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ABSTRACT
Traffic engineeringandtraffic matrix estimationareoften treated
asseparatefields,even thoughoneof themajorapplicationsfor a
traffic matrix is traffic engineering.In caseswherea traffic matrix
cannotbemeasureddirectly, it maystill beestimatedfrom indirect
data(suchas link measurements),but theseestimatescontainer-
rors.Yetlittle thoughthasbeengivento theeffectsof inexacttraffic
estimatesontraffic engineering.In thispaperweconsiderhow well
traffic engineeringworkswith estimatedtraffic matricesin thecon-
text of aspecifictask;namelythatof optimizingnetwork routingto
minimizecongestion,measuredby maximumlink-utilization. Our
basicquestionis: how well is the real traffic routedif the rout-
ing is only optimizedfor an estimatedtraffic matrix? We compare
againstoptimal routing of the real traffic usingdataderived from
an operationaltier-1 ISP. We find that the magnitudeof errorsin
the traffic matrix estimateis not, in itself, a goodindicatorof the
performanceof that estimatein routeoptimization. Likewise, the
optimal algorithmfor traffic engineeringgiven knowledgeof the
realtraffic matrix is no longerthebestwith only theestimatedtraf-
fic matrix as input. Our main practicalfinding is that the combi-
nationof a known traffic matrix estimationtechniqueanda known
traffic engineeringtechniquecangetcloseto theoptimumin avoid-
ing congestionfor therealtraffic. Weevendemonstratestability in
the sensethat routing optimizedon datafrom oneday continued
to performwell on subsequentdays. This stability is crucial for
the practicalrelevanceto off-line traffic engineering,as it canbe
performedby ISPstoday.

Categoriesand SubjectDescriptors
C.2.3 [Computer-Communications Network ]: Network Opera-
tions—networkmanagement,networkmonitoring

GeneralTerms
Measurement,Performance

Keywords
Traffic Matrix Estimation,Traffic Engineering,SNMP, OSPF, MPLS

Permissionto make digital or hard copiesof all or part of this work for
personalor classroomuseis grantedwithout fee provided that copiesare
not madeor distributedfor profit or commercialadvantageandthatcopies
bearthisnoticeandthefull citationon thefirst page.To copy otherwise,to
republish,to postonserversor to redistributeto lists,requiresprior specific
permissionand/ora fee.
IMC’03, October27–29,2003,Miami Beach,Florida,USA.
Copyright 2003ACM 1-58113-773-7/03/0010...$5.00.

1. INTRODUCTION
Estimatingan Internettraffic matrix hasreceived considerable

attentionin recentyears. A traffic matrix providesthe volumeof
traffic betweenevery pair of ingressandegresspointsover a given
time interval. Suchinformation is essentialto a variety of oper-
ational tasksrangingfrom router/link failure analysisto capacity
planningand traffic engineering,for instanceby route optimiza-
tion.

Whendirectflow-levelmeasurementsareavailable,accuratetraf-
fic matricescan be derived following the approachesdetailedin
[1]. Unfortunately, directmeasurementsrequireadditionalinfras-
tructuresupportandit canbeprohibitively expensive to instrument
the entireIP network to collect suchdata. Recently, progresshas
beenmadeon traffic matrix estimationandseveralmethods[3, 4,
5] have beenproposedthatattemptto derive traffic matricesfrom
the link load data,which can be easily obtainedvia the Simple
Network ManagementProtocol(SNMP).We call sucha technique
an SNMP-basedtraffic matrix estimator. Thesealgorithmshave
beenvalidatedagainst real (but partial) traffic matrices(obtained
throughdirectmeasurements)usingcommonmetricssuchasmean
errorcomputedoverall source-destinationpairs.Theresultingesti-
matescontainerrorsof varyingmagnitudedependingon thetraffic
matrixestimatorapplied.It is, however, notdirectlyclearwhatim-
pacttheseerrorshave on operationaltasks,asdifferenttasksmay
have quitedifferenttoleranceto thetypesandmagnitudeof theer-
rors.For example,if all errorswereconcentratedonasinglecritical
link, this couldhave a big impacton performance,yet a negligible
impactusingmoststandarderrormeasures.

In thispaper, weattemptto establishadirectconnectionbetween
SNMP-basedtraffic matrix estimatorsandoneparticularnetwork
operationaltask: traffic engineeringto minimizecongestion.That
is, weareinterestedin thefollowing operationalperformancemea-
sure:

If traffic engineeringis donebasedon the estimated
traffic matrix, how well doesit perform on the real
traffic matrix?

Severaltraffic engineeringtechniqueshavebeenpresentedthatop-
timize routingto minimizecongestion[6, 7, 8, 9, 10, 11]. We call
sucha techniquea routingoptimizer. It setstheroutingparameters
of a network for a given traffic matrix so asto minimize conges-
tion for that traffic matrix. The routing parametersdetermine,for
eachsource-destinationpair, thefractionof traffic goingon differ-
entpathsfrom thesourceto thedestination.Typically, in thepast,
routingoptimizerswereevaluatedusingsynthetictraffic matrices.
In thispaperwe feedtheroutingoptimizeranestimatedtraffic ma-
trix while measuringthe performanceof the routing on the real
traffic matrix.



In this paper, asin [9], max-utilizationis pickedastheeasiestto
appreciate� measurefor congestion.Theutilization of a link is the
ratioof its loadoverits capacity, andthemax-utilizationis themax-
imum utilization over all links in the network. Otherworks have
focusedon moresophisticatedcostfunctions,summingcostsover
all links in thenetwork (see,e.g.,[8, 7]), but thesearelesseasyto
understand,andmightobscurethepointthattheperformanceof es-
timationandoptimizationcombinedis noteasilyextrapolatedfrom
the performanceof oneby itself. Someintuition may be gained
from thefinding in [12] that their routingoptimizerwasrobust to�

50%randomerrors,multiplying eachindividual demandwith a
randomvaluefrom � ���	��
 . Weconsider50%alargemeanerror, and
yet it only affectedthemax-utilizationby about10%.For contrast,
if in a large network, we only changedthe demandsthat useda
specifichighly utilized link, this would have a largeimpactfor the
max-utilization,yetanegligible impacton theaverageerror.

Wedeliberatelytreatbothtraffic estimatorsandroutingoptimiz-
ers as black-boxes that we combinein a plug-and-playmanner.
Bothsidesarebasedonpreviouslypublishedtechniques.Thecon-
tribution of this paperis to seewhat happenswhenthe two sides
arecombined. Testswereperformedusingsimulationsbasedon
datafrom an operationaltier-1 ISP. We found that, in itself, the
magnitudeof errorsin the traffic matrix estimatewasnot a good
indicator of the performanceof that estimatein our traffic engi-
neeringtasks.Likewise,thetraffic engineeringalgorithmthatper-
forms bestknowing the real traffic matrix wasno longerthe best
with estimatedtraffic matrices. Our main practical finding was
thatcombiningtheOSPFroutingoptimizertechniquefrom [7] with
the tomogravity traffic matrix estimatorfrom [4], we got closeto
the minimal max-utilizationfor the real traffic. The above OSPF
routingcanalsobe implementedwith IS-IS andMPLS, makingit
broadlyapplicableto todaysIP network.

To further testtheapplicabilityof our combination,we took an
OSPFroutingsolutionbasedonestimatedtraffic matricesfrom one
day, and testedthis routing on the real traffic over the following
week. We foundthat theroutingcontinuedto performwell. Thus
our approachwasnot only robust to estimation,but also reason-
ablystableover time. This laterpropertyis crucialfor realisticoff-
line implementationsin today’s IP networks,wherechanginglink
weightsfrequentlycanresultin network performancedegradation.

Contents.Thepaperis dividedasfollows. In � 2, we discussthe
differentrouting optimizersconsidered,andin � 3, we discussthe
differenttraffic matrixestimators.In � 4,wepresentourexperimen-
tal methodology. Ourresultsarepresentedin � 5, followedby some
practicalconsiderationsin � 6. Thenwe have somereflectionsover
limitationsof thepaperin � 7, andfinally we endwith concluding
remarksin � 8.

2. ROUTING OPTIMIZERS
In this section,we discussthedifferentroutingoptimizerscon-

sidered.Wenotethattheseareall basedonpublishedwork,andthe
readerwill bereferredto therelevantpublicationsfor mosttechni-
cal details. The interestingnew aspectis what happenswhenthe
optimizers,viewedasblack-boxes,areappliedto estimatedtraffic
matricesandtestedon realtraffic matrices.

2.1 General routing with MPLS
In the most generalform of routing, traffic from a sourceto

a destinationmay be split arbitrarily over all possiblepathsbe-
tweensourceanddestination.Findinga generalroutingminimiz-
ing max-utilizationis an instanceof theclassicalmulticommodity
flow problemwhich can be formulatedas a linear program[13,

Chapter17]. As describedby Mitra and Ramakrishnan[6], the
linear programsolutioncanbe implementedwith the quite recent
Multi-ProtocolLabelSwitching(MPLS)protocol[14]. Essentially,
eachpath usedis implementedas a label-switchedpath that the
sourceusesfor a certainfraction of its traffic to the destination.
WeusedthecommerciallinearprogrammingpackageCPLEXver-
sion6.5to solve thestandardlinearprogramto minimizethemax-
utilization for a given traffic matrix, and we refer to this as the
MPLSoptimizer.

TheMPLSoptimizeris optimalin thatif appliedto thetrue traf-
fic matrix, it givesthebestpossibleperformanceamongall routing
protocolswith thegiventraffic matrixandnetwork, usingthemax-
utilization as the only performancecriteria. Otherpossiblecrite-
ria suchas feasibility of the implementation,robustnessto link-
failures,etc.,arenot considered.

However, whathappensif theMPLSoptimizerfindstheoptimal
MPLS solutionfor the estimatedtraffic matrix andthenappliesit
to the real traffic? TheMPLS solutiontells usexactly how traffic
shouldbesplit over differentpathsfrom sourceto destination,and
this splitting is now appliedto the real traffic matrix. How good
is the resultingrouting comparedwith the above optimal MPLS
routingfor thereal traffic matrix? Putconversely, how sensitive is
the optimal solutionto errorsin estimatingthe traffic matrix? As
weshallsee,theansweris ’quite sensitive’.

In facttheMPLS optimizercanhave somestrangeresultswhen
the inputshave errors.Thealgorithmmay, without penalty, allow
routeloopsfor traffic matrix elementsof smallmagnitude,aslong
astheseloopsdo not affect themax-utilizationobjective function.
This is theresultof focusingtheoptimizationon only minimizing
themaximumutilization— aloop in asmalltraffic matrixelement
haszeropenaltyundersuchanobjective function.However, if this
small traffic matrix elementcontainserrors,the loop will amplify
theerrorwhenthetraffic is routed.

Foranexampleof amorerobustoptimizationwetriedmodifying
theobjectivefunctionaboveto includeapenaltyfor loops,andrefer
to theresultingalgorithmastheMPLS
 optimizer.

We note,however, thatMPLS canimplementany possiblerout-
ing, so even if the above concreteMPLS optimizersdo not work
well with estimatedtraffic matrices,thisdoesnot imply thatMPLS
in itself cannotbemaderobustwith respectto estimation.Also, in
all fairness,it shouldbementionedthatthecontext for theoptimal
MPLS solutionsin [6] wasa matrix of virtual leasedlines where
theISPcommitsto a certainamountof traffic for eachsourcedes-
tinationpair. Thesecommitmentsarefixedin contracts,andcanbe
honoredasis.

2.2 Traditional shortestpath routing
The mostcommonlyusedintra-domainInternetrouting proto-

cols todayaretheshortestpath Interior Gateway Protocols(IGP):
OpenShortestPath First (OSPF)[15] and IntermediateSystem-
IntermediateSystem(IS-IS) [16]. In theseprotocols,which are
functionallythesame,eachlink isassociatedwith apositiveweight,
andthelengthof a pathis definedasthesumof theweightsof all
thelinks on thatpath.Traffic is routedalongtheshortestpaths.In
casesof ties whereseveral outgoinglinks areon shortestpathsto
thedestination,theflow is split roughlyevenly.

By default, Ciscorouters[17] setthe weight of a link to be in-
verselyproportionalto its capacity— wereferto thissettingasthe
InvCapweight setting. The weightsof the links, andtherebythe
shortestpath routes,canbe changedby the network operatorsto
optimizenetwork performance.

Over the years,many methods[7, 8, 9, 10, 11] have beenpre-
sentedthatcomputeasetof link weightsthatminimizecongestion



in the resultingshortestpathroutingof a given traffic matrix. We
shall refer to sucha methodasanOSPFoptimizer, thoughthere-
sultscouldequallybeappliedto IS-ISrouting.Weusetheapproach
describedin [7, 12], which is basedon so-calledlocal searchtech-
niques[18]. Themethodusesheuristicsto iteratively improve the
weightsetting,changingoneor a few weightsin eachiteration.As
a standard,we ran it for 5000iteration,takingabout5 minutesof
simulationtime. The problemof finding an optimal weight set-
ting is NP-hard[7], andso we cannotguaranteefinding the true
optimum.Thequalityof thefinal weightsettingis affectedby ran-
domchoicesmadethroughthe iterations,giving somevariancein
thequality of theoutcome.For example,it is possiblethatwe, by
chance,get a betterweight settingfor the true traffic matrix from
theestimatedtraffic matrix thanwe would get from thereal traffic
matrix itself, but theresultsbelow show thatthis randomvariation
is not very importantin practice.

Of course,asarguedcarefully in [12], it is not attractive to op-
timize the weight settingon-line as the demandschange. As in
[12], ourweightoptimizerworksfor multipletraffic matrices.Even
more importantly we will considerthe impact of using the opti-
mizedroutesasapermanentweightsetting. Thispermanentweight
settingis thentestedon the true traffic matricesof thesubsequent
days.

3. ESTIMATING TRAFFIC MATRICES
FROM LINK DATA

This sectiondescribesthreemethodsfor estimatingtraffic ma-
tricesfrom link load data. The first two methodsarebasedon so
called “Gravity models” while the third uses(in addition) “Net-
work tomography” methods. Although it might be appealingto
testsomemorecomplex algorithms,the sub-sampleof possibili-
ties presentedhereis sufficient to illustrate the pointsof interest.
What’smorewefind anearoptimalcombinationof estimationand
routingoptimizationalgorithmsin any case,so thereis little to be
gainedin usingamorecomplex method.

This sectionis not intendedto provide a detaileddescriptionof
theestimatoralgorithms(which maybe found in [4]). This is not
intendedas a study of the estimators. The novel aspectis what
happenswhentheestimatorsarecombinedwith routingoptimizers
andtestedon real traffic matrices.The descriptionhereis to pro-
videsomeinsightinto therelationshipbetweenthethreealgorithms
tested.

Gravity models[19, 20, 21], areoften usedby socialscientists
to model the movementof people,goodsor informationbetween
geographicareas[20, 21]. Recently, variationson gravity models
havealsobeenproposedfor computingtraffic matrices[3, 4, 5].

At the heartof the gravity modelapproachis a proportionality
assumption:the amountof traffic from a given sourceto a given
sink is proportionalto the total traffic to the output sink, inde-
pendentof source.For example,in a gravity modelfor car traffic
betweencities the relative strengthof the interactionbetweentwo
citiesmightbemodeledasproportionalto theproductof thepopu-
lationsdividedby a distancerelated“friction” term. Similarly, the
simplestpossiblegravity modelsfor the Internetassumethat the
traffic exchangedbetweenlocationsis proportionalto thevolumes
enteringandexiting at thoselocations,thoughin this casewe as-
sumethe distancerelatedterm is a constantbecauseinteractions
in the Internetare lessdistancesensitive. This simple model of
theInternetis usedin [22], andwe refer to it asthesimplegravity
model.

It is possibleto generalizethesimplegravity modelin anumber
of ways[3, 4, 5] to take into accountadditionalinformationpro-

videdby detailedlink classificationandroutingpolicies. [3, 4, 5]
have shown thesegravity modelsto besignificantlymoreaccurate
than the simple gravity models. We test the generalized gravity
modelof [4] in which additionalinformationon pointsof ingress
andegressfor traffic flows canbeincorporatedto explicitly model
hot-potatoroutingfor traffic exchangedwith peernetworks.

By appropriatenormalization,thegravity modelsolutionis guar-
anteedto beconsistentwith themeasuredlink loadsat thenetwork
edge,but notnecessarilysoin theinterior links. Alternatively, net-
work tomography methodsexplicitly includetheinformationmea-
suredfrom internallinks. This informationcanbewritten asa set
of linearconstraintequations

������� � (1)

where� is avectorof thelink measurements,� is thetraffic matrix
written as a column vector, and � is the routing matrix, whose
termsgivethefractionof traffic from aparticularorigin/destination
pair thattraverseeachlink.

In practicethis setof equationsis ill-posed,andsoto dealwith
this difficulty tomographictechniquesfrom otherfieldshave been
used.For adetaileddescriptionandcomparison(usingsimplemet-
rics)of anumberof thesemethodssee[5]. Weshallconsiderasin-
gle suchalgorithm, tomogravity, [4] which displaysgoodproper-
tiesin termsof scaling,estimationaccuracy, speedof computation,
androbustnessto errors.Themethodusesthegeneralizedgravity
model above as a prior (a kicking off point) and refinesit using
a tomographictechniqueto selectanestimateof the traffic matrix�� , that satisfiesthe constraintequations,but that is closestto the
gravity modelaccordingto somedistancemetric.

4. EXPERIMENT AL METHODOLOGY

4.1 Ideal
In this context it is possibleto generatearbitrarily bad results

for any particularalgorithmby choosingpathologicaltopologiesor
traffic matrices,but the importantquestionis how well theseal-
gorithmsperform on real data. The ideal experimentto test the
useof traffic engineeringon estimatedtraffic matriceswould have
SNMPlink traffic measurements,aperfecttraffic matrix,andexact
topologyinformation,all from exactly the samemomentin time.
Finally, thenew routingcomputedshouldbetestedin therealnet-
work backat thetime whenthemeasurementsweremade.Unfor-
tunately, mostof this is impractical.

Eachdifferent type of datahaslimitations, and practicalcon-
straintsin how it maybecollected.For instance

� Currentlywe do not have high-resolutiontracesof the net-
work topology, andso we only have snapshotviews of the
network;

� Flow-level data(which is theeasieststartingpoint for deriv-
ing a traffic matrix) is not generatedasa traffic time series,
but ratheranoverlappingsetof flows,andin many casescan
only be collectedon a sampledbasis. Furthermore,flow-
level datacan be hard to collect in placesbecauseit is a
featureof a router, andnot all routerssupportthis feature,
or its use conflicts with other features. Further, in some
cases,collectingflow-level measurementsmight result in a
reductionin forwardingperformance(which is highly unde-
sirable). Furthermore,flow-level datafor an entirenetwork
canbevast— potentiallyterabytesperday— andhandling
this volumeof datais dauntingin andof itself.



� SNMPlink datahave many limitations— for instancemiss-
ing data(SNMP usesunreliableUDP transport),incorrect
data (throughpoor router vendor implementations),and a
coarsesamplinginterval (fiveminutesis typical).

� Experimentingwith the routing of a real operationaltier-1
ISP is not an option. We have to conductour investigation
with simulations.

The network traffic alsoexhibits strongdaily, andweekly cycles,
andsoaveragingresultsover intervalslongerthanoneor two hours
is not verymeaningful.

It is difficult to overstatethe importanceof consistency in the
data. We do not wish the resultshereto be dueto artifactsin the
data,but theaboveproblemsmake it seeminglyimpossibleto gen-
eratearealistic,completelyconsistentsetof testdata.However, [4]
presentsan alternative methodologywhentestingtheir estimation
algorithm,which we adapthere. In the following sectionwe de-
scribethedatawehaveavailable,andthemethodologyusedto test
how well traffic engineeringworksusingestimatedtraffic matrices.

Also, comparisonsagainstthecurrentroutingin therealnetwork
areinteresting,but would revealproprietaryinformation. Instead,
asabenchmark,weherecompareourperformanceagainstCisco’s
[17] default InvCapweightsettingfor OSPF.

4.2 Inputs
ThispaperdoesnotdirectlyconsiderSNMPdatafor thereasons

above. It would be unreasonablydifficult to collect SNMP traffic
statisticsconsistentwith thetraffic matrixandtopologyinformation
available.Theapproachusedhereis to use

� sampledflow-level data,and

� topologyandroutinginformationasderivedfrom [23].

Theflow-leveldatacontainsdetailsof numbersof packetsandbytes
transferredbetweensourceanddestinationIP addresses,andalso
givesinformationsuchasthe interfaceat which thetraffic entered
our network. Combinedwith topologicalandrouting information
(asin [1]) onemayderivea traffic matrix from suchinformation.

As notedabove it is hardto have completeflow-level coverage
of the network. In the datasetsusedherewe cover around80%
of theedgeof a largetier-1 IP network, includingall thetraffic on
inter-peerlinks. Thetraffic matricesgeneratedusingthis datawill
thereforebe partial, in the sensethat we are missingsomerows
from the true traffic matrix. However, the resultingtraffic matrix
is still a real traffic matrix (covering around80% of the network
traffic) on the realnetwork topology, andso is asgooda possible
setof measurementsasarecurrentlyavailable(for instancein [5]
only threerows of the traffic matrix wereavailable). This traffic
matrix is whatweshallreferto asthetruetraffic matrix throughout
therestof thepaper.

The natureof flow-level datamakesit only possibleto approx-
imate time-seriesdata. Flow-level information containsthe start
andstoptime of theflow, andthenumberof packets/bytes,but not
whenthepacketsweresentwithin theflow. Giventhatsomeflows
can continuefor hours,it is only practicalto look at time series
of theorderof the timeoutsusedto flushcurrentflows. Note that
thereis no inherentreasonwhy thetimeoutswill occurat thesame
time at differentrouters,andso to usecommensuratetime series,
onemustaverageover longerintervals thanthe timeoutto obtain
usefuldata(usinga moresophisticatedinterpolationschemeruns
the risk of introducingartifactsinto the data). In CiscoNetflow,
the timeoutsare of the order of 15 minutes,and so we consider
time seriesat a onehour time scale,allowing (with not too much

approximation)for theseintervals to beoffsetat differentrouters.
Over longerintervals the traffic is non-stationary(showing strong
diurnalcycles)andsowe do not wish to uselongertime averages
if possible.

The topology and routing information are derived from infor-
mationgatheredfrom thesamenetwork usingthemethodsof [1].
Giventhesetraffic matricesandthenetwork topology, weneedonly
aconsistentsetof link loadmeasurementsto proceed.

4.3 Methodology
Theproblemof providing aconsistentsetof traffic, topologyand

link measurementdatacanbesolvedasfollows. We simulatethe
OSPFrouting using the existing topology and link weights(and
areastructure).Theexisting link weightsarethosecurrentlysetby
thenetwork operator. Fromthis we maycomputea routingmatrix� , andthenderiveasetof link measurements� from (1). Thusthe
traffic matrix � , theroutingmatrix � andthemeasuredlink loads� areall consistent.

Wecanthenperformtheestimationprocedureto compute
� � , the

traffic matrix estimate. This approachallows us to work with a
problemfor which we have botha realestimateandthetruetraffic
matrix.

To helpthereaderunderstandtheissuesinvolved,weshallsum-
marizethe errorsin the estimatedtraffic matricesin Section5.1.
However, thepoint of this paperis thatsimply looking at theseer-
rors is not enoughto understandwhethera traffic matrix estimate
is “good”. To really understandwhetheran estimateis good,one
mustassesshow well it performsin operationaltasks.

The task we assesshereis traffic engineering— in particular
the task of optimizing the network routing to make the network
moreefficientin its useof resources(andhencereducecongestion).
To do this we useone basicapproach. We computerouting by
applying a routing optimizer to the estimatedtraffic matrix. We
thenassesshow well theserouteswork for therealtraffic matrix.

Specifically, considerthe taskof optimizing the OSPFweights
in anetwork. Basedon thetraffic matrix estimate,weoptimizethe
weightsetting:

���� OSPF-weight-optimizer� ������
An OSPFsimulator takes the new weights and finds the corre-
spondingoptimizedroutingmatrix���� OSPF-route-simulater� �� �
Finally, weapplythisnew routingto theoriginal truetraffic matrix� soasto getasetof link loads:

��!� ��"�#�
Themax-utilizationoptimizedfor theestimatedtraffic matrix

�� but
appliedto thetruetraffic matrix � is then

max-utilization� ���$%�&�'�)(�*%+,
�- ,. , �

where
. , arethe link capacities.Thewholeprocedurebehindthe

experimentsis illustratedin Figure1.
We will also comparethe resultswith thoseunderalternative

routing, for instance,usinga routing matrix derived usingMPLS
optimizationfrom thetrueor estimatedtraffic matrix, andtheInv-
Caprouting.Theonly differenceis themechanismusedto generate
theoptimizedroutingmatrix

�� from theestimatedtraffic matrix
�� .

We concernourselveswith optimizing the routing of the inter-
PoPbackbone-routernetwork containingon theorderof onehun-
dredrouters,with a few links perrouter. Link basedtraffic matrix
estimatesaredifficult to obtainon any finer granularitythanthis,
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Figure1: Diagram over experiment.

andOSPFallows a hierarchicalroutingbasedon areas,which can
naturally be usedto isolate the routing of local intra-PoPtraffic
from inter-PoPtraffic.

5. RESULTS
Theresultsshown herearederivedfrom thebackboneof a tier-1

ISP network. We presentresultsover the courseof oneday (the
17th of August2002) to show the effectsof the changingmatrix
over the courseof the day. We will alsoshow resultsfrom a sep-
aratesegmentof datato illustratetheperformanceof routingpre-
diction. Thedatais broken into onehourdatasetsover which the
traffic matrix is approximatelystationary.

For proprietaryreasons,max-utilizationsreportedin this paper
arescaledsothattheir absolutevaluefor theoperationalbackbone
cannotbededuced.Suchscalingdoesnotaffect therelativeperfor-
manceof thedifferentschemes.Proprietaryreasonsalsopreventus
from exposingthe performanceof the OSPFweight settingsused
in theoperationalnetwork.

5.1 Err ors in Traffic Matrix Estimates
A detailedgeneralanalysisof the errorsin the different traffic

matrix estimatesis presentedin [4]. For referencein this paper
we provide somesimplemeasurementsof the errors. In Figure2
we presentrelative error of estimatedtraffic matricesversustrue
traffic matrices.That is, for eachhourwe computethesum(over
thesource-destinationpairs)of theabsolutevalueof theerrorbe-
tweenestimatedandtrue traffic, anddivide this sumby the total
traffic. Weseethattomogravity is morethantwiceasgoodasgen-
eral gravity, which is more thantwice asgoodassimplegravity.
Thesefindingsareconsistentwith thosereportedin [4].

In Figure 3 (a) we presentan alternative representationof the
estimatesmore comparablewith later figureson max-utilization.
A simple-mindedhypothesisis that optimizing over the true traf-
fic matrix, themax-utilizationis going to beproportionalto mean
traffic andthat if we optimizeover anestimatedtraffic matrix, the
performanceis degradedby meanerror. Figure 3 (a) shows the
meantraffic plus the mean(absolute)errorsfor eachof the data
setsover the courseof the day. If our simple-mindedhypothesis
is true, the curvesshouldroughly matchthoseof max-utilization
achievedwith theestimatedtraffic matrices.

5.2 Max-utilization versusmeanerrors
We now testhow well theestimatedtraffic matricesperformon

max-utilization. We apply the OSPFoptimizer to eachestimated
demandmatrix, includingthetruetraffic matrix,andtesttheresult-
ing routingonthetruetraffic matrix. Theresultingmax-utilizations
aredepictedin Figure3 (b). At this stage,we couldalsohave ap-
plied anMPLS optimizer, but aswe shallseeshortly, thesearenot
as reliable. Averagesandmaximumsover the 24 hoursarecon-
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tainedin Table1 alongwith otherdata. More precisely, the table
reportsthe

� AverageMax-Utilization (AMU): theaverageoverall hours
of themax-utilizationfor therelevantmethod.

� Max Max-Utilization (MMU): the largestmax-utilization
for themethodoverall hours.

Both quantitiesarereportedaspercentagesof the MMU for Inv-
Cap(recall that we for proprietaryreasonscannotgive the abso-
lute numbers).Theformermetricgivesanaverageview of perfor-
mance,while thelatteris a typeof worstcasecomparison.

Themostinterestingthingto observeis thatwhenit comesto the
max-utilizationin Figure3 (b), theperformanceof simplegravity
andgeneralgravity is roughly thesame.As calculatedin Table1,
simplegravity slightly outperformsgeneralgravity bothon theav-
erageandin theworst-case.This is in sharpcontrastto thefindings
in � 5.1 that the errorsof generalgravity arehalf aslarge asthose
of simplegravity. Hence,theerrorimprovementof generalgravity
doesnot helpreducethemax-utilization.Theerrormeasurements
in [4] alsorategeneralgravity oversimplegravity, sothisisastrong
counterexampleto theideathatonecanusesimpleerrormeasure-
mentsto makegeneralconclusionsabouttheperformanceof traffic
estimatesin traffic engineering.

Theabove beingsaid,we do seethat the tomogravity estimates
performbestboth with respectto errorsandwith respectto max-
utilization,on theaveragegettingwithin 6%of OSPFoptimization
basedon thetruetraffic matrix. This is quitesmallcomparedwith
the 13% averageerror shown in Figure2. We alsonote that we
actually perform slightly betterwith the estimatedthan with the
true traffic in hour 8. This clearly illustratesthe point from � 2.2
that theOSPFoptimizeris only a heuristic,not guaranteedto find
optimalsolutions.

5.3 Sensitivity of optimizers to estimates
Wenext seehow well theOSPFoptimizationcompareswith:

� inversecapacityweights: in this default weight settingthe
weightsare the inverseof the capacityof links. This is a
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(a)Meantraffic plusthemeanabsoluteerrorsfor each
methodof estimation.The’+’ signsshow themagni-
tudeof the true traffic matrix (with zeroerrors),the
circles the tomogravity estimate,and the / and 0
show thegeneralandsimplegravity modelestimates.
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(b) The’+’ signsshow theperformanceof theOSPF
optimizationusingthetruetraffic matrix,andthecir-
cles, / and 0 show the OSPFoptimizationon the
tomogravity, generalandsimplegravity modelesti-
mates,respectively.
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(c) The’x’ s show theoptimalMPLS routing,the ’+’
signsshow theOSPFoptimizationusingthetruetraf-
fic matrix, andthesquaresshow theresultof inverse
capacityOSPFweights. The circlesshow the result
of the true traffic matrix beingappliedwith weights
from OSPFoptimizationusing the estimatedtraffic
matrices.
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(d) As before,the’x’ sshow theoptimalpossiblerout-
ing, andthesquaresshow theresultof inversecapac-
ity OSPFweights.Thestarsshow theresultof using
the estimatedtraffic matrix in MPLS optimization,
andthenapplyingtheresultsto thetruetraffic matrix.
Notethatin onecasetheresultis severaltimesworse
thancanbedisplayedon this graph,andgoesoff the
scale.Similarly, the’*’ sshow theperformanceof the
modifiedMPLSalgorithm.

Figure 3: Resultsfor the 1 hour data setsover the 17th of August 2003. Figure (a) shows a comparisonof errors in the estimates,
(b)–(d) show the maximum utilizations of the network under various routing optimization. Note that the y-axesfor (b)–(d) are all
scaledin the sameway sothat the MMU of the InvCap weightsis 100.



reasonableattemptat optimizationgiven no other network
information.

� MPLSandMPLS
 optimization:bothoptimallyminimizing
themax-utilizationwith respectto thegiventraffic matrix.

� truetraffic matrix: in which we applytheoptimizationalgo-
rithmsabove to thetruetraffic matrixelements.

Figure3 (c) shows the maximumutilizations for eachhour of
the day, undervariousrouting schemes.The ’ 1 ’ signsshow the
optimalpossiblerouting,i.e.,theresultof applyingtheMPLSopti-
mizerto thetruetraffic. The’+’ signsshow theOSPFoptimization
usingthetruetraffic matrix, andthesquaresshow theresultof in-
versecapacityOSPFweights.The ’o’s show theresultof the true
traffic matrix beingappliedwith weightsfrom OSPFoptimization
usingtheestimatedtraffic matricesusingthetomogravity method.

Wecanseein Figure3 (c) thattheOSPFoptimizationalgorithm
(’+’ s) comesvery closeto the optimal possiblesolution(’ 1 ’s) in
mostcases,andis alwaysa significantimprovementover the de-
fault InvCapweights. Furthermore,weightsfound from the esti-
matedtraffic matrix(’o’s)performonly slightly worsethanweights
foundfrom thetruetraffic matrix. In fact,asseenin Table1, even
whentheOSPFoptimizeris appliedto the tomogravity estimated
traffic matrix, it getswithin 11-12%of theoptimumsolution.This
is clearevidencethattheerrorsin thetomogravity estimatedtraffic
matrixarenotveryimportantfromourparticulartraffic engineering
perspective,andthatSNMPlink statisticscouldbeusedto estimate
traffic matricesof considerableuse.

Anotherinterestingpoint is thatwhereastheoptimizedroutings
generallyfollow thedevelopmentsin themeantraffic (’+’ s) in Fig-
ure3 (a), the InvCaproutingdoesnot. This shows that the traffic
is not just scaledup anddown during the day, but that it is also
shiftedaroundin ways that impact InvCapdifferently, yet which
canbeaccommodatedby theoptimizers.

Figure 3 (d) shows the sameoptimal, and InvCap results,but
comparesthem to the MPLS and MPLS
 optimizationusing es-
timateddata.Note that in onecaseusingtheMPLS optimization,
theresultis severaltimesworsethancanbedisplayedonthisgraph.
Accordingto Table1 it goesoff by afactor400,andamoredetailed
investigation revealedthat this wasdueto a loop, asdiscussedin
� 2.1. TheMPLS
 optimizeravoidsthis problem,but giventheto-
mogravity estimates,it is still twice asfar from the true optimum
astheOSPFoptimizer. Thuswe have a strongcounterexampleto
our simple-mindedhypothesisthat the optimizationthat performs
bestgiventhetruetraffic wouldalsoperformbestonestimates.

optimization traffic matrix performance(%)
method AMU MMU
InvCap N/A 79.9 100.0
OSPF simplegravity Model 57.5 67.2
OSPF generalgravity model 58.6 68.1
OSPF tomogravity 47.1 57.7
OSPF true 44.4 54.1
MPLS tomogravity 1735.5 40259.7
MPLS
 tomogravity 53.5 68.8
MPLS true 42.5 51.8

Table 1: The AMU and MMU of eachmethod asa percentage
of the MMU for the InvCap weights.

5.4 Further merits
We note that many of the above resultssoundsimilar to those

reportedin [7, 12], but themajordifferenceis that theweightop-
timization is donebasedon anestimatedtraffic matrix while mea-
suredon a truetraffic matrix, thusgiving usthedesiredfeed-back
on theoperationalvalueof theestimatedtraffic matrix.

Anothervery importantdifferenceto all the previous work on
OSPFoptimizationis that our resultsarebasedon measurements
from a realoperationalnetwork. Theclosestto this wasthework
from [7] thatusedaproposedAT&T WorldNetbackbonewith pro-
jecteddemands.It is only veryrecentlythatgoodmeasurementsof
traffic matriceshave becomepossibleon a sufficiently largescale.
A secondarymerit of this paperis thus to substantiateprevious
weightoptimizationwork thewith first realdata.

6. PRACTICAL CONSIDERATIONS
While the resultsabove show the OSPFoptimizationto work

well with thetomogravity estimates,therearea numberof consid-
erationsbeforeany methodcanbe considerto be practical. This
sectionwill addresssomeof theseissues.

6.1 FasterOSPFoptimization
TheOSPFoptimizationalgorithmis quitefast— on thecurrent

network it runsin around330seconds(for 5000iterationsin Fig-
ure3, on a Sun900MHz Ultrasparc-IIICopperprocessor).How-
ever, themajorityof thebenefitsof theoptimizationalgorithmused
herecomeearlyin thealgorithm[7, 12] whenappliedto realdata.
It is worth testingwhetherthis is alsothecasewhenweuseanesti-
matedtraffic matrix. It is indeedthecase,asis shown by Figure4,
which shows the samesetof datawith the resultsof the weights
after5000iterationsandonly 1000iterations.Therelative increase
in maximumutilization (dueto 5 timesfewer iterations)is always
below 5%. In contrast,the time for 1000iterationsis only about
onefifth of thatfor 5000.
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Figure 4: Resultsof route optimization as in Figure 3 (c), and
with only 1000iterations of the OSPFroute optimization algo-
rithm.

6.2 Global Optimization
Frequentchangesto OSPFlink weightsarehighly undesirable.

Apart from the managementcomplexity this induceson the net-
work, OSPFroutingtakesat leastsecondsto re-convergeaftereach
change.While this mayseema shorttime,on a largenetwork car-
rying 100’s of Terabytesperday, changingtheOSPFroutingeach



hourcouldeasilyresultin thelossof a 100GBsof traffic or more
perday.

It is, however, possibleto usetheoptimizationmethodabove to
computean optimumrouting for all 24, onehour traffic matrices
for oneday. More precisely, in [12] a techniqueis describedthat
seeksa singleglobal weight settingthat works well for multiple
demandmatrices,obtaininga goodmax-utilizationfor all of them.
Weappliedthistechniqueasablack-box.Thisprovidesanotherin-
terestingtestof how well thetraffic matrix estimatesperform. We
computesuchasetof weightsfrom thetomogravity estimatedtraf-
fic matricesfor oneday, andthendeterminehow well theweights
performfor eachhourof thedayusingthereal traffic matrix. Fig-
ure5 shows theseresults.
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Figure 5: Global optimization over a 24 hour period. Once
again the crossesrepresentthe optimal solution for each one
hour data set, and the squares represent inverse capacity
weights. The points, and diamonds represent the global op-
timum weights calculated fr om the set of real and estimated
traffic matrices, respectively, applied to eachone hour traffic
matrix.

The figure alsogivesthe resultsoptimizedover the true traffic
matricesfor the 24 hours,and the hourly optimum. The results
for the estimatedandtrue traffic matricesaregood,even in com-
parisonto the hourly optimum. Comparingto the latter is unfair
in this casebecauseit is easierto optimizefor a singlehour than
over the whole day. We usetheminsteadof the global optimum
MPLS solutionbecausethecomputationalcostfor theglobalopti-
mumMPLS solutionwasprohibitive (it involvesa linearprogram
with order30 million variablesand50 million constraints).The
OSPFoptimizationalgorithm,on theotherhand,is still quitefast.
It is considerablyslower whenoptimizingover 24 traffic matrices,
takingaround6500secondsto run5000iterations,but this is in fact
betterthan24timesthespeedof theindividualhourlyoptimization,
whichactuallyreducestheoverall computationfor theday.

Table 2 summarizesthe results,and provides a comparisonto
thosein theprevioussection.Wecanseethattheglobalsolutionis
verycloseto theindividual solutionin performance.

6.3 PredictiveOptimization
As notedin � 6.2 it is highly desirableto changelink weightsin-

frequently. In theprevioussectionweshowedthatwecouldderive
a setof weightswhich work well for an entireday’s setof traffic
matrices. The questionarises“how often needonechangethese
weights?”Clearly, theansweris no morethanonceperday. How-

optimization traffic matrix performance(%)
method AMU MMU
GlobalOSPF tomogravity 48.1 57.7
GlobalOSPF true 45.4 52.4
Adaptive MPLS true 42.5 51.8

Table 2: The AMU and MMU of the global routing optimiza-
tion over oneday.

ever, if onewishesto changethemevenlessfrequently, wemustbe
concernedwith how well today’ssetof weightswill performin the
future,thatis, thepredictivestrengthof theoptimizedweights.

This is a muchharderproblemthanwe have consideredso far
becauseany large,operationalnetwork changescontinuously:new
links areadded,andold links re-homed,or retired.Notethatin our
data-setswe obtain routing and topology information at 24 hour
intervals,sofor thepurposesof thepreviousexamplesthenetwork
appearedunchangedover the 24 hour period, althoughin fact it
may have changed.Hence,even for 24 hour global optimization
theestimatedweightsmustberobustagainstnetwork changes.

Obviously, in a full systemfor optimizingnetwork routingthere
would becarefulconsiderationgivento weightsfor new links, and
somekind of readjustmentwhen the topology of the network is
otherwisechanged.However, we shall considerthe very simple
casewherewe assignmaximalpossibleweightsto new links (cost
themout),whichresultsin routingonly overthepreviouslyexisting
network. This is obviously sub-optimal,but aswe shall show, the
weightoptimizationalgorithmstill performswell.

Figure 6 (a) shows the result of applying the weightsderived
from globaloptimizationof theestimatedtraffic matricesfrom the
1st of July, 2002, to the real traffic on a seriesof daysfrom the
1st to the8th of July. We chosethis periodbecausetherewereno
backbonenetwork changesuntil the8th, whena largelink change
occurred.For comparisonFigure6 (b) shows theresultof inverse
capacityweightingusingthesamescalefor they-axis.

The resultsshow that the methodconsistentlyandsignificantly
outperformsinversecapacityweighting,despiteusingweightsop-
timizedfor adifferentday. This is despitethechangesin thetraffic
matrices,which typically exhibit strongweeklyvariationsaswell
asdaily variations. Most notably, somesuddenchangein traffic
behavior occurredbetweenmidnightand1amon Saturdaythe7th,
causinghigh maximumutilization underinversecapacityweight-
ing (thefirst crossin Figure6 (b)). Despitesucha suddenchange,
themethodworksvery well, reducingthemaximumutilization by
nearly50%.

The resultsalso show that the inversecapacityweighting per-
formancevariesconsiderablyduring the week. As we know the
network doesnot changeduring the period beforethe 8th, these
changesmust be the result of changesin the traffic matrix. For
instance,becauseof the weekly cycle in the traffic, or potentially
becauseof changesin thetheBorderGatewayProtocol(BGP)pol-
icy, which controlsrouting along a large part of the edgeof the
network, andhencewheretraffic departsthenetwork.

The stability of the weight settingchosenusing the estimated
traffic matricesin the faceof suchchangesin the traffic is a pro-
foundbenefitof this approach.

Theseresultsshowsthattheresultsabovearenot just theoretical
possibilities,but providearobustandstablesolutionto arealtraffic
engineeringproblem.Thesolutionis basedon thetraffic matrices
estimatedfrom link data(suchasonewould get from SNMPlink
measurement),andis practicalbothin computationalload,andro-
bustnessto typical sourcesof variationfoundin realnetworks.
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(a)OSPFoptimization.
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(b) InvCapweights.

Figure 6: Resultsbasedon tomogravity estimatesand OSPFoptimization on the 1st of July, 2002. The resultsshow the maximum
utilization for the true traffic matrix on eachof five days,over the courseof a week,using the weightsfr om the first day. Figure (a)
shows the OSPFoptimization weights,and (b) shows the InvCap weights— note that both figureshave the samey-axis scale.

7. REFLECTIONS
In thissectionwereflectover limitationsin theresultspresented,

addressingvariousnaturalpointsof criticism.

7.1 Max-utilization
Asmentionedin theintroduction,wepickedmax-utilizationtraf-

fic engineeringobjectivebecauseit is easyto understandandappre-
ciate,notbecauseit is thebestor mostimportanttraffic engineering
objective. Indeed,thereis no singlemostimportantobjective. Fo-
cusingon max-utilization,we have producedsomevery promising
results,andwe hopethatthis will inspireothersto performsimilar
studiesfor otherimportanttraffic engineeringobjectives.

7.2 Proprietary scaling
For proprietaryreasons,we have scaledall max-utilizationby a

secretfactorsoasto hide the truemax-utilizationin our network.
Obviously, theabsolutevalueis interesting.For example,a typical
operationalrequirementis that the max-utilizationis below 60%.
Hence,improving theMMU asin Table1 from 100%with inverse
capacityto 57.7%is really important.However, if thescalingwasa
factor2, thenthecorrespondingimprovementfrom 50%to 28.8%
is irrelevant. Nevertheless,traffic grows over time andability to
improvemax-utilizationmeansthatwecanaccommodatefarmore
growth beforewehave to investin new equipment.

7.3 The InvCap bench-mark
Thereareseveralreasonswhy we have usedInvCapasa bench-

mark. First, it is a vendorrecommendeddefault, hencea natural
startingpoint for traffic engineering.Second,in [7], InvCapwas
foundto beagooddefault in thesensebeingasgoodor betterthen
othersimpleheuristicslike unit weights,or link weightspropor-
tional to physicallengths.

More interestingly, [12] foundthatInvCapweightswereasgood
asasetof weightsoptimizedfor onetraffic matrix �32 andappliedto
an independentlygeneratedtraffic matrix �#4 . Thetesttells us that
usinga clue-lessweightsettingis at leastasbadastheInvCapde-
fault. Hence,improvementsover InvCapindicatehow muchbetter
our routingis comparedto aclue-lessone.

As a matterof fact, with no clue aboutthe traffic, we are not
awareof any generaltechniqueperformingbetterthanInvCapin
practice,notevenwith generalMPLSrouting.Recently[24], there
hasbeeninterestingtheoreticalwork onobliviousroutingthatgives
max-utilizationswithin a factor 5 �76983:<;>= � from optimality for all
possibledemandmatrix. Thisis verysurprisingandimpressivethe-
oreticalresult,but in practice,for realisticIP networksanddemand
matrices,it appearsthat InvCapgetswithin a factor2 from opti-
mality, which is muchbetter. Thedifferenceis, of course,that the
theoreticalresulthasto takeall themostpathologicalnetworksand
demandmatricesinto account.Recentlyin [25], obliviousrouting
hasbeentestedon someconcretenetworks,gettingwithin a factor
2 from optimality for all possibledemandmatrices.This is again
theoreticallyinteresting,but the methodis too slow to deal with
networks with more than 40 nodes. Moreover, an MPLS imple-
mentationof thesolutionwould requirea cubicnumberof labels,
which is prohibitive for largenetworks. For contrast,this paperis
focusedontechniquesthatwork in practicefor largeISPnetworks.
Indeedthe methodsarealreadyin usein a decisionsupportsys-
tem for the humannetwork operatorsresponsiblefor the network
configuration.

7.4 The data sets
Therearetwo majorproblemsin theexperimentsreported.First,

it is unfortunatethatour basicdataareproprietarysothatotherre-
searcherscannotreproduceour resultsandcontinuethework with
thesedata. Also, all our dataarefrom thesamenetwork. We did
performmany experimentswith thisnetwork. For example,thereis
morethana monthandmany topologicalchangesbetweentheex-
perimentsreportedin � 5 andthosereportedin � 6. Neverthelesswe
would like to seerealisticexperimentsfrom othernetworks. Un-
fortunately, for realnetworks,mostof thesedataareproprietary.

From[26] we do have goodpublic estimatesof thebasictopol-
ogy of many majorIP networks,exceptthat link capacitiesarenot
soeasyto obtain.Also, we have establishedmodelsfor generating
synthetictopologieslike thosein [27].

Themainproblem,however, is to getgoodtraffic matrices.Real
networksarehighly tunedto theexpectedtraffic soonecannotjust



generatethe traffic matrix independently. We simply don’t know
of any? goodmethodfor generatingdemandmatricesto gowith the
topologiesfrom [26]. Simplemindedideaslike sayingthat high
degreeroutersoriginatea lot of traffic don’t work, for thesecould
just behubsin themiddleof nowhere.

In [7, 12], a noisygravity basedmodelfrom [28] is usedto gen-
eratesynthetictraffic matricesto go with the synthetictopologies
from [27]. It is easyto testour techniqueson thesedata,but there
is amajorcaveat;namelythatwhenweuseagravity basedmethod
for generatingthetraffic, thenthesimplegravity estimationwill be
very accurate.In fact,we getvery similar resultsto thosereported
in [12] for noisy data. The answeris that for thesekinds of syn-
theticdata,simplegravity getswithin a few percentof optimality,
which is muchbetterthanwhatwe reportedfor our realnetwork.

The above illustratesan inherentdifficulty in generatingsyn-
thetic demandmatricesfor our kind of experiment. If we know
thegenerator, we cheatif we exploit that in our estimation,but we
alsocheatourselvesif ourestimatordoesnotexploit thegeneration.
Thebasicpoint is thatanestimatoris supposedto exploit whatwe
think is a goodmodel for how traffic arises,and this thinking is
difficult to model.

Onecould, of course,arguethat our datasetsaretoo thin, and
that researchin traffic engineeringshouldwait until someonehas
found a way of gettingbetterdata. Finding betterdatais clearly
a very importantproblemof independentinterest,but why wait?
Eventhoughourdataarenotconclusive,they arepromisingenough
to beof interestfor otherISPs.As they getapplied,we will geta
betterunderstandingof how they work in therealworld. Also, as
betterpublic dataemerges,it is trivial to test themin our frame-
work. We justhave to reruntheprograms.

8. CONCLUSION
We set out in this paperto provide a genuinemeasurefor as-

sessingthepracticalaccuracy of traffic matrix estimation.Simple
metricsare unsatisfactory becauseone may form any numberof
them,andthey mayreturndifferentresults,dependingon whatas-
pectof thetraffic matrix is givenimportance.Hencewe wishedto
provide a direct connectionto a practicalproblemasa meansof
assessingthequality of the results.Themeanschosenwasto test
the routing optimizationbasedon estimatedtraffic matriceswhen
usedwith thetruetraffic matrix.

Experimentingwith datafrom alargetier-1 ISP, wefoundsome-
thingmore,namelythatthecombinationof tomogravity andOSPF
weightoptimizationwasapowerful andpracticalmethodfor traffic
engineering.

The result arosebecausethe OSPFoptimization methodwas
quite robust to the typesof errorsfound in the traffic matrix es-
timates.MPLS styleoptimizationdesignedto obtainthevery best
possiblerouting was much lessrobust. Hence,even if MPLS is
used,it makessenseto usea morerobustmethodto determinethe
routes,for instanceIGProuting.

The OSPFoptimizationmethodhadotherdesirableproperties,
suchastheability to optimizeweightsfor arangeof traffic matrices
(sayover a day) andalsoto provide weightsthatworked a whole
weekinto thefuture.

The othersideof theseresultswas the finding that the perfor-
manceof the traffic matrix estimateswasnot a direct function of
the magnitudeof the errorsin the traffic matrix estimates.This
shows theimportanceof consideringthecombinationof traffic es-
timationandrouteoptimizationbeforemakingany conclusionson
how they will work together. Arbitrary errormeasurementsareuse-
ful for superficialcomparison,but donot tell thetruestoryasfaras
practicalapplicationsgoes.

In thefuturewe wish to examinealternative optimizationmeth-
ods,andtraffic matrix estimationalgorithms,but giventhequality
of theresultshere,for thedataconsidered,wedonotseemuchhope
for improvedalgorithms,only additionalinsightinto theproblem.
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