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ABSTRACT
IP forwarding anomalies, triggered by equipment failures, imple-
mentation bugs, or configuration errors, can significantly disrupt and
degrade network service. Robust and reliable detection of such anoma-
lies is essential to rapid problem diagnosis, problem mitigation, and
repair. We propose a simple, robust method that integrates routing
and traffic data streams to reliably detect forwarding anomalies, and
report on the evaluation of the method in a tier-1 ISP backbone. First,
we transform each data stream separately, to produce informative
alarm indicators. A forwarding anomaly is then signalled only if
the indicators for both streams indicate anomalous behavior concur-
rently. The overall method is scalable, automated and self-training.
We find this technique effectively identifies forwarding anomalies,
while avoiding the high false alarms rate that would otherwise result
if either stream were used unilaterally.

Categories and Subject Descriptors:
C.2.3 Network Monitoring, C.4 Reliability, availability, and service-
ability.

General Terms: Algorithms, Management, Reliability.

Keywords: Network anomaly detection, routing, BGP, traffic, SNMP.

1. INTRODUCTION
Anomaly detection is useful in network management for a range

of applications, from detecting security threats (e.g. DoS attacks),
to detecting vendor implementation bugs, network misconfigurations
or faults. One wishes to detect times where the network is behaving
abnormally, as action may then be required to correct a problem.
Anomaly detection can be particularly useful in the context of re-
liability. Reliability is a critical objective in large IP networks, but
many factors (for instance code bugs) are outside of an operator’s
ability to control. An alternative to preventing outages is to rapidly
recover from these — for instance see the arguments presented in [1,
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2]. In order to recover quickly, one must detect and localize a prob-
lem quickly.

However, while detection and alarming on real problems is im-
portant, it is equally important to keep the rate of false alarms low.
A high false alarm rate results in genuine events being lost in the
“snow” of false events. Statistical anomaly detection tests are run of-
ten (e.g., every five minutes), on large networks (with ten’s of thou-
sands of links), and so even a seemingly low false alarm rate may
result in enough false alarms to overwhelm network operations staff.
In the worst case, false alarms undermine anomaly detection, as op-
erations staff tire of reacting to false alarms, and ignore or turn the
system off entirely.

IP forwarding anomalies represent a large class of network anoma-
lies, that relate to problems in forwarding packets to their destina-
tions. More precisely, a forwarding anomaly is a period during which
a significant number of packets fail to successfully exit the network
at an appropriate point. Network component failures (line card, opti-
cal amplifier, or router outages, and fiber cuts) are not usually within
the class of such anomalies. During such events, IP traffic is rerouted
along alternate paths, resulting in at most a short transient anomaly
while the routing protocols reconverge. Also, such failures are typi-
cally isolated, and easily detectable via other means, e.g. the Simple
Network Management Protocol (SNMP). However, as we note be-
low, component failures may trigger some larger network error, or
occur simultaneously.

Forwarding anomalies can be the result of several problems:

• Bugs: Bugs in router software may cause forwarding problems
that do not register via any hardware alerts, or may further be
related to bugs in the instrumentation itself.

• Misconfigurations: The IP control plane — the distributed pro-
tocols that coordinate the building of forwarding tables through-
out the network — is very complex. In such systems it is hard for
an operator to understand the state of the system, and therefore
the possible impacts of their actions [2]. The result is that routers
may be configured in such a way that packets do not reach their
destinations, even though the network may appear to be work-
ing normally. The distributed nature of the Internet means that
such misconfigurations are not entirely under the control of a sin-
gle operator. BGP allows network operators to misconfigure their
systems in a way that may impact another network. Note that in
[3] the authors found that operator errors in the form of miscon-
figuration was the major cause of service affecting outages, and
BGP in particular has been seen to be hard to administer, so we
may expect occurrences such as this to be a major form of for-
warding anomaly.

• Cascading network failures: In a cascading network failure, a
simple failure (such as that of a line card) results in widespread
disruption of the network. Although, the possibility of such a col-
lapse is not anticipated in the Internet, such failures are difficult
to predict, or control, and certainly have been observed in other



network systems, for instance the power grid in North America in
August 2003, and in the telephone network [4].

• Latent errors: It is possible to have latent errors: problems that
are not significant until another error triggers them. A simple
example might be a backup path that has been misconfigured, so
that it does not work. Without careful testing such a problem
might not come to light until after failure of the primary link.
The failure of the primary link would be dealt with using normal
procedures for detection and re-mediation, but without anyone
realizing that the backup path was also failed, they might not give
this task the priority it requires.

• Exogenous factors: It seems very unlikely that exogenous en-
vironmental effects can cause large scale failures. Networking
equipment is generally held in tightly controlled environments,
with redundant power supplies, and A/C. However, in rare cases,
for instance the Sept 11 attack on the World Trade Center, the
scale of external factors was large enough to affect a large part of
the network. Although critical locations often have connections
to multiple grids, and backup power supplies, very large scale
power outages (such as the North-Eastern American blackout of
August 2003) might also impact services in some networks if they
do not have sufficient redundant power provisions for a long-term,
large-scale outage. Obviously, detection of such impacts will be
secondary to the event in question, but may none-the-less be use-
ful in order to quickly assess the scale of the impact.

• Simultaneous failures: Most networks plan for single compo-
nent failures, for instance, by providing pairs of redundant links.
Given independent failures (consideration must be given to shared
risk link groups when making such assumptions [5]) simultane-
ous failures should be unlikely. However, occasionally failures
occur simultaneously. For example in May 2000 Optus (a major
provider in Australia) had simultaneous, independent failures of
the two redundant links between a pair of major cities [6].

A consistent property in these problems is that the standard meth-
ods for detecting network problems, for instance SNMP traps, sys-
log messages, etc., either do not detect such events, or are not likely
to see the true extent of the problem. Understanding the extent of a
problem quickly is important to prioritize the event appropriately.

Forwarding anomalies (by definition) have severe or network-wide
impact, resulting in dropping large quantities of packets. For in-
stance, on October 3rd 2002, a forwarding anomaly resulting from
a router software bug caused a major tier-1 provider to lose a large
volume of traffic [7], network-wide, over several hours. During this
period, there were large drops in traffic on peering links (as mea-
sured by SNMP) and noticeable effects on Border Gateway Proto-
col (BGP) routing (as seen, for example, from customer and public
viewpoints, such as Routeviews [8]). While this problem is near the
extreme end of the spectrum there have been other, smaller scale for-
warding problems in many ISPs (see, for example, email archives
posted to the North American Network Operators’ Group, NANOG,
http://www.nanog.org). A major outage (several hours long
covering a large proportion of the network) of a tier-1 ISP [7] mo-
tivated this work, in particular, the data sets used here, because the
event showed up particularly clearly in both SNMP, and BGP data.

We investigate an approach for reliable detection with a low false
alarm rate, which integrates multiple data sources. Specifically, this
paper presents an analysis of using SNMP data, in conjunction with
BGP data, to detect and localize forwarding anomalies in a large
tier-1 ISP environment. Each data source provides a different view
of such anomalies. The SNMP data provides traffic volumes, while
the BGP data concerns routing between autonomous systems. Both
individual data sources have problems in data quality and in missing
causality information that lead naturally to false alarms. On the other
hand, if such problems are suitably uncorrelated in two data sources,

then the false alarm rate can effectively be diminished by correlating
the two. This is precisely the intuition behind our choice of data
sources and our method.

First, we transform each data set individually to create useful anom-
aly metrics. Though SNMP usage data is relatively simple — the
number of packets or bytes that traverse an interface between suc-
cessive polling intervals — operational measurements for large net-
works can be relatively complex and noisy. We use two methods to
extract the anomaly indicators from this data: a standard technique
called Holt-Winters, and a second method based on a decomposition
of the traffic. BGP dynamic updates, on the other hand, provide
a rich, high-dimensional data source, with considerable volatility.
Here, to extract a useful anomaly indicator, we transform the raw
data to simulate and track BGP tables at locations throughout the
network. We then use the dynamic count of the number of routes sat-
isfying a given predicate, and use a modified exponentially weighted
moving average to signal anomalies. Last, we correlate the SNMP
and BGP anomalies to produce a combined indicator.

In this investigation we have principally looked for rapid detec-
tion and diagnosis of larger scale events — that is, those that concern
more than one router or link. We note that forwarding anomalies
sometimes self-repair relatively quickly, so that no remedial action
is possible or necessary. However, these anomalies can still cause
transient disruptions and degradations of service quality for sensi-
tive applications, such as Voice over IP or interactive gaming. Re-
liable detection is still important for tuning network protocols and
processes to track and reduce the occurrences of transients.

Apart from testing several anomaly detection algorithms on indi-
vidual data sources, the main contribution of this paper is the finding
that using traffic and routing data together significantly reduces the
false alarm rates for forwarding anomaly detection. The reason is
that during a forwarding anomaly, traffic fails to reach its correct exit
point from the network. A large part of the traffic on a major ISP ex-
its the ISP at its peering points, and so a major forwarding anomaly
will be noted by a change in traffic along this edge of the network.
Similarly, the routing to peers is controlled via BGP, and so large
scale forwarding anomalies will appear in this data source as well.

1.1 Related work
Previous work on network anomaly detection has primarily fo-

cused on security tasks (detecting DoS attacks, worms, or other in-
trusions) and has often been signature based. We seek to find anoma-
lies which may never have occurred previously, and so do not have
a known signature. In many cases providers use very simple tech-
niques for anomaly detection, such as fixed thresholds, but such tech-
niques are quite limited. There has however been some more sophis-
ticated work in the detection and analysis of network anomalies. In-
stances are [9, 10, 11, 12, 13, 14]. Of these, the most directly relevant
to this paper is [12] which tests the use of the Holt-Winters forecast-
ing technique for for network anomaly detection. Also of note is
[13] which proposes a wavelet based method with great potential,
but is most noteworthy because it has the strongest set of data used
for testing these algorithms. [13] contains one of the first large scale,
quantitative tests of algorithms for network anomaly detection.

In addition to the papers describe above, there are a few works on
correlating alarms or various sorts via various means, for instance
see [15, 16, 9, 10]. Such work is relevant here in the sense that we
are performing a type of alarm correlation, although the method we
use here is very simple, despite its good performance. One might
apply techniques such as those suggested in these papers to improve
performance in the future.

2. BACKGROUND

2.1 SNMP
In this paper, we analyze Simple Network Management Protocol

(SNMP) traffic data extracted from a large archive drawn from a



large tier-1 ISP’s backbone network. SNMP is unique in that it is
supported by essentially every device in an IP network. The SNMP
data that is available on a device is defined in a abstract data structure
known as a Management Information Base (MIB). An SNMP poller
periodically requests the appropriate SNMP MIB data from a router
(or other device). Since every router maintains a cyclic counter of the
number of bytes transmitted and received on each of its interfaces,
we can obtain basic traffic statistics for the entire network with little
additional infrastructure.

SNMP data has many practical limitations – for instance missing
data, incorrect data, and a coarse sampling interval (typically five
minutes, though one could easily collect data at somewhat finer in-
tervals), and an off-set in the measurement times between different
devices. A further limitation is that SNMP only provides aggregate
link statistics – we cannot determine anything about the type of traf-
fic using the link, nor its source or destination.

In the network in question we have more than one year’s SNMP
data, gathered at five minute intervals. The data contains the MIB-II
counters, which include the number of bytes in and out for each in-
terface in the network, and this is the data we shall examine here. We
first aggregate the data onto one hour intervals, using nearest neigh-
bour interpolation of the samples. This transforms the problems of
off-set and missing data, and sample jitter into a small amount of
noise in the measurements. We then aggregate this data to exam-
ine the total traffic along the peering edge at each Point-of-Presence
(PoP) at which there are inter-peer connections.

2.2 BGP
The Border Gateway Protocol (BGP) has the very important role

of exchanging the reachability information between the Autonomous
Systems or ASes. Monitoring BGP updates can reveal all the changes
in the best route used by a given router and can in turn indicate
routing problems in the network. Route monitors, supporting pas-
sive BGP peering sessions, can be set up to receive all the routing
changes. Such route monitors archive all the update messages and
regularly dump all the routes in the BGP table. The Oregon Route-
views [8] project and the RIPE NCC RIS project [17] have both set
up such routing sessions with numerous ISPs to obtain the best routes
used by these networks.

Inside a service provider’s backbone network, it is also very valu-
able to monitor the best routes used by various routers to study po-
tential network problems. Such data allow one to differentiate the
problems within one’s network from those in neighbouring networks.
In our experiments, we make use of measurements from route mon-
itoring sessions to route reflectors in all major PoPs of the backbone
under study. The data include all the BGP updates, i.e., the routing
changes, as well as daily table dumps of all the best routes used. The
monitoring sessions see all the available routes. Given a BGP table
which contains all the best routes used, one can apply the updates to
obtain the best routes at any given time.

BGP updates comprise an extremely rich, high dimensional, and
relatively volatile data source. The volatility arises from the fact that
BGP sees routing changes over a large segment of the total Inter-
net. The challenge is to define metrics that allow for rapid calcu-
lation and prediction of forwarding anomalies. In general, we have
found metrics that count the number of routes that satisfy a given
predicate to be very useful in detecting and explaining routing phe-
nomena and various forwarding anomalies. In the particular case
here, we shall focus on the distribution of routes via different egress
points. A router typically has several choices of where to send traffic
for most of the prefixes in the table. A sudden shift in the distribu-
tion of routes gives a good indication that the egress point that is less
preferred may experience some network outages. In this paper, we
will investigate metrics that track (for each route reflector under ob-
servation), the number of routes that exit a given PoP. These metrics
are easily calculated by combining BGP updates with configuration
data that maps BGP next hops to BGP routers.

For each PoP we shall store a time series constructed from the
number of best routes seen exiting the PoP by the local route reflec-
tor. We further aggregate this data into time bins so that we store the
minimum and maximum number of routes seen during each bin. For
the purpose of this study we use one hour bins, though this number
is arbitrary, and can easily be reduced to bins as small as a minute
with very little additional computational load.

This data can contain artifacts as a result of resetting the BGP
session between the route reflector and the route monitor. These ar-
tifacts have been removed using data archived at the BGP monitor,
but other artifacts may persist.

3. ANOMALY DETECTION
Anomaly detection can be thought of as an attempt to detect data

that shows evidence of emerging from a different process or mecha-
nism than typical data. There are far too many possible approaches
to anomaly detection to list here. We shall take the approach of us-
ing several very simple, but reasonable detectors for individual data
sets, and rely on the combination of data sets to provide good per-
formance. One could obviously improve the quality of the detectors
on individual data sets using more sophisticated algorithms, but this
paper shows that such an approach is not needed, given the correct
combination of data sets. Furthermore, the false alarm rate for any
one data set will be intrinsically limited by that data set, and so one
must use some combination of data in order to get useful perfor-
mance.

Many simple approaches to anomaly detection are basically out-
lier detection — detecting observations that differ by a large amount
from normal observations. The method by which you measure the
normal behavior of the observations is still of interest. There are a
number of alternatives available, depending on the properties of the
data in question:

• EWMA: The Exponentially Weighted Moving Average (EWMA)
chart is a text-book method applied in quality processes (for in-
stance see [18]). The method is broadly applicable to data with
a stable, stationary mean, and independent observations. We will
adapt this approach for use on the BGP data analyzed here. Expo-
nential smoothing is a method for computing a prediction of the
value of some measured quantity, where the measurements in-
clude noise. Given the prediction, we can assess how far the next
measured value is from its prediction, and thus decide if the mea-
surement is an outlier. One assumes that the process can change
(slowly) over time, and so more recent measurements are more
relevant, but may be overridden by the body of preceding data.

• Holt-Winters: The Holt-Winters method is a generalization of
the EWMA for data which shows both periodic variations (both in
mean, and variance), and long term trends, in addition to stochas-
tic variations. Holt-winters has been perhaps the most commonly
tested algorithm in the context of Internet anomaly detection [12,
14, 13] because of the fact that while not optimal, it does not make
many assumptions and is therefore quite robust.

• Decomposition: In addition to Holt-Winters we apply a recent
method using a model developed in the context of backbone In-
ternet traffic [19]. The method, like Holt-Winters, is based on the
idea that traffic is composed of a long-term trend, a periodic com-
ponent, and noise, from which we wish to extract anomalies. The
method has a number of advantages due to a more appropriate
model for traffic data.

There are many alternative methods, for instance, the wavelet tech-
niques explored in [13] are particularly appealing. Other methods
include ARIMA modeling, as used in [14], or Bayesian techniques,
for instance see [9]. These methods might allow for improvements in
false-alarm rates in themselves. However, the properties of the data
itself suggest that there will always be false alarms for any detector
of the required sensitivity.



3.1 Anomaly detection in SNMP traffic data
Internet traffic shows strong non-stationarity both in the mean, and

the variance [12]. This non-stationarity has two major components
– a long term trend, and a periodic, or seasonal component. What’s
more, as noted in [12] the periodic component can gradually evolve,
for instance, as the number of evening daylight hours changes from
summer to winter. Thus, we apply Holt-Winters, and the decomposi-
tion technique to anomaly detection in SNMP data, because they are
designed to work on this type of data.

3.2 Anomaly detection in BGP data
As with the SNMP data, the BGP data is non-stationary. It ex-

hibits trend over long time intervals (typically the number of routes in
the Internet has grown over time), and also dramatic changes where
changes in routing policy (for instance introduction of prefix aggre-
gation) have resulted in shifts of a large number of routes. BGP
data is, as noted above, relatively volatile. However our metric – the
number of routes matching a given predicate – shows good stationary
properties over moderate time scales (days), and little periodic time-
of-day, or day-of-week variation. Hence EWMA seems applicable.
In the algorithms here we use as our observations the minimum num-
ber of routes in any time interval, which provides a faster method of
alerting to a drop in the number of routes.

We modify the EWMA technique somewhat to effectively allow
for rapid reinitialization after a large level shift (a case which the
EWMA algorithm does not deal with well). The method used here
is to estimate the mean of the normal number of BGP routes using
the EWMA. However, if the value falls outside our the threshold
around the predicted value, indicating an anomaly, we shall not use
it to update the EWMA. If we were to discount such outliers entirely,
we would loose track of the process at any large step. We would
mark the first point of the step as an outlier, and so discount it, and
therefore the estimated mean would remain unchanged, causing us to
mark the next and all future points as outliers. To avoid this pitfall,
we allow a maximum gap in the data – if outliers persist for longer
than this gap then we reset the value of the EWMA.

3.3 Correlating anomaly indications
We apply arguably the simplest approach possible for correlating

the anomaly indications from the different data streams: for any one
PoP if both BGP AND SNMP anomaly indicators report anomalies,
we shall generate an alarm. This simple correlation allows us to focus
on the hypothesis that the power of the approach derives principally
from combining indicators whose false alarms will be uncorrelated,
as the false alarms relate to independent glitches in data collection or
natural variations of the individual data streams. The vast literature
on pattern recognition provides more sophisticated correlation ap-
proaches, which remain open for improving the results – for instance
the authors of [9] propose the use of Bayesian inference. However,
note that the following tests demonstrate that the very simple ap-
proach used here already produces results of practical quality.

4. RESULTS
We evaluate the anomaly detection method using three data-sets:

• A long set of SNMP/BGP data covering eight large PoPs in the
tier-1 ISP backbone IP network spanning an interval of more
than one year.

• A second shorter set of data from February to May 2003, in-
clusive, consisting of detailed fault tickets from the network.
Fault, or trouble tickets are the representation of a network
problem in the database system used by operators to track a
problem from detection to re-mediation. These tickets contain
data on the start, and end time of a fault, and its root cause.
However, this data is primarily text, entered by operators as

they discover, and analyse a problem. Hence the times are of-
ten not precise, and the records must be processed laboriously
by hand to obtain the relevant data. For instance, see [3] for
more discussion of this type of data source.

• A list of the events that were considered by the IP operations
group to be of the type that we wished to detect (using the
methods above). This list is very short, as such events are rare,
but they are of such scale that it is still important to detect
them, even if they occur less than once a year.

The results given here are broken into two sections. First we shall
consider two illustrative examples to see how the algorithm works.
We shall then undertake a more systematic examination of the algo-
rithm’s performance.

4.1 Examples
We start by considering two illustrative examples of the algorithm

in practice. The example shown in Figure 1 (a) covers the failure of
a major network peer. During this failure, the peer dropped traffic
along its peering links in a number of locations. In the figure, we
focus on a PoP where nearly half of the traffic (and corresponding
routes) arose from that peer, and so the failure stands out clearly.
However, the failure was also detected in a number of other locations.
While this example would not lead to a particular remedial action
on the part of ISP, some operational actions may be called for to
mitigate the impact of the outage. Moreover, the example is highly
illustrative for two reasons. Firstly, it shows the nature of the SNMP
and BGP time series used here. Secondly, it clearly shows the large
deviations during the outage. A third feature to note are the presence
of two false alarms in the BGP data – dips that do not correspond to
noticeable traffic changes.

The second example, in Figure 1 (b), shows an example of what
we see when a router with many peering links has an outage (in this
case a planned outage). We can see early in the morning, local time
(the date ticks occur at 00:00 GMT), a dip in both BGP, and SNMP.
The plot should reinforce those points above, with the addition that
we see a false alarm (near 00:00 5/15) in the SNMP due to missing
data. Note that such a large drop in traffic should be detected by
any anomaly detection algorithm one might build. However, it is
an artifact in the SNMP data. The presence of such artifacts is a
key reason why correlation between data sources is needed. The
data sources are generated by completely different processes, and so
artifacts are unlikely to occur in two data sets at the same time.

4.2 Statistical analysis
In this section we shall conduct a more systematic examination of

the data. The first task is to determine the sensitivity, or detection
probability – the probability that an anomaly is detected. For this
we use the short list of known events, and the SNMP/BGP data set
over the enclosing time interval. The algorithms above performed
perfectly on this list, and further, indicated the location of the prob-
lem. Of course, with a small set of event data it is hard to determine
precisely the detection probability, but it is likely that high detec-
tion probabilities are easily achievable because the events we wish to
detect are large scale, with a significant impact on measurements.

The second, and more difficult task is to determine the selectiv-
ity, or false alarm rate. To assess the false alarm rate we take each
detected event from the period of February to May 2003, and exam-
ine the detailed fault tickets to determine its root cause. The results
of this investigation are shown in Table 1 — note we cannot report
the actual number of events because these numbers are considered
sensitive data, however the numbers are quite small.

The majority of events detected by either technique turn out to be
caused by simple router or link outages on the peering edge of the
network, such as shown in Figure 1 (b) (both methods detect exactly
the same set of such events). For instance, if a router with many
peering linkages is taken out of service, then the routes that would
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(b) Example 2.
Figure 1: Examples showing SNMP traffic data (top plots), and BGP routes (bottom plots).

percentage Holt-Winters
root cause of events events
edge node/link outage 67% 55%
simultaneous outages 11% 18%
unknown cause 22% 18%
error 0% 9%

Table 1: Root cause analysis of the detected events. The table
shows the proportion of different root causes for the decomposi-
tion and Holt-Winters approaches.

normally exit the network at this point will be rerouted to alternative
points, resulting in changes in the SNMP traffic, and BGP routes.
The majority of such events are part of planned maintenance (for
instance for software updates), and occur during the maintenance
window early in the morning when not much traffic will be effected,
if there is any impact at all. By correlation with operational work
flow information, such false alarms may be filtered out. In addition,
the vast majority of such events occur in isolation, and are easily
detected through standard mechanisms such as SNMP traps/polls of
the routers, and so, they are not actually of great interest here. Note
also that we do not detect all such events, because in many cases the
actual change in traffic volumes, and/or BGP routes may not be that
significant (for instance the failure of a peering link to a small peer).

In the process of analyzing the above events we found a small
percentage which were the result of simultaneous link/node outages.
Such simultaneous outages might be more serious than single out-
ages because the network is designed to deal with single component
failures. Some scenarios involving multiple points failing simultane-
ously might result in excess loads being placed in parts of the net-
work as traffic is rerouted. Note that once again, both Holt-Winters
and the decomposition techniques came up with the same list of si-
multaneous outages.

Finally, we also found a small proportion of events that had no
apparent cause in the trouble ticket data. The cause of these events
remains a mystery, but they appear to be genuine anomalies (they are
not the result of missing, or obviously erroneous data). Such events
could have two causes: problems in the network that are not detected
via other means, or with more likelihood network problems on adja-
cent peers. In either case the events are interesting to network oper-
ations. In the former, it would allow better network management, in
the latter case it gives us a window onto the behavior of the greater
Internet. Holt-Winters detected only half of these events, and in ad-
dition detected a small number of events that seem to be artifacts of
the detection mechanism, and are not readily apparent in the data.

Given the above (the fact that the majority of events correspond to
causes that we don’t need to detect here), proportion of false alarms
drawn from Table 1 seems quite large (64-67%), but note that the
frequency or rate of events is very low. A false alarm rate of at most
a couple of events detected per month (as here) is acceptable.

Now compare these result with the false alarm rates for the indi-
vidual data sources. Table 2 shows these results, based on the more
than one years worth of data we have available. Because we don’t
have fault tickets for this entire period, we infer a false alarm from
the fact that both data sources do not signal alarms. This is clearly
only an upper bound on the false alarm rate, as some of these alarms
may fall into the categories above (i.e., single edge node failures),
but the vast majority of such events are false alarms (tested on a siz-
able sample of these events). We compute these false alarm rates
based both on the proportion that happen per PoP per hour over all
the eight PoPs considered here. We examine these false alarm rates
for the two SNMP detection algorithms, and for the EWMA algo-
rithm on the BGP data. Note that the latter algorithm has the lowest
false alarm rate. Holt-Winters has a slightly higher false-alarm rate
than the decomposition technique.

false expected false
data set algorithm alarm rate alarms per day
SNMP Decomposition 3.4% 78
SNMP Holt-Winters 4.3% 99
BGP EWMA 0.5% 12

Table 2: False alarm rates for individual data sources.

Note that the rates in Table 2 are different from the percentages
in Table 1. In the previous table we reported the percentage of re-
ported events of each type. In Table 2 we report the proportion of
tests that return a false alarm. That is, around three in one hundred
decomposition test return a false alarm. Assuming only 8 PoPs, and
five minutes measurements (288 per day) one would expect between
12 and 99 false alarms per day (see Table 2, column 4). These are
supposed to major events, and given high priority treatment, and the
amount of work required to determine the cause of each alarm is
large. Such a large number of false alarms is unreasonably high, and
would result in the anomaly detection being switched off, or ignored.
It would be even worse for a larger scale network, or tests performed
at a finer level of detail. Relative to the number of tests performed,
the percentages in Table 1 would be very small, producing fewer than
an event per week. This demonstrates this paper’s main point — we
can get a very large false alarm reduction using the combination of
data sources. The reduction is greater than a factor of one hundred.



4.3 Discussion
The above results suggest that the decomposition technique is a

little better than Holt-Winters — both have perfect sensitivity, how-
ever, the false alarm rate for the Holt-Winters technique is slightly
higher when we use the SNMP data alone. Furthermore, although,
in Table 1, they appear to have the same selectivity, notice that in
the Holt-Winters test some of the nominal false alarms are gener-
ated by errors, whereas all of those in the decomposition technique
are generated by real data events, even though some are not inter-
esting. Further note that the decomposition found more of the inter-
esting, unknown events. Hence we conclude that the decomposition
technique is superior to the Holt-Winters approach in this context,
though the improvement is minor in comparison with the benefit of
combining the two data sources.

Of course one can consider improving the algorithms used for de-
tection of both SNMP and BGP events to reduce the false alarm rate
individually. However, there are fundamental problems with this ap-
proach. There are artifacts in the data, as well as genuine anomalies
in both data sets that are the result of causes that we are not inter-
ested in detecting. For instance, the SNMP data may naturally vary
for a number of reasons we do not consider to be network problems,
at least in the sense that there is nothing we can do about them us-
ing current IP infrastructure: for instance traffic may vary from its
normal patterns on holidays. Similarly BGP routes are not all re-
sponsible for equal traffic volumes. A large number of routes may
change, but if these routes do not carry much traffic, there will be
little impact on the network. An additional concern is problems in
the data: SNMP data can contain erroneous or missing data, which
could appear as untoward spikes, or dips in the data. The BGP data
also contains artifacts – for instance, if a BGP session between peers
is reset, the number of routes from this table drops temporarily to
zero, even if they are quickly replaced, so that the event has only a
small impact on traffic.

By combining multiple sources of data we gain a specific, and
powerful way of detecting forwarding anomalies, which avoids any
of the above pitfalls.

5. CONCLUSION
This paper has described an important class of network anoma-

lies — forwarding anomalies — and specific methods for combining
routing and traffic data to perform accurate forwarding anomaly de-
tection. The choice of data sets used here was motivated by a specific
example, but we found them to be a good choice — the method has
a perfect detection rate, while dramatically reducing the false alarm
rate. Moreover, the method is automated and self-training — essen-
tial characteristics for deployment in large operational networks.

Further, we found several events in the data, using this technique,
that had not been previously detected through any other alarming
mechanism, and are therefore worthy of further study in their own
right. These events may be the result of undiagnosed internal net-
work problems, but with more likelihood are the result of external
network changes, outside the normal view of the single domain un-
der investigation. Thus we may be able to gain a window into major
external Internet changes.

The method is very simple, but this should be seen as an advan-
tage, as simplicity makes the method more scalable, and more easily
extendible to include additional data sets, for instance, OSPF routing
data, active network probes, router logs, or flow level data. A simple
example might be the inclusion of network management information
on planned outages so that we can exclude these from the detection
algorithm. One could also improve the algorithms applied here to
individual data sets, for instance by applying the wavelet techniques
of [13], and there are also many different ways in which data from
these various sources could be combined. We have used a very sim-
ple method for data fusion, but there is a great deal of literature in
the areas of pattern recognition, detection and classification that is
relevant to this task. Finally, we have considered only one class of

network anomalies here — forwarding anomalies, but it is likely this
sort of technique could be extended to other sorts of anomalies, for
instance of application in security.
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