OSPF
routing canalsobe implementedwith 1S-1S andMPLS, makingit
broadlyapplicableto todayslP network.

To furthertestthe applicability of our combinationwe took an
OSPFRoutingsolutionbasedn estimatedraffic matricefrom one
day, andtestedthis routing on the real traffic over the following
week. We found thatthe routing continuedto performwell. Thus
our approachwas not only robust to estimation,but alsoreason-
ably stableovertime. Thislaterpropertyis crucialfor realisticoff-
line implementationsn today’s IP networks, wherechanginglink
weightsfrequentlycanresultin network performancealegradation.

Contents.Thepaperis dividedasfollows. In §2, we discussthe
differentrouting optimizersconsideredandin §3, we discussthe
differenttraffic matrixestimatorsin §4, we presenburexperimen-
tal methodologyOurresultsarepresentedh §5, followedby some
practicalconsiderationin §6. Thenwe have somereflectionsover
limitations of the paperin §7, andfinally we endwith concluding
remarksin §8.

2. ROUTING OPTIMIZERS

In this section,we discussthe differentrouting optimizerscon-
sidered We notethattheseareall basedn publishedvork, andthe
readewill bereferredto therelevantpublicationsfor mosttechni-
cal details. The interestingnew aspectis what happensvhenthe
optimizers,viewed asblack-boxs,areappliedto estimatedraffic
matricesandtestedon realtraffic matrices.

2.1 Generalrouting with MPLS

In the most generalform of routing, traffic from a sourceto
a destinationmay be split arbitrarily over all possiblepathsbe-
tweensourceanddestination.Finding a generalrouting minimiz-
ing max-utilizationis aninstanceof the classicaimulticommodity
flow problemwhich can be formulatedas a linear program[13,

Chapterl7]. As describedby Mitra and Ramakrishnar6], the
linear programsolutioncanbe implementedwith the quite recent
Multi-ProtocolLabel Switching(MPLS) protocol[14]. Essentially
eachpath usedis implementedas a label-switchedpath that the
sourceusesfor a certainfraction of its traffic to the destination.
We usedthe commercialinearprogrammingoackageCPLEX ver-

sion6.5to solve the standardinear programto minimize the max-
utilization for a given traffic matrix, and we refer to this asthe
MPLSoptimizer

The MPLS optimizeris optimalin thatif appliedto thetruetraf-
fic matrix, it givesthe bestpossibleperformancemongall routing
protocolswith the giventraffic matrix andnetwork, usingthe max-
utilization asthe only performancecriteria. Other possiblecrite-
ria suchas feasibility of the implementation robustnesgo link-
failures,etc.,arenot considered.

However, whathappensf the MPLS optimizerfindsthe optimal
MPLS solutionfor the estimatedraffic matrix andthenappliesit
to therealtraffic? The MPLS solutiontells us exactly how traffic
shouldbe split over differentpathsfrom sourceto destinationand
this splitting is now appliedto the real traffic matrix. How good
is the resulting routing comparedwith the above optimal MPLS
routing for therealtraffic matrix? Putcorversely how sensitie is
the optimal solutionto errorsin estimatingthe traffic matrix? As
we shallsee theansweliis 'quite sensitve’.

In factthe MPLS optimizercanhave somestrangeresultswhen
theinputshave errors. The algorithmmay, without penalty allow
routeloopsfor traffic matrix elementof smallmagnitudeaslong
astheseloopsdo not affect the max-utilizationobjective function.
This is theresultof focusingthe optimizationon only minimizing
themaximumutilization— aloopin asmalltraffic matrix element
haszeropenaltyundersuchanobjective function. However, if this
smalltraffic matrix elementcontainserrors,the loop will amplify
the errorwhenthetraffic is routed.

For anexampleof amorerobustoptimizationwetried modifying
theobjectivefunctionaboveto includeapenaltyfor loops,andrefer
to theresultingalgorithmasthe MPLS" optimizer

We note,however, thatMPLS canimplementary possiblerout-
ing, so evenif the above concreteMPLS optimizersdo not work
well with estimatedraffic matricesthis doesnotimply thatMPLS
in itself cannotbe maderohustwith respecto estimation.Also, in
all fairnessijt shouldbe mentionedhatthe context for the optimal
MPLS solutionsin [6] wasa matrix of virtual leasedines where
the ISP commitsto a certainamountof traffic for eachsourcedes-
tinationpair. Thesecommitmentsarefixedin contractsandcanbe
honoredasis.

2.2 Traditional shortestpath routing

The mostcommonlyusedintra-domaininternetrouting proto-
colstodayarethe shortestpath Interior Gatavay Protocols(IGP):
Open ShortestPath First (OSPF)[15] and IntermediateSystem-
IntermediateSystem(I1S-1S) [16]. In theseprotocols,which are
functionallythesamegeachink is associatewith apositive weight,
andthe lengthof a pathis definedasthe sumof the weightsof all
thelinks onthatpath. Traffic is routedalongthe shortespaths.In
casef tieswhereseveral outgoinglinks are on shortestpathsto
thedestinationtheflow is split roughly evenly.

By default, Ciscorouters[17] setthe weight of a link to bein-
verselyproportionalto its capacity— we referto this settingasthe
InvCapweight setting. The weightsof the links, andtherebythe
shortestpath routes,can be changedy the network operatorso
optimizenetwork performance.

Over the years,mary methodq7, 8, 9, 10, 11] have beenpre-
sentedhatcomputea setof link weightsthatminimize congestion



in theresultingshortestpathrouting of a giventraffic matrix. We
shallreferto sucha methodasan OSPFoptimizer thoughthe re-
sultscouldequallybeappliedto IS-ISrouting. We usetheapproach
describedn [7, 12], whichis basedon so-calledocal searchtech-
niques[18]. The methodusesheuristicsto iteratively improve the
weightsetting,changingoneor afew weightsin eachiteration.As
a standardwe ranit for 5000iteration, taking about5 minutesof
simulationtime. The problemof finding an optimal weight set-
ting is NP-hard[7], and so we cannotguarantedinding the true
optimum. The quality of thefinal weightsettingis affectedby ran-
dom choicesmadethroughthe iterations,giving somevariancein
the quality of the outcome.For example,it is possiblethatwe, by
chance get a betterweight settingfor the true traffic matrix from
the estimatedraffic matrix thanwe would getfrom therealtraffic
matrix itself, but the resultsbelow shaowv thatthis randomvariation
is notvery importantin practice.

Of course,asarguedcarefullyin [12], it is not attractve to op-
timize the weight settingon-line as the demandschange. As in
[12], ourweightoptimizerworksfor multiple traffic matrices Even
more importantly we will considerthe impact of using the opti-
mizedroutesasapermanentveightsetting This permanentveight
settingis thentestedon the true traffic matricesof the subsequent
days.

3. ESTIMATING TRAFFIC MATRICES
FROM LINK DATA

This sectiondescribeghree methodsfor estimatingtraffic ma-
tricesfrom link load data. Thefirst two methodsare basedon so
called “Gravity models” while the third uses(in addition) “Net-
work tomograply” methods. Although it might be appealingto
testsomemore comple algorithms,the sub-sampleof possibili-
ties presentechereis sufficient to illustrate the points of interest.
What's morewe find a nearoptimal combinationof estimatiorand
routing optimizationalgorithmsin ary case sothereis little to be
gainedin usinga morecomplex method.

This sectionis notintendedto provide a detaileddescriptionof
the estimatoralgorithms(which may be foundin [4]). Thisis not
intendedas a study of the estimators. The novel aspectis what
happensvhentheestimatorsirecombinedwith routingoptimizers
andtestedon real traffic matrices. The descriptionhereis to pro-
vide someinsightinto therelationshipbetweerthethreealgorithms
tested.

Gravity models[19, 20, 21], are often usedby socialscientists
to modelthe movementof people,goodsor informationbetween
geographiareaq20, 21]. Recently variationson gravity models
have alsobeenproposedor computingtraffic matriceq3, 4, 5].

At the heartof the gravity modelapproachis a proportionality
assumption:the amountof traffic from a given sourceto a given
sink is proportionalto the total traffic to the output sink, inde-
pendenbf source.For example,in a gravity modelfor car traffic
betweercities the relative strengthof the interactionbetweentwo
citiesmightbemodeledasproportionalto the productof the popu-
lationsdivided by a distancerelated“friction” term. Similarly, the
simplestpossiblegravity modelsfor the Internetassumethat the
traffic exchangedetweerocationsis proportionalto the volumes
enteringandexiting at thoselocations,thoughin this casewe as-
sumethe distancerelatedterm is a constantbecausenteractions
in the Internetare lessdistancesensitve. This simple model of
the Internetis usedin [22], andwe referto it asthe simplegravity
model

It is possibleto generalizehe simplegravity modelin anumber
of ways[3, 4, 5] to take into accountadditionalinformation pro-

vided by detailedlink classificationandrouting policies. [3, 4, 5]
have shavn thesegravity modelsto be significantlymoreaccurate
than the simple gravity models. We testthe generlized gravity
modelof [4] in which additionalinformationon pointsof ingress
andegressfor traffic flows canbeincorporatedo explicitly model
hot-potataroutingfor traffic exchangedvith peernetworks.

By appropriatenormalizationthegravity modelsolutionis guar
anteedo beconsistentvith the measuredink loadsatthe network
edge but notnecessarilysoin theinterior links. Alternatively, net-
work tomograply methodsexplicitly includetheinformationmea-
suredfrom internallinks. This informationcanbe written asa set
of linearconstraintequations

x = At, 1)

wherex is avectorof thelink measurements,is thetraffic matrix

written as a column vectotr and A is the routing matrix, whose
termsgive thefractionof traffic from aparticularorigin/destination
pairthattraverseeachlink.

In practicethis setof equationds ill-posed,andsoto dealwith
this difficulty tomographidechniquedrom otherfields have been
used.For adetaileddescriptiorandcomparisor{usingsimplemet-
rics) of anumberof thesemethodssee[5]. We shallconsiderasin-
gle suchalgorithm,tomayravity, [4] which displaysgood proper
tiesin termsof scaling,estimationaccurag, speedf computation,
androbustnesgo errors. The methodusesthe generalizedyravity
model aborve as a prior (a kicking off point) and refinesit using
atomographidechniqueto selectan estimateof the traffic matrix
t, that satisfiesthe constraintequations put thatis closestto the
gravity modelaccordingto somedistancemetric.

4. EXPERIMENT AL METHODOLOGY
4.1 Ideal

In this contet it is possibleto generatearbitrarily bad results
for ary particularalgorithmby choosingpathologicatopologiesor
traffic matrices,but the importantquestionis how well theseal-
gorithms perform on real data. The ideal experimentto testthe
useof traffic engineeringon estimatedraffic matriceswould have
SNMPIink traffic measurements,perfecttraffic matrix,andexact
topologyinformation,all from exactly the samemomentin time.
Finally, the new routingcomputedshouldbe testedin therealnet-
work backat thetime whenthe measurementsweremade.Unfor-
tunately mostof thisis impractical.

Eachdifferenttype of datahaslimitations, and practical con-
straintsin how it maybe collected.For instance

e Currentlywe do not have high-resolutiontracesof the net-
work topology andso we only have snapshotiiews of the
network;

e Flow-level data(whichis the easiesstartingpoint for deriv-
ing a traffic matrix) is not generatecsa traffic time series,
but ratheranoverlappingsetof flows, andin mary casesan
only be collectedon a sampledbasis. Furthermore flow-
level datacan be hardto collectin placesbecauset is a
featureof a router andnot all routerssupportthis feature,
or its use conflicts with other features. Further in some
casescollecting flow-level measurementsiight resultin a
reductionin forwardingperformancéwhich is highly unde-
sirable). Furthermoreflow-level datafor an entire network
canbevast— potentiallyterabytegperday— andhandling
this volumeof datais dauntingin andof itself.



e SNMPIlink datahave mary limitations— for instancemiss-
ing data(SNMP usesunreliable UDP transport),incorrect
data (through poor router vendorimplementations)and a
coarsesamplinginterval (five minutesis typical).

e Experimentingwith the routing of a real operationaltier-1
ISP is not an option. We have to conductour investigation
with simulations.

The network traffic alsoexhibits strongdaily, andweekly cycles,
andsoaveragingresultsoverintervalslongerthanoneor two hours
is notvery meaningful.

It is difficult to overstatethe importanceof consisteng in the
data. We do not wish the resultshereto be dueto artifactsin the
data,but theabove problemsmale it seeminglyimpossibleto gen-
eratearealistic,completelyconsistensetof testdata.However, [4]
presentsan alternatve methodologywhentestingtheir estimation
algorithm, which we adapthere. In the following sectionwe de-
scribethedatawe have available,andthe methodologyusedto test
how well traffic engineeringvorksusingestimatedraffic matrices.

Also, comparisonggainstthecurrentroutingin therealnetwork
areinteresting but would reveal proprietaryinformation. Instead,
asabenchmarkwe herecompareour performancegainstCiscos
[17] default InvCapweightsettingfor OSPE

4.2 Inputs

This paperdoesnotdirectly consideiSNMP datafor thereasons
above. It would be unreasonablylifficult to collect SNMP traffic
statisticxonsistentvith thetraffic matrixandtopologyinformation
available. Theapproactusedhereis to use

o samplediow-level data,and
e topologyandroutinginformationasderivedfrom [23].

Theflow-level datacontaingletailsof numberf pacletsandbytes
transferrecbetweensourceand destinationlP addressesandalso
givesinformationsuchasthe interfaceat which the traffic entered
our network. Combinedwith topologicalandrouting information
(asin [1]) onemayderive atraffic matrix from suchinformation.

As notedabove it is hardto have completeflow-level coverage
of the network. In the datasetsusedherewe cover around80%
of theedgeof alargetier-1 IP network, includingall thetraffic on
inter-peerlinks. Thetraffic matricesgeneratedisingthis datawill
thereforebe partial, in the sensethat we are missingsomerows
from the true traffic matrix. However, the resultingtraffic matrix
is still a realtraffic matrix (covering around80% of the network
traffic) on the real network topology andsois asgooda possible
setof measurementasare currently available (for instancein [5]
only threerows of the traffic matrix were available). This traffic
matrixis whatwe shallreferto asthetrue traffic matrix throughout
therestof the paper

The natureof flow-level datamakesit only possibleto approx-
imate time-seriesdata. Flow-level information containsthe start
andstoptime of the flow, andthe numberof paclets/bytesput not
whenthe pacletsweresentwithin theflow. Giventhatsomeflows
can continuefor hours,it is only practicalto look at time series
of the orderof the timeoutsusedto flush currentflows. Note that
thereis noinherentreasorwhy thetimeoutswill occuratthesame
time at differentrouters,and so to usecommensuratéme series,
onemustaverageover longerintervals thanthe timeoutto obtain
usefuldata(usinga more sophisticatednterpolationschemeruns
therisk of introducingartifactsinto the data). In Cisco Netflow,
the timeoutsare of the order of 15 minutes,and so we consider
time seriesat a one hour time scale,allowing (with not too much

approximation¥or theseintenalsto be offsetat differentrouters.
Over longerintenvals the traffic is non-stationaryshawving strong
diurnal cycles)andsowe do not wish to uselongertime averages
if possible.

The topology and routing information are derived from infor-
mationgatheredirom the samenetwork usingthe methodsof [1].
Giventhesdraffic matricesaandthenetwork topology we needonly
aconsistensetof link loadmeasurement® proceed.

4.3 Methodology

Theproblemof providing aconsistensetof traffic, topologyand
link measuremendatacanbe solved asfollows. We simulatethe
OSPFrouting using the existing topology and link weights (and
areastructure).Theexisting link weightsarethosecurrentlysetby
the network operator Fromthis we may computea routing matrix
A, andthenderive asetof link measurements from (1). Thusthe
traffic matrix t, the routingmatrix A andthe measuredink loads
x areall consistent.

We canthenperformthe estimationprocedureo computet, the
traffic matrix estimate. This approachallows us to work with a
problemfor which we have bothareal estimateandthe true traffic
matrix.

To helpthereademunderstandheissuesnvolved,we shallsum-
marizethe errorsin the estimatedraffic matricesin Section5.1.
However, the point of this paperis thatsimply looking at theseer-
rorsis not enoughto understandvhethera traffic matrix estimate
is “good”. To really understandvhetheran estimateis good,one
mustassessiow well it performsin operationatasks.

The task we assessereis traffic engineering— in particular
the task of optimizing the network routing to make the network
moreefficientin its useof resourceg¢andhencereducecongestion).
To do this we use one basicapproach. We computerouting by
applying a routing optimizerto the estimatedtraffic matrix. We
thenassessiow well theserouteswork for therealtraffic matrix.

Specifically considerthe task of optimizing the OSPFweights
in anetwork. Basedon thetraffic matrix estimatewe optimizethe
weightsetting:

w = OSPF-weight-optimizgt ).

An OSPFsimulatortakes the new weights and finds the corre-
spondingoptimizedrouting matrix

A = OSPF-route-simulaté)

Finally, we applythis new routingto theoriginal truetraffic matrix
t soasto getasetof link loads:

x=At.

Themax-utilizationoptimizedfor the estimatedraffic matrix t but
appliedto thetruetraffic matrix t is then

max-utilizatior(f; t) = max ==,
1 CZ
whereC; arethelink capacities.The whole procedurebehindthe
experimentss illustratedin Figurel.

We will also comparethe resultswith thoseunderalternative
routing, for instance using a routing matrix derived using MPLS
optimizationfrom thetrue or estimatedraffic matrix, andthe Inv-
Caprouting. Theonly differences themechanisnusedto generate
theoptimizedroutingmatrix A from the estimatedraffic matrix t.

We concernourseleswith optimizing the routing of the inter
PoPbackbone-routenetwork containingon the orderof onehun-
dredrouters,with afew links perrouter Link basedraffic matrix
estimatesare difficult to obtainon ary finer granularitythanthis,
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andOSPFallows a hierarchicalrouting basedon areaswhich can
naturally be usedto isolate the routing of local intra-PoPtraffic
from inter-PoPtraffic.

5. RESULTS

Theresultsshavn herearederivedfrom thebackboneof atier-1
ISP network. We presentresultsover the courseof oneday (the
17th of August2002)to shav the effects of the changingmatrix
over the courseof theday We will alsoshow resultsfrom a sep-
aratesggmentof datato illustratethe performanceof routing pre-
diction. The datais brokeninto onehour datasetsover which the
traffic matrixis approximatelystationary

For proprietaryreasonsmax-utilizationsreportedin this paper
arescaledsothattheir absolutevaluefor the operationabackbone
cannotbededucedSuchscalingdoesnotaffecttherelative perfor
manceof thedifferentschemesProprietaryreasonslsopreventus
from exposingthe performanceof the OSPFweight settingsused
in theoperationahetwork.

5.1 Errorsin Traffic Matrix Estimates

A detailedgeneralanalysisof the errorsin the differenttraffic
matrix estimateds presentedn [4]. For referencein this paper
we provide somesimple measurementsf the errors. In Figure 2
we presentrelative error of estimatedraffic matricesversustrue
traffic matrices.Thatis, for eachhourwe computethe sum(over
the source-destinatiopairs) of the absolutevalue of the error be-
tweenestimatedandtrue traffic, and divide this sumby the total
traffic. We seethattomograity is morethantwice asgoodasgen-
eral gravity, which is more thantwice as good as simple gravity.
Thesefindingsareconsistentvith thosereportedn [4].

In Figure 3 (a) we presentan alternate representatiorof the
estimatesmore comparablewith later figureson max-utilization.
A simple-mindedchypothesisis that optimizing over the true traf-
fic matrix, the max-utilizationis going to be proportionalto mean
traffic andthatif we optimizeover an estimatedraffic matrix, the
performancds degradedby meanerror. Figure 3 (a) shavs the
meantraffic plus the mean(absolute)errorsfor eachof the data
setsover the courseof the day If our simple-mindedhypothesis
is true, the curves shouldroughly matchthoseof max-utilization
achievedwith the estimatedraffic matrices.

5.2 Max-utilization versusmeanerrors

We now testhow well the estimatedraffic matricesperformon
max-utilization. We apply the OSPFoptimizerto eachestimated
demandnmatrix, includingthetruetraffic matrix, andtesttheresult-
ing routingonthetruetraffic matrix. Theresultingmax-utilizations
aredepictedin Figure3 (b). At this stage we couldalsohave ap-
plied an MPLS optimizer but aswe shallseeshortly thesearenot
asreliable. Averagesand maximumsover the 24 hoursare con-
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estimates. For tomogravity, the averagerelative error is 0.13,

for generalgravity it is 0.30,and for simple gravity it is 0.67.

tainedin Table1 alongwith otherdata. More precisely the table
reportsthe

e AverageMax-Utilization (AMU): theaverageoverall hours
of themax-utilizationfor therelevantmethod.

e Max Max-Utilization (MMU): the largestmax-utilization
for themethodover all hours.

Both quantitiesare reportedas percentagesf the MMU for Inv-
Cap (recall that we for proprietaryreasonsannotgive the abso-
lute numbers).The formermetric givesan averageview of perfor
mancewhile thelatteris atype of worstcasecomparison.

Themostinterestinghingto obseneis thatwhenit comego the
max-utilizationin Figure3 (b), the performanceof simple gravity
andgeneralgravity is roughlythe same.As calculatedn Table1,
simplegravity slightly outperformsgeneralgravity bothon the av-
erageandin theworst-caseThisis in sharpcontrasto thefindings
in §5.1thatthe errorsof generalgravity arehalf aslarge asthose
of simplegravity. Hence the errorimprovementof generalgravity
doesnot helpreducethe max-utilization. The errormeasurements
in [4] alsorategenerabravity oversimplegravity, sothisis astrong
counterexampleto theideathatonecanusesimpleerrormeasure-
mentsto make generakonclusionsabouttheperformancef traffic
estimatesn traffic engineering.

The above beingsaid,we do seethatthe tomograity estimates
performbestboth with respecto errorsandwith respecto max-
utilization, onthe averagegettingwithin 6% of OSPFoptimization
basedon thetruetraffic matrix. Thisis quite smallcomparedvith
the 13% averageerror shavn in Figure2. We also note that we
actually perform slightly betterwith the estimatedthan with the
true traffic in hour 8. This clearly illustratesthe point from §2.2
thatthe OSPFoptimizeris only a heuristic,not guaranteedo find
optimalsolutions.

5.3 Sensitvity of optimizers to estimates
We next seehow well the OSPFoptimizationcompareswith:

e inversecapacityweights: in this default weight settingthe
weightsare the inverseof the capacityof links. This is a
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(c) The'x’ s shav the optimal MPLS routing, the '+’
signsshav the OSPFoptimizationusingthetruetraf-
fic matrix, andthe squareshow theresultof inverse
capacityOSPFweights. The circlesshav the result
of the true traffic matrix beingappliedwith weights
from OSPFoptimizationusing the estimatedtraffic
matrices.
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(d) As before the’x’ sshaw theoptimalpossiblerout-
ing, andthe squareshaw theresultof inversecapac-
ity OSPFweights. The starsshav the resultof using
the estimatedtraffic matrix in MPLS optimization,
andthenapplyingtheresultsto thetruetraffic matrix.
Notethatin onecasetheresultis severaltimesworse
thancanbe displayedon this graph,andgoesoff the
scale.Similarly, the™' s show the performancef the
modifiedMPLS algorithm.

Figure 3: Resultsfor the 1 hour data setsover the 17th of August 2003. Figure (a) shovs a comparison of errors in the estimates,
(b)—(d) show the maximum utilizations of the network under various routing optimization. Note that the y-axesfor (b)—(d) are all
scaledin the sameway sothat the MMU of the InvCap weightsis 100.



reasonablettemptat optimizationgiven no other network
information.

e MPLSandMPLS" optimization:bothoptimally minimizing
the max-utilizationwith respecto the giventraffic matrix.

e truetraffic matrix: in which we apply the optimizationalgo-
rithmsabove to thetruetraffic matrix elements.

Figure 3 (c) shows the maximumutilizations for eachhour of
the day, undervariousrouting schemes.The ' x’ signsshav the
optimalpossiblerouting,i.e.,theresultof applyingthe MPLS opti-
mizerto thetruetraffic. The'+ signsshav the OSPFoptimization
usingthetruetraffic matrix, andthe squareshaw theresultof in-
versecapacityOSPFweights. The’o’s show the resultof thetrue
traffic matrix beingappliedwith weightsfrom OSPFoptimization
usingthe estimatedraffic matricesusingthetomograity method.

We canseein Figure3 (c) thatthe OSPFoptimizationalgorithm
('+'s) comesvery closeto the optimal possiblesolution(’ x’s) in
mostcasesandis always a significantimprovementover the de-
fault InvCap weights. Furthermoreweightsfound from the esti-
matedtraffic matrix (o’ s) performonly slightly worsethanweights
foundfrom thetruetraffic matrix. In fact,asseenin Table1, even
whenthe OSPFoptimizeris appliedto the tomograity estimated
traffic matrix, it getswithin 11-12%of the optimumsolution. This
is clearevidencethattheerrorsin thetomograity estimatedraffic
matrixarenotveryimportantfrom our particulartraffic engineering
perspectie,andthatSNMPIlink statisticscouldbeusedto estimate
traffic matricesof considerablaise.

Anotherinterestingpointis thatwhereaghe optimizedroutings
generallyfollow the developmentsn the meantraffic ('+'s)in Fig-
ure 3 (a), the InvCaprouting doesnot. This shavs thatthe traffic
is not just scaledup and down during the day, but thatit is also
shiftedaroundin waysthat impactInvCap differently, yet which
canbeaccommodatedty the optimizers.

Figure 3 (d) shavs the sameoptimal, and InvCap results, but
compareshemto the MPLS and MPLS* optimizationusing es-
timateddata. Notethatin onecaseusingthe MPLS optimization,
theresultis severaltimesworsethancanbedisplayednthisgraph.
Accordingto Tablel it goesoff by afactor400,andamoredetailed
investication revealedthat this wasdueto a loop, asdiscussedn
§2.1. The MPLS* optimizeravoidsthis problem,but giventheto-
mogravity estimatesit is still twice asfar from the true optimum
asthe OSPFoptimizer Thuswe have a strongcounterexampleto
our simple-mindechypothesisthat the optimizationthat performs
bestgiventhetruetraffic would alsoperformbeston estimates.

optimization traffic matrix performance%o)

method AMU MMU

InvCap N/A 79.9 100.0
OSPF simplegravity Model 57.5 67.2
OSPF generalgravity model 58.6 68.1
OSPF tomograity 47.1 57.7
OSPF true 44.4 54.1
MPLS tomograity 1735.5 40259.7
MPLS* tomograity 53.5 68.8
MPLS true 42.5 51.8

Table 1: The AMU and MMU of eachmethod asa percentage
of the MMU for the InvCap weights.

5.4 Further merits

We notethat mary of the above resultssoundsimilar to those
reportedin [7, 12], but the major differenceis thatthe weight op-
timizationis donebasedon an estimatedraffic matrix while mea-
suredon a true traffic matrix, thusgiving usthe desiredfeed-back
ontheoperationakalueof the estimatedraffic matrix.

Anothervery importantdifferenceto all the previous work on
OSPFoptimizationis that our resultsare basedon measurements
from areal operationahetwork. The closestto this wasthe work
from [7] thatuseda proposedAT&T WorldNetbackbonewith pro-
jecteddemandsilt is only very recentlythatgoodmeasurementsf
traffic matriceshave becomepossibleon a suficiently large scale.
A secondarymerit of this paperis thusto substantiategprevious
weightoptimizationwork thewith first realdata.

6. PRACTICAL CONSIDERATIONS

While the resultsabore shav the OSPFoptimizationto work
well with thetomograity estimatestherearea numberof consid-
erationsbeforearny methodcanbe considerto be practical. This
sectionwill addressomeof theseissues.

6.1 Faster OSPFoptimization

The OSPFoptimizationalgorithmis quitefast— onthecurrent
network it runsin around330 secondgfor 5000iterationsin Fig-
ure 3, on a Sun900 MHz Ultrasparc-IllCopperprocessor) How-
ever, themajority of thebenefitof the optimizationalgorithmused
herecomeearlyin thealgorithm[7, 12] whenappliedto realdata.
It is worth testingwhetherthisis alsothe casewhenwe useanesti-
matedtraffic matrix. It is indeedthe caseasis shavn by Figure4,
which shawvs the samesetof datawith the resultsof the weights
after5000iterationsandonly 1000iterations.Therelative increase
in maximumutilization (dueto 5 timesfewer iterations)is always
belov 5%. In contrastthe time for 1000iterationsis only about
onefifth of thatfor 5000.
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Figure 4: Resultsof route optimization asin Figure 3 (c), and
with only 1000iterations of the OSPFroute optimization algo-
rithm.

6.2 Global Optimization

Frequentthangego OSPFlink weightsarehighly undesirable.
Apart from the managementompleity this induceson the net-
work, OSPFroutingtakesatleastsecondso re-corvergeaftereach
change While this may seema shorttime, on alarge network car
rying 100’s of Terabytegerday, changingthe OSPFrouting each



hour could easilyresultin the lossof a 100 GBs of traffic or more
perday

It is, however, possibleto usethe optimizationmethodabove to
computean optimumrouting for all 24, one hour traffic matrices
for oneday More precisely in [12] a techniquels describedhat
seeksa single global weight settingthat works well for multiple
demandmnatrices pobtaininga goodmax-utilizationfor all of them.
We appliedthistechniqueasablack-box.This providesanothetin-
terestingtestof how well the traffic matrix estimategperform. We
computesucha setof weightsfrom thetomograity estimatedraf-
fic matricesfor oneday, andthendeterminehow well the weights
performfor eachhourof the day usingtherealtraffic matrix. Fig-
ure5 shavs theseresults.
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Figure 5: Global optimization over a 24 hour period. Once
again the crossesrepresentthe optimal solution for eachone
hour data set, and the squares represent inverse capacity
weights. The points, and diamonds representthe global op-
timum weights calculated from the set of real and estimated
traffic matrices, respectvely, applied to eachone hour traffic
matrix.

The figure also givesthe resultsoptimizedover the true traffic
matricesfor the 24 hours, and the hourly optimum. The results
for the estimatedandtrue traffic matricesaregood,evenin com-
parisonto the hourly optimum. Comparingto the latter is unfair
in this casebecauset is easierto optimizefor a single hourthan
over the whole day We usetheminsteadof the global optimum
MPLS solutionbecausé¢he computationatostfor the global opti-
mum MPLS solutionwasprohibitive (it involvesa linear program
with order 30 million variablesand 50 million constraints). The
OSPFoptimizationalgorithm,on the otherhand,is still quite fast.
It is considerablyslower whenoptimizing over 24 traffic matrices,
takingaround6500secondso run 5000iterations put thisis in fact
betterthan24timesthespeedf theindividual hourly optimization,
which actuallyreduceghe overall computatiorfor the day.

Table 2 summarizeghe results,and provides a comparisonto
thosein the previous section.We canseethatthe globalsolutionis
very closeto theindividual solutionin performance.

6.3 Predictive Optimization

As notedin §6.2it is highly desirableto changdink weightsin-
frequently In the previoussectionwe shavedthatwe couldderive
a setof weightswhich work well for an entireday’s setof traffic
matrices. The questionarises‘how often needone changethese
weights?”Clearly, the answeris no morethanonceperday How-

optimization traffic matrix | performance%)
method AMU MMU
GlobalOSPF tomograity 48.1 57.7
Global OSPF true 45.4 52.4
Adaptive MPLS true 42.5 51.8

Table 2: The AMU and MMU of the global routing optimiza-
tion over oneday.

ever, if onewishesto changehemevenlessfrequently we mustbe
concernedvith how well today’s setof weightswill performin the
future, thatis, the predictive strengthof the optimizedweights.

This is a muchharderproblemthanwe have consideredso far
becausery large,operationahetwork changegontinuously:new
links areaddedandold links re-homedpr retired. Notethatin our
data-setsve obtain routing and topology information at 24 hour
intervals,sofor the purpose®f the previousexamplesthe network
appearedunchangedver the 24 hour period, althoughin fact it
may have changed.Hence,evenfor 24 hour global optimization
the estimatedveightsmustberobustagainstnetwork changes.

Ohviously, in afull systemfor optimizingnetwork routingthere
would be carefulconsideratiorgivento weightsfor new links, and
somekind of readjustmentvhen the topology of the network is
otherwisechanged. However, we shall considerthe very simple
casewherewe assignmaximalpossibleweightsto new links (cost
themout), whichresultsin routingonly overthepreviously existing
network. This is obviously sub-optimal but aswe shall shaw, the
weightoptimizationalgorithmstill performswell.

Figure 6 (a) shaws the result of applying the weightsderived
from global optimizationof the estimatedraffic matricesfrom the
1st of July, 2002, to the real traffic on a seriesof daysfrom the
1stto the 8th of July. We chosethis periodbecausgherewereno
backbonenetwork changesuntil the 8th, whena largelink change
occurred.For comparisorFigure6 (b) shavs the resultof inverse
capacityweightingusingthe samescalefor they-axis.

The resultsshav thatthe methodconsistentlyand significantly
outperformsnversecapacityweighting,despiteusingweightsop-
timizedfor adifferentday Thisis despitethechangesn thetraffic
matriceswhich typically exhibit strongweekly variationsaswell
asdaily variations. Most notably somesuddenchangein traffic
behaior occurrecbetweermidnightandlamon Saturdaythe 7th,
causinghigh maximumutilization underinversecapacityweight-
ing (thefirst crossin Figure6 (b)). Despitesucha sudderchange,
the methodworksvery well, reducingthe maximumutilization by
nearly50%.

The resultsalso shav that the inversecapacityweighting per
formancevariesconsiderablyduring the week. As we know the
network doesnot changeduring the period beforethe 8th, these
changesmustbe the resultof changesn the traffic matrix. For
instance becausef the weekly cycle in thetraffic, or potentially
becausef changesn thetheBorderGatavay Protocol(BGP)pol-
icy, which controlsrouting along a large part of the edgeof the
network, andhencewheretraffic departghe network.

The stability of the weight setting chosenusing the estimated
traffic matricesin the faceof suchchangesn the traffic is a pro-
foundbenefitof this approach.

Theseresultsshavs thattheresultsabove arenotjusttheoretical
possibilities pbut provide arobustandstablesolutionto arealtraffic
engineeringoroblem. The solutionis basedon the traffic matrices
estimatedrom link data(suchasonewould getfrom SNMP link
measurementgndis practicalbothin computationaload,andro-
bustnesdo typical sourceof variationfoundin realnetworks.
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Figure 6: Resultsbasedon tomogravity estimatesand OSPF optimization on the 1stof July, 2002. The resultsshown the maximum
utilization for the true traffic matrix on eachof five days, over the courseof a week, using the weightsfrom the first day. Figure (a)
shaws the OSPFoptimization weights,and (b) shows the InvCap weights— note that both figureshave the samey-axis scale.

7. REFLECTIONS

In this sectionwe reflectoverlimitationsin theresultspresented,
addressingariousnaturalpointsof criticism.

7.1 Max-utilization

As mentionedn theintroduction,we pickedmax-utilizationtraf-
fic engineeringbjective becausé is easyto understan@ndappre-
ciate,notbecausd is thebestor mostimportanttraffic engineering
objective. Indeed thereis no singlemostimportantobjective. Fo-
cusingon max-utilization,we have producedsomevery promising
results,andwe hopethatthis will inspireothersto performsimilar
studiesfor otherimportanttraffic engineeringbjecties.

7.2 Proprietary scaling

For proprietaryreasonsye have scaledall max-utilizationby a
secreffactorsoasto hide the true max-utilizationin our network.
Obviously, theabsolutevalueis interesting.For example,atypical
operationalrequiremenis that the max-utilizationis belov 60%.
Hence,jmproving the MMU asin Table1 from 100%with inverse
capacityto 57.7%is reallyimportant. However, if thescalingwasa
factor2, thenthe correspondingmprovementfrom 50%to 28.8%
is irrelevant. Neverthelesstraffic grows over time and ability to
improve max-utilizationmeanghatwe canaccommodatéar more
growth beforewe have to investin new equipment.

7.3 The InvCap bench-mark

Thereareseveralreasonsvhy we have usedinvCapasabench-
mark. First, it is a vendorrecommendediefault, hencea natural
startingpoint for traffic engineering.Second,in [7], InvCapwas
foundto beagooddefaultin the sensébeingasgoodor betterthen
other simple heuristicslike unit weights, or link weightspropor
tionalto physicallengths.

Moreinterestingly[12] foundthatinvCapweightswereasgood
asasetof weightsoptimizedfor onetraffic matrixt; andappliedto
anindependenthgeneratedraffic matrix to. Thetesttells usthat
usinga clue-lessweightsettingis atleastasbadasthe InvCapde-
fault. Hence jmprovementsover InvCapindicatehow muchbetter
our routingis comparedo aclue-lessne.

As a matterof fact, with no clue aboutthe traffic, we are not
aware of ary generaltechniqueperformingbetterthaninvCapin
practice nhotevenwith generaMPLS routing. Recently[24], there
hasbeeninterestingheoreticalvork onobliviousroutingthatgives
max-utilizationswithin a factorO(log® n) from optimality for all
possibledemandnatrix. Thisis very surprisingandimpressvethe-
oreticalresult,butin practice for realisticlP networksanddemand
matrices,it appearghat InvCap getswithin a factor2 from opti-
mality, which is muchbetter The differenceis, of course thatthe
theoreticafesulthasto take all the mostpathologicahetworksand
demandmatricesinto account.Recentlyin [25], obliviousrouting
hasbeentestedon someconcretenetworks, gettingwithin a factor
2 from optimality for all possibledemandmatrices. This is again
theoreticallyinteresting,but the methodis too slow to dealwith
networks with more than 40 nodes. Moreover, an MPLS imple-
mentationof the solutionwould requirea cubic numberof labels,
which is prohibitive for large networks. For contrastthis paperis
focusedontechniqueshatwork in practicefor large ISP networks.
Indeedthe methodsare alreadyin usein a decisionsupportsys-
temfor the humannetwork operatorgesponsibldor the network
configuration.

7.4 The data sets

Therearetwo majorproblemsn theexperimentgeported First,
it is unfortunatethatour basicdataareproprietarysothatotherre-
searchergannotreproducepur resultsandcontinuethe work with
thesedata. Also, all our dataare from the samenetwork. We did
performmary experimentswith thisnetwork. For example thereis
morethana monthandmary topologicalchangedetweerthe ex-
perimentgeportedn §5 andthosereportedn §6. Neverthelessve
would like to seerealistic experimentsfrom othernetworks. Un-
fortunately for realnetworks, mostof thesedataareproprietary

From[26] we do have goodpublic estimatef the basictopol-
ogy of mary majorIP networks, exceptthatlink capacitiesarenot
soeasyto obtain. Also, we have establisheanodelsfor generating
synthetictopologiedik e thosein [27].

Themainproblem,however, is to getgoodtraffic matrices.Real
networksarehighly tunedto the expectedraffic soonecannofust



generatehe traffic matrix independently We simply don't know
of ary goodmethodfor generatinglemandmatricesto go with the
topologiesfrom [26]. Simple mindedideaslike sayingthat high
degreeroutersoriginatea lot of traffic don't work, for thesecould
justbehubsin the middle of nowhere.

In [7, 12], anoisygravity basedmodelfrom [28] is usedto gen-
eratesynthetictraffic matricesto go with the synthetictopologies
from [27]. It is easyto testour techniquen thesedata,but there
is amajorcaveat;namelythatwhenwe useagravity basednethod
for generatinghetraffic, thenthe simplegravity estimationwill be
very accurateln fact,we getvery similar resultsto thosereported
in [12] for noisy data. The answeris that for thesekinds of syn-
thetic data,simplegravity getswithin a few percentof optimality,
whichis muchbetterthanwhatwe reportedfor our realnetwork.

The above illustratesan inherentdifficulty in generatingsyn-
thetic demandmatricesfor our kind of experiment. If we know
the generatgrwe cheatif we exploit thatin our estimation but we

alsocheatbursehesif ourestimatoidoesnotexploit thegeneration.

Thebasicpointis thatanestimatoris supposedo exploit whatwe
think is a good modelfor how traffic arises,and this thinking is
difficult to model.

Onecould, of course,arguethat our datasetsaretoo thin, and
thatresearchn traffic engineeringshouldwait until someonehas
found a way of getting betterdata. Finding betterdatais clearly
a very importantproblemof independentnterest,but why wait?
Eventhoughourdataarenotconclusve, they arepromisingenough
to be of interestfor otherISPs. As they getapplied,we will geta
betterunderstandin@f how they work in therealworld. Also, as
betterpublic dataemeges, it is trivial to testthemin our frame-
work. We just have to rerunthe programs.

8. CONCLUSION

We setout in this paperto provide a genuinemeasurefor as-
sessinghe practicalaccurag of traffic matrix estimation.Simple
metricsare unsatiséctory becauseone may form ary numberof
them,andthey mayreturndifferentresults,dependingon whatas-
pectof thetraffic matrix is givenimportance Hencewe wishedto
provide a direct connectionto a practicalproblemas a meansof
assessinghe quality of the results. The meanschosenwasto test
the routing optimizationbasedon estimatedraffic matriceswhen
usedwith thetruetraffic matrix.

Experimentingvith datafrom alargetier-1 ISP, we foundsome-
thing more,namelythatthe combinationof tomograity andOSPF
weightoptimizationwasa powerful andpracticalmethodfor traffic
engineering.

The result arosebecausehe OSPF optimization methodwas
quite robust to the typesof errorsfound in the traffic matrix es-
timates.MPLS style optimizationdesignedo obtainthe very best
possiblerouting was much lessrobust. Hence,evenif MPLS is
used,it makessensdo usea morerobustmethodto determinethe
routes for instancd GP routing.

The OSPFoptimizationmethodhad otherdesirableproperties,
suchastheability to optimizeweightsfor arangeof traffic matrices
(sayover a day) andalsoto provide weightsthatworked a whole
weekinto thefuture.

The otherside of theseresultswasthe finding that the perfor
manceof the traffic matrix estimatesvas not a direct function of
the magnitudeof the errorsin the traffic matrix estimates. This
shavs theimportanceof consideringhe combinationof traffic es-
timationandrouteoptimizationbeforemakingary conclusionson
how they will work together Arbitrary errormeasuremengreuse-
ful for superficiakomparisonbut do nottell thetruestoryasfaras
practicalapplicationgyoes.

In thefuture we wish to examinealternatve optimizationmeth-
ods,andtraffic matrix estimationalgorithms,but giventhe quality
of theresultshere for thedataconsideredwe donotseemuchhope
for improvedalgorithms,only additionalinsightinto the problem.
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