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Abstract—The study of network topology has attracted a great
deal of attention in the last decade, but has been hampered
by a lack of accurate data. Existing methods for measuring
topology have flaws, and arguments about the importance of these
have overshadowed the more interesting questions about network
structure. The Internet Topology Zoo is a store of network
data created from the information that network operators make
public. As such it is the most accurate large-scale collection
of network topologies available, and includes meta-data that
couldn’t have been measured. With this data we can answer
questions about network structure with more certainty than ever
before — we illustrate its power through a preliminary analysis
of the PoP-level topology of over 140 networks. We find a wide
range of network designs not conforming as a whole to any
obvious model.

I. INTRODUCTION

W hat is a zoo? The term zoo is a common abbreviation

for “zoological garden” – a place where animals are

kept and exhibited to the public – the earliest of which was

that of the London Zoological Society, established 1828 in

Regent’s Park. There are many much older collections of

animals, but they were described by terms such as menagerie

and, apart from the name change, modern zoos differ from

a typical menagerie in their guiding principles. The modern

zoo is not just concerned with entertainment, but also with

conservation, education and scientific research.

The collection described in this paper is a set of network

topologies, not animals, so perhaps the term zoo (from the

Greek zōon or “animal”) is inappropriate. However, our goals
are those of a modern zoo.

Our Zoo presently consists of over two hundred network

topologies from network providers. It is distinguished from

other such datasets by the method of collection — we do not

use an automated procedure such as a traceroute survey as in

previous studies (for example, see [1]–[5]). The problems with

such surveys are well documented [6], [7]. Here we base our

collection on promotional data: maps and other information

self published by the owner or manager of the network in

question. The results add to the evidence that traceroute is a

difficult tool to use for determining topology. For instance, we

found one case [5] where the authors declared that a network

(Cogent) had 35 PoPs when the network operator themselves

advertises 184 PoPs1.

Natural questions arise concerning the accuracy of our

data as well, and we discuss this issue later, but our central

argument is that although a published network map may not

reflect the exact nature of the underlying network at the current

time, it certainly does show the network that the company

1http://www.cogentco.com/us/network map.php

intended. Such a map reveals something that no measurement

can see: what was in the mind of the network engineer when

the network was designed, rather than what was built to meet

the realities of day-to-day operation.

The ability to see what a network engineer, manager, or

operator believed was important about their network provides

insights that traceroute studies lack. Of course, for some

purposes a precise map of exactly what currently exists is

more useful, and so we see collections of data such as this as

complementary to good measurements. In fact, we hope that

the Zoo can actually help improve the standard of measured

topologies by providing a dataset against which to compare

results. However, the network maps we use often provide

meta-data about a network that is otherwise unavailable, or

at best, subject to large inference errors. For instance we

can often see link capacities, node locations, node roles,

interconnect locations and so on.

It may be surprising to some that we can collect so many

network topologies in this way, but the 200+ networks that
we have at present do not even cover all of those that we know

(conversion is a time consuming process which is ongoing),

and there are no doubt many others that we have not yet found.

It seems to be quite common for network operators to publish

some form of information about their network. Some even

describe their network in legally binding documents such as

company reports (e.g., [8]–[13]). Moreover, as networks evolve

we expect that companies will update network maps, so we

will see the development of these networks. For these reasons,

we see the Zoo as an ongoing project. The web page allows

for contributions, so in addition to our ongoing efforts we hope

to recruit others to add networks to the Zoo.

As with other zoos, there are three primary goals for

this collection, starting with scientific research. There is an

extensive debate under way on the nature of network topology.

On the one hand lie the random graph models (starting with

Erdos-Renyi and Gilbert [14] and going forward through

Waxman [15], and more recently power-law graphs [16]–

[19]). On the other hand lie “designed networks” such as the

structured networks of GT-ITM [20], [21] or HOT (Highly

Optimized Tolerance) graphs [22]. Proponents of power-law

and HOT graphs seem convincing, but both are hampered by

lack of accurate data. In the few cases where a commercial

network has been used the data have not been published. This

lack of accurate, public data has been a severe constraint,

preventing performance of repeatable scientific research. One

may reasonably argue that scientific progress cannot be made

in this area without an accurate, public set of data.

In addition to scientific interest in the very nature of these

networks, the provision of network datasets in an easily
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accessed format may prove useful to the broader network

community: network topologies are necessary for testing many

networking algorithms. At present, very few are available apart

from those based on traceroute studies.

The Zoo’s second goal is education, though this is obviously

related to the research value of the data. We will learn

lessons from this research, and those lessons will help educate

researchers2. The Zoo will also provide a set of network

examples to help educate the next generation of network

engineers. Most current examples are contrived. Real examples

are more compelling.

The third goal of the Zoo is conservation, though not

in the ecological sense. The maps and other promotional

materials that we use here are ephemeral. Once their use-

by date is exceeded they are removed from public view, but

more than that many companies do not make any attempt

to store historical archives of their network designs. Apart

from scientific uses, such data may even be useful to those

companies at some point in the future to understand the

development of their own network. The Zoo currently includes

a number of historical network maps, going back to those of

the ARPANET, published by Cerf and Kahn [23]. The Zoo

contains several other examples for which we have multiple

views of that network’s development over time.

This paper is more than a description and classification of

the Zoo itself. We also present, in Section IV, some prelim-

inary analysis of these networks. We focus in this paper on

maps at the Point of Presence (PoP) level, which are interesting

because this level relates to the network design problem. It

is also the level which concerns peers and customers as it

determines where they can connect to the network, and it’s

also the level at which reliability and redundancy are often

considered. What we see in the 141 networks studied is that

there is no “one true network model”. There are a very wide

range of networks ranging from hub-and-spoke networks, to

trees, to more highly connected graphs. However, we do

observe some trends. In particular we see more hierarchy with

increasing network size. We also make one new observation

that the neighborhood of a PoP seems to be limited to about 20

or so other PoPs. There is no physical or technical constraint

that enforces this at the PoP level, so it will be interesting in

the future to explore the reason for the presence of this limit.

II. THE DATA

B efore we begin discussing the details of our topological

data, let us first define our terminology precisely as

topology is a woefully abused term. We define topology to

mean an undirected graph G = (N , E), which abstracts
the connectivity of a data communications network. In fact,

we really mean a multigraph, as multiple edges are allowed

between a single pair of nodes (formally, E is a multiset).
Care must be taken to define the nature of the nodes

and edges of the graph. Internet topologies have been given

for each of the seven OSI layers, for instance edges may

refer to physical cables, virtual network layer connections, or

2In fact, some of what we learn from this data is already accepted by
network engineers, and so part of the value of this data is in educating
researchers. However, it is dangerous to be too trusting of received wisdom.
We should maintain skepticism, and verify even that which is “well-known”.

even the HTML links between WWW pages. Other types of

topology are also possible, such as those reflecting hierarchical

approximations, say by combining some groups of routers

into Autonomous Systems (ASs) or Points-of-Presence (PoPs).

The Zoo contains topologies of various levels of detail, from

physical fiber, through to virtual/logical connectivity between

ASs. We admit most types of networks to the Zoo, but ensure

that in the data the type of nodes and links are precisely

specified.

A. Measurements

There are various strategies available for measuring network

topology. The most direct way is to ask the network itself.

IP routers are managed through configuration files describing

the current operation of the router, and which can be used to

measure a network [24]3. Precisely because of the quality of

information contained in these files they are considered highly

sensitive and are rarely allowed outside an organization. Such

data may be used to construct the type of map we use here,

but is otherwise rarely available to researchers.

The second class of techniques involve IP-level hacks that

ideally return the path between two points. The IP header

option field “record route” [26], [27] returns the route of a

packet as it traverses the network, but is often not enabled

due to security and performance concerns. The more common

approach is traceroute [28], [29]. Despite being com-

monly used, traceroute has many well-known deficiencies

(summarized in [6], [7]). There are nevertheless many studies

of network topology using traceroutes (for examples see [1]–

[5], [30]), but the resulting network topologies are not very

accurate [6], [7]. Moreover, verification of these topologies is

made difficult by lack of ground-truth. One of the potential

uses of the Zoo data is to establish ground-truth data to use

in improving measurement-based approaches, which can in

principle survey a wide range of networks.

We performed comparisons between our dataset and one

of the most recent and advanced traceroute based methods

and found large differences. For instance, the example of

Cogent’s network in [5]. There are several possible causes for

this discrepancy, the most likely being traceroute measurement

errors, differing definitions of a PoP, and differing network

boundaries. However, we maintain that a network operator is

in a better position to define details such as the edge of its

network, and so their view should take primacy.

The third group of strategies for topology inference is

based on network tomography. The statistical nature of these

approaches again leads to errors.

Instead of the existing automated methods we adopt here a

simple, manual approach. Many companies present public ma-

terial about their network, primarily for promotional purposes.

They wish to sell their network. We capture this information,

and manually transcribe it into a common data format – in the

following section we describe in detail our process of capture

and analysis for these datasets.

3A related approach is to use a routing monitor (e.g., [25]), which observes
routing protocols and uses this information to construct a network topology,
but this also requires privileged access to the network in question.
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B. Data Collection and Formatting

Some network operators provide a piece by piece descrip-

tion of their network, but the most common form of published

information available to us is a network map. Such maps often

show PoPs and their interconnects, but may provide much

more detail. Some care goes into such maps because they are

a form of advertisement and therefore have legal requirements

for accuracy; they are highly visible to potential customers;

and finally, network engineers are often proud of their work,

and many would very much like to display it at its best.

Often these maps are simple images, but in some cases

they are interactive maps (for example using Flash). In the

case of images, we manually download the map and then

transcribe it into an annotated graph. Dynamic maps are more

difficult, and often require several passes to zoom in on details

and transcribe. Supplemental data in the form of equipment

registers or other descriptions of the network are used where

available to label links and nodes. We have collected over 200

such maps and associated data, and make no claim that we

have an exhaustive list.

Maps are converted using yEd [31], a freeware tool for use

in graph-drawing. It allows us to trace the network elements

such as routers and PoPs directly overlayed on the map itself,

with annotations such as node names and edge capacities. A

graphical diagram editor speeds up the tracing and annotation

steps, and reduces errors by allowing a visual comparison of

the original source image and the transcribed network.

Once we are satisfied with the transcribed network, we

export the topology into GML (Graph Markup Language)

format. yEd supports a number of graph formats (for instance

GML and GraphML), but GML meets our immediate needs

for a flexible, easily readable format. We wanted a format

that was easily computer readable, but also human readable. A

graph can be most easily understood pictorially, but it enhances

our ability to double-check data if we can read it without the

intervention of third-party software.

We also needed a graph format that was extensible. Dif-

ferent network operators provide different information in their

network descriptions. Some may provide PoP-level or router-

level maps, or detailed information about the physical media

used for a link, while others may show links that are planned

for the future. We don’t know all of the data that we might

need to store, and so we need a format that can be extended.

Binary file formats are compact, but are difficult to read and

to extend. Adjacency matrices capture the graph’s structure but

have limited scope for storing attributes such as node names.

GML [32] is a simple, text-based format. It simply lists

nodes and edges, with extensions to allow node and edge

attributes to be stored. Attribute information is represented

inside square brackets as key-value pairs. GML is also sup-

ported by a number of tools, and easily ported to other formats

(we provide simple scripts to do so). Hence we use GML as

our core file format. We provide a simple network example in

Figure 1, to illustrate the data format.

However, we understand that other users of this data may

find other formats more convenient. XML-based languages

such as GraphML [33] are easily parsed by machines —

XML processing libraries exist for most popular programming

languages, making it simple to work with data from the

Zoo. XML is also extensible by design, allowing it to handle

arbitrary attributes. We use GML as our core file format, but

provide the data in GraphML format as well. We also provide

scripts to read and convert the graph data into other formats

such as a simplified adjacency matrix representation.

One of the major advantages of GML is that it can be read

by NetworkX [34], an open-source graph library for the Python

programming language. NetworkX is fast, well supported and

includes many graph analysis algorithms. It is these we use to

perform much of the statistical analysis presented later.

C. Meta-Data

One of the chief advantages of our approach is that many

network maps contain additional data. We include such meta-

data in the records, for instance:

• link types or speeds;

• longitudes and latitudes of nodes obtained through

geocoding of PoP locations;

• a URL (Uniform Resource Locator) showing where the

data was obtained;

• the date-of-record, i.e., the date that the map was repre-

sentative of the network (in cases where the network map

was dynamically generated we record that);

• we also record the date we obtained the network map;

• a classification of the type of network. This last point

requires much more discussion and we will do so in

Section III;

• a link to other related networks.

D. Accuracy

How accurate is the Zoo’s data? The maps are created by

network companies themselves, so they are directly based on

ground truth. However, some network operators clearly pro-

duce these maps manually, potentially leading to inaccuracies

in their depiction of their own network. There are two reasons

that these errors are less significant than those of prior studies.

• The network maps we use are all public documents, and

so must satisfy standard due diligence requirements for

an advertisement or official corporate publication. That

is not to say that all corporations are perfect – it is easy

to make mistakes in drawing the map – but a network

operator is unlikely to publish a worse map than the one

they use in their own network operations.

• Some network maps may idealize the network. However,

we argue that in these cases, we are seeing what was in

the mind of the network engineer when the network was

designed. In this sense, the idealized view of the network

may be more interesting than its implementation (though

for some purposes it may be preferable to see exactly

what was implemented).

On the other hand, network operators do perform simplifica-

tions in some cases, most notable, many of the maps report

PoP-level, not router-level topologies. The datasets include the

level at which they are defined, and it is important to be aware

of this issue when using this data for research. For a very

simple instance, consider a network reliability study. A single

PoP may consist of a number of redundant routers, so the
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(a) Network aus simple.

(b) GML (c) GraphML

graph [
directed 1
GeoLocation ”Australia”
GeoExtent ”Country”
Network ”aus simple”
Classification ”Backbone, Transit”
Creator ”Topology Zoo Toolset”
LastAccess ”03/12/10”
Layer ”IP”
label ”aus simple”
Source ”Example”
Version ”1.0”
Developed ”Developed”
NetworkDate ””
hierarchic 1
Type ”COM”
DateObtained ””
node [

id 0
label ”Perth”
Internal 1

]
node [

id 1
label ”Adelaide”
Internal 1

]
.
.

edge [
source 0
target 1
Speed ”2.5”
Label ”2.5 Gbps, Ethernet”
Units ”G”
Type ”Ethernet”

]
.
.

]

<?xml version=”1.0” encoding=”utf−8”?>

<graphml xmlns=”http://graphml.graphdrawing.org/xmlns”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema−instance”
xsi:schemaLocation=”http://graphml.graphdrawing.org/xmlns/1.0/graphml.

xsd”>
<key attr.name=”key” attr.type=”int” for=”edge” id=”d23” />
<key attr.name=”Label” attr.type=”string” for=”edge” id=”d22” />
<key attr.name=”Speed” attr.type=”string” for=”edge” id=”d21” />

.

.
<graph edgedefault=”undirected” id=””>

<data key=”d0” />
<data key=”d1”>Australia</data>

<data key=”d2”>Country</data>

<data key=”d3”>aus simple</data>

.

.
<data key=”d7”>COM</data>

<data key=”d8”>IP</data>

<data key=”d9” />
<data key=”d10”>Example</data>

<data key=”d11”>1.0</data>

<data key=”d12”>aus simple</data>

<data key=”d13”>1</data>

<data key=”d14”>1</data>

<data key=”d15”>03/12/10</data>

<node id=”0”>
<data key=”d16”>1</data>

<data key=”d17”>0</data>

<data key=”d18”>Perth</data>

</node>

<node id=”1”>
<data key=”d16”>1</data>

<data key=”d17”>1</data>

<data key=”d18”>Adelaide</data>

</node>

.

.
<edge source=”0” target=”1”>

<data key=”d19”>G</data>

<data key=”d20”>Ethernet</data>

<data key=”d21”>2.5</data>

<data key=”d22”>2.5 Gbps, Ethernet</data>

<data key=”d23”>0</data>

</edge>

.

.
</graph>

</graphml>

Fig. 1: Example of GML and GraphML file formats. Many of the tags will be explained in the following section.
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likelihood of the whole PoP failing is much smaller than for

a node in a router-level graph.

Most of the maps in the Zoo come directly from the network

operators, but some have been derived from secondary sources.

We don’t wish to exclude any interesting data from the Zoo,

however, in these cases, the data is potentially less reliable.

Hence, we include in the data a “provenance” field taking the

form: primary (meaning it comes from the operator itself),

secondary (from a reputable secondary source, for instance the

scientific literature) or unknown. For studies requiring accurate

maps we suggest that only data with primary provenance are

used.

A second question of accuracy is “How accurate are our

transcriptions?” We have transcribed a large number of maps

so it is inevitable that some errors occur. However, we have

tried to minimize errors by (i) using a graphical tool so that the

transcription process is closely matched to the maps, and (ii)

making sure that each network is transcribed by one person,

and then checked by at least one other person.

Despite this care, there are still difficulties in interpreting

some maps. The most pernicious problem is links that join

without a node. There are two possible explanations for such

joins: (i) that there is really a three way link, and that the

correct graph representation is to join three nodes (with three

links), or (ii) that there is a y-junction, and one node is
connected to the two others, but there is no third link. However,

we do not know which is the reality, and so we introduce a

“blank” node at the join. This is the biggest source of potential

inaccuracy in the Zoo, but these nodes are flagged in the data,

and so it is possible to take the appropriate care to eliminate

problems caused by such ambiguities.

Another potential source of error is a network where it’s

too complicated to follow the tangle of links, or where it’s

unclear whether some nodes are real or logical. In such cases,

we exclude that network from the Zoo.

Ongoing quality control is an important part of this project,

and the web page also has links to a discussion forum, to

allow ongoing contributions to the accuracy of the dataset.

The forum provides a way for users of the data to point out

flaws, either in transcription or interpretation of the data. The

ongoing improvement of the quality of the Zoo’s data is as

important as care in the initial collection.

E. Visiting the Zoo

The data is stored at www.topology-zoo.org. It is viewable

through a table containing meta-data about the networks, or

as a single archive file. Scripts are provided for easy access

and translation of the data. An addition goal of the web page

is to allow contributions to the Zoo from third parties.

The data at present consists only of data provided by oper-

ators, however, we see no reason in principle why we could

not include crawled topologies, for instance, social network

topologies. Obviously such data would need to be classified

and tagged appropriately, and details of the data’s limitations

published. Further, we require that additional datasets conform

to the same data format, though writing translation scripts is

not usually difficult (the tools we currently provide include

a translation script for Rocketfuel data [1]). GML is flexible

enough to allow for such extension.

Finally, because the dataset represents a growing collection,

we use a version control system to keep track of the state.

Archives of the dataset at particular time points will be kept

for comparisons with past studies. We ask of any researchers

who make use of this data that, apart from taking care to first

understand the limitations of the data as documented above,

they cite the exact version of the dataset they use.

III. CLASSIFICATION

H aving collected a number of inhabitants for our Zoo,

we are left with the question of how to classify each

of our new inhabitants. Classification of species or entities is

important for several reasons. First, we wish to describe what

the Zoo contains. Second, we suspect that different types of

networks will have different qualities, and we wish to test

that hypothesis. Third, we can now identify when we have

discovered something new and hence extend our classification.

There have been a number of prior works on classifying

networks, in particular, Autonomous Systems (ASs) [35], [36].

The focus of these has been machine learning techniques

applicable to classification of all the tens of thousands of ASs

in the Internet. Here our focus on a smaller subset allows us to

classify the networks manually. We also have a more detailed

data source in the information a network operator provides.

Past classification efforts [35], [36] have tried to cluster

networks into disjoint categories. We could easily extend this

into tree-like classification resembling Linnaen taxonomy of

living organisms [37]. However, the tree-like classification

popularized by Linnaeus in his Systema Naturae [37] is hard

to apply. Even in biology where the tree based taxonomy

was later ratified by the theory of evolution there are many

cases where purely description taxonomy fails to identify the

evolutionary tree (for instance compare anteaters in Australia

and South America. Both have similar adaptations for their

exclusive diet of ants and termites, but the Australian Anteater

or Echidna is not even a placental mammal – it lays eggs),

and Linnaen taxonomy completely fails at corner cases such

as the Duck-billed Platypus (this and the Echidna are the only

Monotremes). We see similar problems in the existing work on

network classifications, and here there is, as yet, no underlying

tree-structure to justify a tree-like classification system.

We must remember that Linnaeus’ system was not originally

proposed as a true categorization of natural groups, but was

to provide clear identification. The initial point of such clas-

sification is to simply list features of organisms, and it is this

approach we adopt. We create a set of binary classifications

describing whether a network has a particular feature, but these

features are not disjoint. The advantage is that we can easily

handle corner cases that would be problematic for an exclusive

classification scheme, and do so with far fewer classes.

Classification tags have the additional advantage that it

is easy to add new types without changing the existing

classifications, something that would be impractical with a

disjoint class model. This has proved useful as we learnt of

new classifications that could be usefully added to the data.

The classifications we have added so far are described below.
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A. Type

At the most basic level we classify our networks as Com-

mercial (COM) or Research and Education Networks (REN).

So far we have transcribed 112 COM and 120 REN networks.

Our secondary type classification is related to the role the

network plays: backbone, testbed, customer, transit, access and

internet exchange. We have only associated these tags with

networks where we have clear evidence that the tag should

be employed and therefore we believe our false positive rate

is low, but concede that our false negative rate will only be

established if and when the network owners comment on our

classification. However, we choose our categorization based

on features that are desirable for a company to advertise (for

instance IXPs must self-identify in order to advertise), and so

we believe that the false negative rate is acceptable.

The access tag denotes a network that provides edge access

(for instance via DSL, dialup, or fiber) to individuals.

The backbone tag denotes a network that connects at least

two cities4. Most such networks self-identify as backbones as

this is often a key feature to advertise. The smallest backbone

considered contained only three nodes.

The customer tag is used when a network provided a higher

level of services to its customers5 than transit. We classified

a network with this tag if the services provided required per-

customer state: for instance, web hosting or electronic mail.

With the introduction of per-customer state, the provider must

have a customer service model that is not driven purely by

the technical requirements of maintaining connectivity and

core services (DNS, routing, etc.). This tag is applied when

a provider clearly advertises a web-hosting, e-mail or co-

location facility, or similar per-customer state service, for their

connected organizations.

The testbed tag denotes a network with support and facilities

for experimental network protocols or hardware.

The transit tag is used when an operator indicates that

the network is connected to other networks in a way that

supports transit, and the operator indicates that they have the

infrastructure required to function at this level. In order to

apply this tag, we required clear evidence in the web pages

and network diagrams that transit was not only possible but

was currently being provided.

The internet exchange (IXP) tag is used where the network

in question exists only as a nexus of other networks.

The other major aspect of network type is the layer of the

network. We provide tags indicating the layer (1-3) and more

information about the type of technology/protocol being used

where available. Within the IP networks we distinguish router-

level graphs from PoP-level graphs (though in many cases

the PoP-level graph can be derived from the router-level). We

concentrate, in Section IV, on PoP-level graphs, of which we

have 141.

4The backbone tag appears redundant in this paper because in the PoP focus
of our later investigation naturally focussing us on networks that all have this
tag, but note that the Zoo itself contains a wider variety of networks and so
the classification is important.
5In many cases customers might not be individual users, they may be
businesses or research organizations.

B. Range

As for any species, to understand its nature, we must

understand the range over which it operates. An animal with a

wide-ranging habitat will have a far greater influence on other

species. Similarly, we may more accurately compare networks

if we focus on their area of influence [38]. The tags for this

categorization are taken from the set metro, region, country,

country+, continent, continent+ and global.

A metro network is one that spans a city, or a city-sized

area. Likewise for the country and continent designations. In

each of these cases we also add a tag describing the range, e.g.,

in the case of continent, it designates the “continent”: North

America, Europe, Asia-Pacific, Latin America, and Africa.

A region network is approximately the size of a state or a

small number of states, where the number of states involved is

not a substantial part of the containing country. The difference

between the size of states in Australia, which can be as big

as countries in Europe, demonstrates the need for a flexible

definition of the “greater-than-metro but smaller-than-country”

range classification.

The country+ (and continent+) classifications are used

when the network is mostly located within one country (or

continent) but has points of presence in another that do not

correspond to a significant number of the total PoPs. The label

is needed because there are many networks that are easily

identified as belonging to a country (or continental) region, but

for expedience have one or more routers outside the country.

Where a network has significant presence in at least two

continents, it is labelled as a global network.

IV. POP-LEVEL STATISTICAL ANALYSIS

W e have discussed various approaches for estimat-

ing network topology. The advantage of automated

measurement-based approaches is that they can survey large

numbers of networks, and therefore potentially see a larger

proportion of the Internet, and examine it over time. However,

the unknown quality of the data, and the known inaccuracies

make it unsuitable for some purposes. Our approach is man-

ually intensive, and relies on public data. It is unlikely we

will see more than a few thousand networks displayed in this

way, or have the resources to parse more than this number. It

could be argued that it is preferable to base a study on a small

number of accurate network topologies, even with potential

sampling biases, than 30,000 measurement artifacts, though in

fact the two sets of data are complementary, and each provide

their own perspective.

So what do we see in this data? In this section we perform

some preliminary statistical analysis of the networks we have

collected so far. Here we will focus on the PoP (Point-

of-Presence) view of the network. These are interesting as

a group, but more importantly it would be misleading to

compare apples with oranges, so we want to ensure that we

present a comparable group of networks.

A PoP can be roughly defined [5] as “a group of routers

which belong to a single AS and are physically located at the

same building or campus.” A single PoP often offers Internet

access over a much wider area, so it can often be conflated

with a metropolitan area or some equivalent. The PoP-level
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view is interesting from several points of view: it shows the

wide-area links, which are most interesting when it comes to

network design optimizations; it concerns peers and customers

as it determines where they can connect to the network6; and

it’s the level at which reliability and redundancy are often

considered. The interest in networks at this level is reflected by

the fact that it is the most common form of published network

map. Router-level map may be seen as too proprietary for

publication, but more often it is probably felt that such maps

contain many implementation details that aren’t interesting to

anyone except the network’s engineers. In this section we will

focus on the Zoo’s PoP-level maps.

We do not claim these networks are a random sample of

the Internet. There are biases in the collection methodology in

that we can only transcribe published networks. So the results

here are descriptive rather than representative, but nevertheless

provide some insights.

A. The Networks

Of the 232 in the Zoo, 141 are at the PoP level, and we

denote these the Networks Under Study (NUS)7. They are split

between 59 REN and 82 COM networks. There are many more

commercial networks in the Internet, but academic networks

are often free of the commercial considerations that lead to

network operators hiding their topology, and so there is a

natural bias towards these networks in our sample. 106 of the

NUS are from a primary source, 24 from secondary sources,

and only 1 has an unknown provenance.

Tables I and II show the types and ranges of the NUS, and in

brackets the whole Zoo. In this study we have no IXPs (these

networks are uninteresting from a PoP-level perspective), and

all networks are classified as backbones (because they link

multiple PoPs). The other classification tags are more useful

in subdividing the networks. We suspect these proportions

are also biased as compared to the actual proportions in the

Internet, but again less so than most datasets. For instance,

most measurement techniques are poor at seeing the “edge”

of the Internet. That is, they have trouble seeing the topology

of the (sometimes) small providers who connect users to the

Internet. This is a result of the fact that traceroute surveys

can only see forward paths, and so can only see the topology

at the edge if there are local traceroute servers, whereas

most such servers tend to be located towards the “center” in

transit providers. Thus, while the sample we have may not be

statistically unbiased, it presents a clearer view of the wide

range of the behaviors that are possible.

Table III reports the dates-of-record for the NUS (and in

brackets the wider Zoo). Some of the older networks may no

longer be operational, or at the very least will have changed,

but conservation of a historical view of networks is part of the

goal of this project.

The other aspect that is interesting is the size, that is, the

number of PoPs in the networks. A reader might suspect

that there is a bias in the NUS towards smaller, more easily

6The Zoo data often includes details such as the links to external networks,
however, the networks under study in this section will only be comprised of
PoPs, i.e., external links will not be included.
7Dataset Zoo.PoP-level.v1.00.

type COM REN Total

access 19 (26) 0 (0) 19 (26)
backbone 76 (105) 59 (119) 135 (224)
customer 61 (84) 24 (34) 85 (118)
testbed 4 (4) 9 (19) 13 (23)
transit 54 (69) 12 (41) 66 (110)
IXP 0 (0) 0 (4) 0 (4)

TABLE I: Types of the NUS. The number in brackets is the

number of networks present in the complete Zoo.

Range NUS Zoo

Metro 1 2
Region 5 23
Country 101 161
Country+ 6 7
Continent 16 27
Continent+ 1 1
Global 10 10

Unclassified 1 1

Total 141 232

TABLE II: Range of the NUS, and the rest of the Zoo.

<2000 2000-2005 2006-2010 Current Dynamic

1 (16) 9 (25) 26 (58) 93 (117) 12 (16)

TABLE III: Date-of-record for NUS (Zoo). Current means the

map is provided without a timestamp but was listed on the

operator’s website at the time it was downloaded. Dynamic

maps are generated on-line.

transcribed networks. We have tried to avoid this particular

bias. Figure 2 shows the cumulative distribution of the NUS by

size. We can see that despite these being PoP-level networks,

some are still quite substantial. The Zoo actually contains a

few even larger networks (one with 751 nodes) but these are

optical fiber networks not included in the statistics below. We

have also made some effort to make this a fair comparison.

Not all network maps use the same definition of PoP. We

found three REN networks which used the term PoP for

university campuses connected to their network. In these cases

we remove these “edge” nodes from the graph in the reported

statistics, but show the affect of this in Table IV (for size and

average node degree).

Size Average Degree
Network Before After Before After

ULAKNET 79 3 2 2
PERN 127 12 2.03 2.33
Sinet 74 13 2.05 2.31

TABLE IV: Networks which have “edge” nodes. Before and

after trimming the edge nodes.

The other key aspect of the network concerns the edges.

We could measure the total number of edges, but it is

more telling to calculate the average node degree (2 ×
number of edges/number of nodes) in the network. Figure 3
shows the distribution of the average node degree over all

networks. Typical values lie in the range 2-3, which is fairly

low. The lower bound for average node degree for a connected

network with n nodes is 2 − 2/n for a tree. One explanation
for the low node degrees would be if the networks were

disconnected. In fact there are 17 disconnected NUS. In 8

cases the disconnected segment is a single node, and in all
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Fig. 2: Cumulative distribution function of the numbers of

PoPs (the network size) in the NUS. The solid line shows the

distribution for all networks, and the dashed lines show the

COM and REN networks separately. They are all very close.

but 2, the disconnected nodes are single nodes. Only two,

show more than one non-trivial connected component. In

Figure 3 (and all subsequent graphs) we only consider the

largest connected component of these graphs.

The question remains then “Why are the average node

degrees so low?” These are PoP-level graphs, so there is no

physical or technological constraint on node degree. We shall

discuss this question further in the more detailed statistical

analysis to follow.
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Fig. 3: Histogram of average node degree. The average node

degree varies from 1.66 to 4.5.

B. Graph Metrics

The preliminary statistics discussed above were primarily to

help describe the NUS. In this section we start a more detailed

analysis of these networks.

We start by looking for simple scaling relationships between

network size and other network variates to determine if the

type of the network has any influence on such scaling. Figure 4

shows the average node degree versus network sizes. We also

plot the lower bound on average node degree for a connected

graph: 2 − 2/n. In many respects this supports the inference
from Figure 3 that node degrees are low. A few cases are on the

bound indicating the networks are trees. Apart from the lower

bound there is no strong relationship between node degree and

network size. Some models of network growth would predict

an increase in average node degree as a network grows, but

we don’t see that. We do seem to see higher degree networks

amongst the COM networks – future work will be aimed at

determining if this is a statistically significant difference.
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Fig. 4: Average node degree vs network size.

Another question that has been frequently debated is

whether networks have power-law degree distribution [7],

[16]. This debate has been hindered by poor definition of the

topologies under consideration, and poor data. Even here, we

cannot answer this question with any certainty. However, this

is not a problem with the Zoo data, but more a problem with

the concept – the concept of power-law degree requires large

networks so that a large range of degrees can be measured.

PoP level networks simply don’t have enough nodes. It’s hard

to imagine a network operator with the tens of thousands of

PoPs that would be needed.

Nevertheless, we can consider the merits of the idea un-

derlying the power-law degree distribution, that of a highly

varying distribution. As noted, we have only a few measure-

ments for any one network, so looking at the distribution

won’t help, but we can look at summary statistics such as

the coefficient of variation of the node degree. We do so in

Figure 5 (in comparison to network size). Again we see little

evidence for any systematic relationship between the statistic

and network size or type. However, tellingly, we do see that

these values are distributed around one, and all are below two.

Simple simulations from a standard highly varying distribution

(the Pareto distribution with α = 1.5) also generate some
cases around this value, but we would expect to see some

cases with much higher coefficients of variation. The measured

coefficients are inconsistent with a highly-varying distribution.
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Fig. 5: Coefficient of variation of node degree.

Another useful graph metric is assortativity [39], which



9

1.5 2 2.5 3 3.5 4 4.5
−1

−0.5

0

Average Node Degree

A
s
s
o
rt

a
ti
v
it
y
 S

c
o
re

Hibernia US

Airtel

 

 

Country
Region
Continent/Global

Fig. 6: Assortativity mixing score. Most networks have nega-

tive scores, with a few slightly positive.

Fig. 7: Example summary statistics on three simple networks.

measures the mixing properties of the nodes. Assortativity

refers to a preference for a network’s nodes to attach to others

that are similar or different in some way, here we measure

with respect to node degree. Positively assortative networks are

those where high degree nodes tend to connect to high degree

nodes and low degree nodes connect to low degree nodes.

Negatively assortative networks reverse this relationship. We

plot the assortativity of our networks in Figure 6. Most

assortativity values are below, or only slightly above zero,

meaning that high-degree nodes tend to connect to lower-

degree nodes, not each other.

Examined in more detail the figure also shows an apparent

trend to higher, but still negative, assortativity values for net-

works with higher node degree, though not clearly correlated

with other measures of size such as geographic extent.

The presence of a hub-and-spoke network brings up the

question of how common this design or other similar designs

are. The assortativity suggests that other pure hub-and-spoke

networks are rare, but a superficial look over the data found

several others that were close. We can measure the degree

to which a network is “hub-and-spoke” like by looking at

the correlation between node degree and closeness centrality,

which is defined [39] for a vertex v as the reciprocal of the
sum of geodesic distances to all other vertices of the graph. In

a hub-and-spoke network, the “central” node will have high

closeness to all other nodes and high degree, and hence a high

correlation between degree and closeness centrality. Figure 8

shows the correlation coefficients of the two metrics across

each network as a function of network size. We see that quite

a few networks have high correlation – corresponding to being

somewhat hub-and-spoke like – but that this decreases for

larger networks. Moreover, we see some differences between
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size increases. Smaller networks seem to have high degree

nodes at the core and larger networks show less such structure.

0 50 100 150 200
0

5

10

15

20

25

Network Size

S
iz

e
 o

f 
N

e
ig

h
b

o
rh

o
o

d

China Telecom

CogentGTS CE

Telcove

Colt

 

 

COM
REN

Fig. 9: Size of the neighborhood of the largest node. There

appears to be a maximum neighborhood size just above 20.

networks from different regions. Asia-Pacific networks seem

to be more hub-and-spoke like than American or European

networks, though as with other plots there is considerable

overlap between classes.

A second way of examining the same issues of hub-and-

spokiness is to look at the size of the neighborhood of the

node with the largest degree (the neighborhood is the set of

adjacent nodes). Figure 9 shows this metric, and we see again a

number of graphs where the neighborhood of the largest node

encompasses much of the network. However, this graph also

suggests another interesting phenomenon. We see a maximum

neighborhood size of about 23 PoPs. There are no physical

limits to the neighborhood of a PoP because we may use

multiple routers to overcome technical limitations such as port

density or throughput limitations. Therefore the reason for this

limit must originate elsewhere. We cannot explain it at the

moment except to suggest that a “mega-PoP” is difficult to

manage. The complexity of this PoP becomes such that it is

just easier to break the network into two or more core PoPs,

and that also mitigates the potential damage of a PoP failure

resulting from say a fire or major power-outage.

This in turn suggests the creation of hierarchy in larger

networks. A graph metric that we can use to start to examine

hierarchy is betweenness, defined for an edge as the number

of shortest paths that traverse that edge [39]. The number
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Fig. 10: Normalized edge betweenness as a measure of hier-

archy.

of paths in a network grows as n(n − 1), so to perform
fair comparisons we normalize our betweenness values by

dividing the maximum by the average for a network, and we

plot the results in Figure 10. We see a quite distinct trend

of increasing betweenness with network size. We hypothesize

that this results from an increasing degree of hierarchy in

networks as they increase in size. As a network grows, it

often takes on some elements of hierarchy, and these are

reflected in some links becoming trunks between regions with

a higher betweenness than the average links in the network. On

Figure 10 we also plot the betweenness values for a balanced

tree. We can see that it loosely supports the same trend we

see in the data.

Another feature we noted from superficial examination of

the NUS was that some appeared to have a “core” of densely

connected hub nodes, with many low-degree nodes hanging

from this core. To examine this more formally we consider the

size of the 2-core of the network. The k-core of a network is
the subgraph that contain only nodes of degree k or above [39],
so the 2-core excludes all degree 1 nodes (this must be

performed iteratively as some nodes become degree 1 once

the first set of degree 1 nodes are removed). Figure 11 shows

the ratio of the size of the 2-core of a network to its size. We

see the tree-like networks clustered at 0, and a general increase

in the size of the 2-core with average node degree. We also see

some separation between REN and COM networks. However,

the most interesting detail of this graph (as with many others)

is the variety – the proportion of the network covered by the

2-core runs from none of the nodes, to all of them with a

selection of values in between. Although there is a correlation

with average node degree, this provides a lower-bound on the

proportion rather than providing a clear trend.

Summary: The picture we get of our PoP-level maps is mixed.

We see evidence for or against many phenomena, for instance:

• against power-law degree distributions;

• for hub-and-spoke like behavior;

• for hierarchy;

but the evidence is never completely convincing, reflecting the

sheer variety in the networks. If there is any message in this

data, it is that there are as many types of networks as there

are network designers.
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Fig. 11: Size of 2-core of our networks. The ratio increases

with node degree.

C. Related Work

There are many different levels to describe the Internet

topology: physical, IP or application. We are interested here

in Internet topology at the IP layer. Within this layer, previous

works have looked at three different types of topologies: router,

AS and PoP.

In this paper, we focussed particularly on PoP-level layer-3

maps. Existing works on PoP maps use traceroute to measure

the topology [1]–[5], though they differ in how they infer the

topology from the traceroutes. Reverse DNS lookups have

been used to group routers into PoPs [1], but this has been

shown to be inaccurate [40] as DNS naming is not always

linked with geo-location. iPlane [2] groups routers into PoPs

by using the TTL values from the routers to measurement

vantage points – routers inside a PoP should have similar TTL

values to the vantage points. Yoshida et al. [4] used delay

measurements from vantage points to infer PoP topologies

of ISPs in Japan. Most recently, Shavitt et al. [5] used a

more structural approach to infer PoP maps by first identifying

geographically nearby interfaces, then using several heuristics

based on the assumption that routers inside a PoP often form

a particular structure. Even though the latter approaches of

inferring PoP maps are more accurate than the former, they all

suffer from measurement errors, biases and inference errors.

Our dataset differs from existing work in that we obtain the

maps directly from network operators and therefore avoid

these errors.

Comparing our results to those of the two previous studies

that provide PoP-level graphs across a significant sample of

networks [1], [5] we see that our networks are broadly similar

in terms of size. The 10 networks in [1] have PoP size varying

between 10 and 121, with 6 networks having more than 25

PoPs and 2 more than 100 PoPs. These networks are slightly

larger than the networks in our dataset. On the other hand, the

networks in our dataset seems to be larger than those in [5],

with some cases being much larger.

We have not found any other study of the detailed statistical

properties of PoP-level graphs, and there is little point in

comparing apples and oranges (or apples and elephants) by

comparing our results to router-level or AS-level graphs that

are commonly reported in the literature (for example see [1],

[16], [21], [41], [42]).
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V. CONCLUSION

This paper describes a new data set – the Internet Topology

Zoo – based on manual transcription of public network maps.

It contains 232 networks at present, and is still growing. We

have already used this dataset to perform statistical analysis

of PoP-level network topologies.

The Zoo will provide many opportunities for future work

including consideration of networks at other levels such as the

physical level, and for cross-comparisons between levels.

Most importantly, the Zoo provides a resource for those

who wish to validate measurements or test algorithms on real

networks.

ACKNOWLEDGEMENT

The authors would like to acknowledge the support of the

Australian Research Council through grants DP0985063 and

DP110103505, and two Australian Postgraduate Awards.

REFERENCES

[1] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP topologies
with Rocketfuel,” in ACM SIGCOMM, (Pittsburg, USA), August 2002.

[2] H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson, A. Kr-
ishnamurthy, and A. Venkataramani, “iPlane: An information plane for
distributed services,” in OSDI, November 2006.

[3] D. Feldman and Y. Shavitt, “Automatic large scale generation of Internet
PoP level maps,” in IEEE Globecom 2008, pp. 2426–2431, 2008.

[4] K. Yoshida, Y. Kikuchi, M. Yamamoto, Y. Fujii, K. Nagami, I. Naka-
gawa, and H. Esaki, “Inferring PoP-level ISP topology through end-to-
end delay measurement,” in PAM 2009, pp. 35–44, 2009.

[5] Y. Shavitt and N. Zilberman, “A structural approach for PoP geo-
location,” in IEEE Infocom 2010, 2010.

[6] W. Willinger, D. Alderson, and J. Doyle, “Mathematics and the internet:
A source of enormous confusion and great potential.,” Notices of the
AMS, vol. 56, no. 5, pp. 586–599, 2009. http://www.ams.org/notices/
200905/rtx090500586p.pdf.

[7] W. Willinger, “The science of complex networks and the Internet: Lies,
damned lies, and statistics,” Feb 2010. http://www.maths.adelaide.edu.
au/matthew.roughan/workshops.html.

[8] “AARNET Annual Report,” tech. rep., AARNET, 2009.
[9] “Research and Education Advanced Network New Zealand Ltd, Annual
Report,” tech. rep., REANNZ, 2010.

[10] “BELNET Annual Report,” tech. rep., BELNET, 2008.
[11] CESNET, “CESNET Annual Report,” tech. rep., CESNET, 2009.
[12] “Connecting People, Enabling Innovation, 2009-2010 Annual Report,”

tech. rep., CANARIE, 2010.
[13] “ARNES Annual Report,” tech. rep., ARNES, 2008.
[14] E. Gilbert, “Random graphs,” Annals of Mathematical Statistics, vol. 30,

pp. 1441–1144, 1959.
[15] B.M.Waxman, “Routing of multipoint connections,” IEEE J. Select.

Areas Commun., vol. 6, no. 9, pp. 1617–1622, 1988.
[16] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law relation-

ships of the Internet topology,” in ACM SIGCOMM, pp. 251–262, 1999.
[17] A. Barabási and R. Albert, “Emergence of scaling in random networks,”

Science, vol. 286, 1999.
[18] R. Albert, H.Jeong, and A.-L. Barabási, “Error and attack tolerance of

complex networks,” Nature, vol. 406, pp. 378–382, 2000.
[19] S.-H. Yook, H.Jeong, and A.-L. Barabási, “Modeling the Internet’s large-

scale topology,” PNAS, no. 99, pp. 13382–13386, 2002.
[20] E. W. Zegura, K. Calvert, and S. Bhattacharjee, “How to model an

internetwork,” in Proceedings of IEEE Infocom ’96, (San Francisco,
CA), 1996.

[21] H. Tangmunarunkit, R. Govindan, S. Jamin, S. Shenker, and W. Will-
inger, “Network topology generators: degree-based vs. structural,” SIG-
COMM Comput. Commun. Rev., vol. 32, pp. 147–159, August 2002.

[22] J. C. Doyle, D. L. Alderson, L. Li, S. Low, M. Roughan, S. Shalunov,
R. Tanaka, and W. Willinger, “The “robust yet fragile” nature of the
Internet,” Proceedings of the National Academy of Sciences of the USA
(PNAS), vol. 102, pp. 14497–502, October 2005.

[23] V. Cerf and B. Kahn, “Selected ARPANET maps,” Computer Commu-
nications Review (CCR), vol. 20, pp. 81–110, 1990.

[24] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, and J. Rexford,
“Netscope: Traffic engineering for IP networks,” IEEE Network Maga-
zine, pp. 11–19, March/April 2000.

[25] A. Shaikh and A. Greenberg, “OSPF Monitoring: Architecture, Design
and Deployment Experience,” in Proc. USENIX Symposium on Net-
worked System Design and Implementation (NSDI), March 2004.

[26] “Internet Protocol.” IETF RFC 791, September 1981.
[27] F. Baker, “Requirements for IP version 4 routers.” IETF, Network

Working Group, Request for Comments: 1812, July 1993.
[28] C. Smith, “Traceroute - whitepaper.” http://www.informatik.uni-trier.de/

∼smith/networks/tspec.html.
[29] V. Jacobson, “Traceroute.” ftp://ftp.ee.lbl.gov/traceroute.tar.gz, 1989-04.
[30] CAIDA, “Skitter.” http://www.caida.org/tools/measurement/skitter/.
[31] yWorks, “yEd Graph Editor.” http://www.yworks.com/en/products yed

about.html, 2010. [Online; accessed 3-Dec-2010].
[32] M. Himsolt, “GML: A portable Graph File Format,” tech. rep., Univer-

sitat Passau, 2010.
[33] U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, and M. Marshall,

“GraphML Progress Report Structural Layer Proposal,” in Graph Draw-
ing, pp. 109–112, Springer, 2002.

[34] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network
structure, dynamics, and function using NetworkX,” in Proceedings
of the 7th Python in Science Conference (SciPy2008), (Pasadena, CA
USA), pp. 11–15, Aug. 2008.

[35] X. Dimitropoulos, D. Krioukov, G. Riley, and K. Claffy, “Revealing the
autonomous system taxonomy: The machine learning approach,” in In
Passive and Active Measurement (PAM) Workshop, 2006.

[36] A. Dhamdhere and C. Dovrolis, “Ten years in the evolution of the Inter-
net ecosystem,” in Proceedings of the 8th ACM SIGCOMM conference
on Internet measurement, IMC ’08, (New York, NY, USA), pp. 183–196,
ACM, 2008.

[37] C. Linnaeus, Systema naturae per regna tria naturae :secundum classes,
ordines, genera, species, cum characteribus, differentiis, synonymis,
locis. Holmiae (Laurentii Salvii), 10th edition ed., 1758. (in Latin)
Retrieved September 22, 2008.

[38] A. H. Rasti, N. Magharei, R. Rejaie, and W. Willinger, “Eyeball ASes:
From geography to connectivity,” in ACM Sigcomm IMC, (Melbourne,
Australia), 2010.

[39] M. E. J. Newman, “The structure and function of complex networks,”
SIAM Review, vol. 45, pp. 167–256, June 2003.

[40] M. Zhang, Y. Ruan, V. Pai, and J. Rexford, “How DNS misnaming
distorts Internet topology mapping,” in USENIX Annual Technical Con-
ference, May/June 2006.

[41] P. Mahadevan, C. Hubble, D. Krioukov, B. Huffaker, and A. Vahdat,
“Orbis: Rescaling degree correlations to generate annotated Internet
topologies,” SIGCOMM Comput. Commun. Rev., vol. 37, pp. 325–336,
January 2007.

[42] P. Mahadevan, D. Krioukov, M. Fomenkov, X. Dimitropoulos, k. c.
claffy, and A. Vahdat, “The Internet AS-level topology: three data
sources and one definitive metric,” SIGCOMM Comput. Commun. Rev.,
vol. 36, pp. 17–26, January 2006.

PLACE
PHOTO
HERE

S imon Knight received a Bachelor of Engineer-
ing (Telecommunications) in 2008, and Bachelor of
Economics in 2009, both from the University of
Adelaide, Australia. He is currently a PhD Student
in the department of Electrical and Electronic En-
gineering at the University of Adelaide, where he
is researching automatic configuration of large-scale
emulated networks.



12

PLACE
PHOTO
HERE

H ung Nguyen is a senior research fellow at the
School of Mathematical Sciences, the University of
Adelaide, Australia. His research interests include
network measurements, tomography, and privacy
preserving techniques. He has a PhD in computer
science from the Swiss Federal Institute of Technol-
ogy, Lausanne, Switzerland (EPFL) and is a member
of the IEEE.

PLACE
PHOTO
HERE

D r Nick Falkner is a Lecturer at the University of
Adelaide, Australia. His research interests include
knowledge representation, network taxonomy, data
models, wireless sensor networks, data stream man-
agement and semantic annotation for data manage-
ment. He lectures in a range of courses, including
advanced C/C++ programming, computer network-
ing and distributed systems.

PLACE
PHOTO
HERE

R hys Bowden is a Ph.D. student at the Uni-
versity of Adelaide. His research interests include
optimization-based network topologies, network to-
mography and compressive sensing.

PLACE
PHOTO
HERE

M atthew Roughan joined the School of Mathemat-
ical Sciences at the University of Adelaide in 2004.
Prior to that he worked at AT&T in the United
States. His research interests lie in measurement
and modelling of the Internet, and his background
is in stochastic modelling with his PhD being in
Applied Probability from the University of Adelaide,
awarded in 1994.


