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ABSTRACT
For some time it has been known that the standard method
for collecting link-traffic measurements in IP networks — the
Simple Network Management Protocol or SNMP — is flawed.
It has oft been noted that SNMP is subject to missing data,
and that its measurements contain errors. However, very
little work has been aimed at assessing the magnitude of
these errors. This paper develops a simple, easily applicable
technique for measuring SNMP errors, and uses it in a case
study to assess errors in a common SNMP collection tool.
The results indicate that most link-load measurement errors
are relatively small, but the distribution has a heavy-tail,
and that a few measurement errors can be as large as the
measurements themselves. The approach also allows us to
go some way towards explaining the cause of the errors.

1. INTRODUCTION
Calibration of measurements is a key activity in all scien-

tific endeavors, no less so for Internet measurement [1]. Mea-
surements always contain errors. We must estimate their size
if we are to have any confidence in the measurements’ suit-
ability for a particular task. Precise assessments of errors in
measurements are not reported in the Internet measurement
literature as often as we might hope (exceptions being [2, 3]),
perhaps because it is often difficult to establish ground truth
against which to validate.

In this paper we present a case-study considering the ac-
curacy of a set of SNMP (Simple Network Management Pro-
tocol) measurements of link loads in the Abilene network [4].
As the name says, SNMP is simple, and so easy to collect,
and almost ubiquitous in its use by network management. It
allows the collection of data such as the number of bits, and
packets to cross an interface over some time intervals, typi-
cally every five minutes. In the research literature it is some-
times seen as a poor source of data compared to others such
as flow-level collection. This lack of respect for SNMP arises
in part because it can often suffer from artifacts, errors, and
missing data. Nevertheless, it is hard to overestimate how
useful SNMP data is to network managers, and much work
has gone into extending this utility by making it possible to
use this data to estimate traffic matrices (e.g., see [5, 6]),
and from these detect anomalies (e.g., see [7]). Hence, it is
important to consider the accuracy of SNMP measurements.

Most previous consideration of errors in SNMP link-load
measurements has been based on arguments unsupported by
data. For instance Zhao et al. [8] argue that SNMP errors are
primarily caused by errors in polling timestamps, and present
an error model, but data is not used to validate the model
or assumption about the cause of errors. Few works have
considered the accuracy of the measurements themselves, one

exception being [2], which looks at packet loss measurements,
not link load which we examine here. Other works assessing
SNMP measurements have focussed primarily on testing the
efficiency of the protocol in terms of network resources used
in measurement. See [9] for a survey.

This paper assesses the accuracy of SNMP link load mea-
surements specifically, and its results indicate that most link-
load measurement errors are relatively small, but the distri-
bution has a heavy-tail, and that a few measurement errors
can be as large as the measurements themselves. The errors
occur in distinct patterns and we explain their cause using
this structure.

We do not argue that these results are universally rep-
resentative, but rather that they show clearly the need for
verification of measurements. As noted above it is rare for op-
erators to have ground-truth data against which to compare
their SNMP measurements, and hence establish their accu-
racy. So the other major contribution of this paper, apart
from a publically reported case study of SNMP measure-
ment accuracy, is a methodology that is easy and practical
for most network providers to use to establish the accuracy
of their measurements. The approach we adopt is to exploit
the redundancy available in SNMP measurements to perform
self-calibration.

2. BACKGROUND
In IP networks today, link load measurements are read-

ily available via the Simple Network Management Protocol
(SNMP). SNMP is useful because it is supported by most
devices in an IP network. The SNMP data that is available
on a device is defined in an abstract data structure known
as a Management Information Base (MIB). A Network Mea-
surement Station (NMS) periodically requests, or polls the
appropriate SNMP MIB data from a router (or other de-
vice). The standard MIBs defined on most routers/switches
include a cyclic counter of the number of bytes transmitted
and received on each of its interfaces. Hence we can obtain
basic traffic statistics for the entire network with little ad-
ditional infrastructure support – all we need is an SNMP
poller that periodically records these counters. However, one
should note carefully that SNMP counters (on devices) do
not count the number of packets per interval, but only a
running total. In order to compute packets per interval, we
need to send polls at precise times. A typical polling interval
for SNMP is five minutes.

SNMP data has many known limitations. Data may be lost
in transit (SNMP uses unreliable UDP transport), or by the
NMS, for instance if the NMS crashes or reboots. Data may
be incorrect through poor SNMP agent implementations, or
because a counter has wrapped multiple times (this is easier
than you might expect as old versions of SNMP used 32 bit



counters and these could wrap quite quickly on a high-speed
link, e.g., in less than 4 seconds on a 10Gbps link), counter
resets (say after a router reboot), or because the timing of
SNMP polls is somewhat hard to control. This “jitter” in
poll timing arises because

• NMSs must perform polls to many devices, and cannot
perform them all concurrently;

• timing on typical commodity hardware is not always
very accurate [10];

• SNMP processes on routers and switches are given low-
priority and may therefore have a delayed response;

• poll packets may take some time to transit the network.

The net effect is that the time at which we aim to conduct a
poll, and the actual time of the poll are often offset by some
jitter. This problem is compounded in some systems that
do not even record when the poll was sent/received at the
NMS (let alone the actual time the poll was answered by the
network device), but only the intended time of the poll in
the polling schedule.

Obviously, the quality of such measurements varies de-
pending on the NMS system, and the SNMP agent imple-
mentation on routers or other network devices. Some sys-
tems implicitly perform a crude interpolation when report-
ing the polling times, whereas other systems may make use
of proprietary features of certain network devices to improve
the accuracy of the timestamps. Other systems attempt
to provide reliable transport of polls through retransmission
(though this improves reliability at the expense of increasing
delays between the desired and actual polling times). How-
ever, even where these facilities exists, the question still re-
mains of how accurate the measured timestamps and values
are. One should never simply accept that these will be ac-
curate, given the many difficulties of getting timestamps in
non-real time systems [10] without accurate hardware clocks.
Moreover, SNMP implementations are often “add-ons”, and
given little consideration in the original design and architec-
ture of devices, and given low priority in terms of testing and
maintenance.

Many network managers assume that the errors in mea-
surements are negligible. However, such assumptions are
dangerous because errors can feed into management pro-
cesses, corrupting the results, resulting in congestion or wasted
resources. The size and nature of errors in a set of SNMP
measurements will depend on the polling software, the net-
work devices in question, and even the traffic on the network.
It is important that managers perform ongoing verifications
of the quality of measurements as part of maintaining quality
in a network.

Note that what we propose here is different from com-
pliance testing, such as one might conduct on an SNMP
agent [11]. Such compliance testing is necessary, but only
shows that an SNMP agent correctly responds to polls, etc.
An agent can respond “correctly” and still the measurements
contain errors such as those due to timing. Likewise, bench-
marking and simulation [9] are of little use in this domain
because we are interested in the performance of a particu-
lar SNMP/NMS system, and the details of a deployment are
hard to really capture (e.g., what are the failure rates of the
NMS, what are the delays in agent responses for an SNMP
agent on a router under realistic traffic and control loads).

The difficulty of calibrating SNMP systems in the field is
that the major alternative source of data, flow-level data, is

unsuitable for the task because the timing of flows is ran-
dom (not fixed to the granularity of the SNMP measure-
ments) and hence the datasets are incommensurate. The
only (currently) practical source of ground truth data would
be a packet trace, and few operators are willing to pay the
cost of installation and management of the devices necessary
to collect such data from high-speed links.

The alternative proposed here is to use the redundancy
already present in many SNMP datasets to self-calibrate the
data. More specifically, many operators would collect SNMP
data from the interfaces at either end of a substantial set
of links in their network. We exploit this redundancy by
performing comparisons between measurements from either
end of the link to assess errors.

3. DATA AND METHODOLOGY
This case study uses SNMP data from the Abilene (Inter-

net2) [4] network over the period Jan 4th-March 28th 2006
(chosen because this is the longest contiguous and public
SNMP dataset available to us). During this period Abilene
had 14 links (all 10 Gbps except for the link between Atlanta
and Indianapolis, which was 2.5 Gbps). The data consists of
(nominally) five minute counts of bytes on each of the 28
interfaces in the network.

The RRD (Round-Robin Database) tool [12] was used to
collect and store the data. The RRD tool is a free tool for
collecting, storing, and displaying SNMP data. It is anecdo-
tally reported to be used in a very large number of SNMP
installations. It has the feature that it collects data in a fixed
length window, with only a relatively short period stored at
the highest resolution. Longer sequences of averages (with
coarse time resolution) are created and stored automatically,
allowing for a natural multi-resolution view of the data that
has proved useful for network operators. For our purposes,
we wished to examine the high-resolution data over a long
time window, so RRD files were collected at daily intervals,
and the five minute data extracted to create a nearly 3 month
long dataset. To be precise, the dataset consists of two
28 × 23, 498 arrays of measurements. The first has 23,498
five minute interval records measuring the number of bytes
transmitted out of each of the 28 interfaces on the network,
and the second array measures the number of bytes trans-
mitted into each interface.

Figure 1 shows the Abilene network (during the measure-
ment period) and an example of traffic data over the period
of the 5th through 12th of February, 2006. We can see in the
traffic a not atypical daily and weekly cycle, often present in
traffic, over which is superposed random fluctuations.

We denote the instantaneous traffic rate at time t by x(t),
and the traffic over the interval [t, t + s) by y(t, t + s), and
the observed traffic over the interval by ŷ(t, t + s), i.e.,

y(t, t + s) =

Z

t+s

t

x(t)dt,

ŷ(t, t + s) = y(t, t + s) + ǫ(t, t + s),

where ǫ(t, t + s) is the measurement error. Operators are
generally concerned with relative errors, i.e., r = ǫ/y.

3.1 Estimation of errors
We study errors by comparing the data from each end of

a link. The total traffic entering a link during some time
interval should be almost the same as the traffic departing
during the same interval. The difference is the traffic that is
on-the-wire at the start and end of the interval.

We can calculate the maximum traffic on-the-wire for a
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Figure 1: Abilene network and example traffic.

link — it is simply the bandwidth delay product. On the
Abilene network, the maximum bandwidth delay product is
109.8 Mbits on the Houston→Los Angeles link. Relative to
the typical 5 minute traffic on this link, this is only around
1 part in a million. Moreover, the difference resulting from
traffic on-the-wire at the start and end of the interval will (in
almost all cases) be much smaller than this, firstly because
it is the difference of two values (that are likely to be close
due to their proximity in time) and secondly because many
links are underutilized much of the time.

Therefore, the errors due to on-the-wire traffic are negligi-
ble, and we can attribute any significant differences to errors
in the SNMP data collection itself. The difference between
the traffic as measured at each end of a link will be

ŷ(1)(t, t + s) − ŷ(2)(t, t + s) = ǫ(1) − ǫ(2),

where the superscript refers to the two ends of the link. So
we observe the difference of two measurement errors. This
combination of two errors could combine to make a bigger
error, or cancel, but the average (expected) error is given by

E[ǫ(1) − ǫ(2)] = E[ǫ(1)] − E[ǫ(2)].

We have no reason to presuppose that errors are different
at any point in the network, so we assume the average er-
ror at each point is constant. Hence, E[ǫ(1) − ǫ(2)] = 0, i.e.,
the mean of the observed differences will be zero. Therefore
we cannot (easily) observe bias in our measurements, for in-
stance as caused by a constant offset in the timing of polls
as compared to estimated times of polls. This issue cannot
be resolved from SNMP data alone. We need either ground-
truth traffic data, or at least, we need a good clock against
which to check timing.

Variances can likewise be estimated from simple statisti-
cal properties providing that errors at different locations are
independent1, in which case,

Var(ǫ(1) − ǫ(2)) = Var(ǫ(1)) + Var(ǫ(2)).

Under the homogeneity assumption, the variance of the ob-
served errors will be twice the variance of the error at a single
interface.

1We will later see that this assumption can be false, but the
variance is nevertheless a useful estimate of the relative size
of the errors.

3.2 Source of errors
It is interesting to consider what causes errors in SNMP

measurements. There are two major candidates: firstly some
type of instrumentation error, e.g., failure to update counters
correctly, and secondly unaccounted jitter in poll timing.

We can go some way towards testing which is the major
factor by considering how each of these errors appears in our
data. It is typical to assume that instrumentation errors are
uncorrelated over time. Hence, if we aggregate a series of
measurements, we would expect these errors to follow the
Central Limit Theorem. More precisely, if we were to aggre-
gate a series of measurements ŷ(t1, t2), ŷ(t2, t3), . . . , ŷ(tn, tn+1)
over equally spaced intervals (ti, ti+1) to get ŷ(t1, tn+1), then
the error in the aggregate would be likewise aggregated and
therefore, assuming independence, and stationarity, the vari-
ance of the error in the aggregate would be

Var (ǫ(t1, tn+1)) =
n

X

i=1

Var (ǫ(ti, ti+1)) = nVar (ǫ(t1, t2)) .

The total traffic over the interval increases roughly in pro-
portion to the length of the interval, so the variance of the
relative error r(t1, tn+1) over this interval would decrease by
approximately 1/n, and the standard deviation by 1/

√
n.

On the other hand, errors from timing jitter arise because
of errors in integral end-points (say δ1 and δ2 at the start
and end respectively), so

ŷ(t, t + s) =

Z

t+s+δ2

t+δ1

x(t) dt

= y(t, t + s) −

Z

t+δ1

t

x(t) dt +

Z

t+s+δ2

t+s

x(t) dt.

However, when we aggregate, the errors from the incorrect
end-points of the integral concertina so that the final error in
ŷ(t1, tn+1) is of the same order of magnitude as the individual
errors in each measurement. Hence, the variance of relative
errors decreases approximately as 1/n2, and the standard
deviation as 1/n.

We should be able to see these different behaviors:

• 1/
√

n error standard deviation with aggregation level
n, for instrumentation errors at the SNMP agent;

• 1/n error standard deviation with aggregation level n,
for poll-time jitter errors.

and from these determine the major source of the errors in
this set of SNMP data.



4. RESULTS
The main results of the case study are reported in Table 1.

We measure the errors using the difference between traffic
estimates at each end of the link, and then take this value
relative to the average traffic on the link. Ideally, we would
compute the value relative to the true average, but we do not
know this. However, as noted above, as we aggregate traf-
fic over longer intervals, we should expect that errors decline,
and so the average traffic across the complete set of measure-
ments will have only a small error (at least compared to that
in each interval), and so it serves as a proxy for the correct
value at each time point. We then compute the variance, and
divide by two (to account for errors from both ends of the
link). We report the standard deviation (SD) because this
value is easier to interpret.

Mathematically the reported value is

SD =

r

Var(r)

2
,

where we estimate the mean and variance of the relative er-
rors r by the estimators

M ≃
1

n

n
X

i=1

r =
1

n

n
X

i=1

ŷ(1)(ti, ti+1) − ŷ(2)(ti, ti+1)

ȳ
,

and

Var [r] ≃
1

n − 1

n
X

i=1

»

ŷ(1)(ti, ti+1) − ŷ(2)(ti, ti+1)

ȳ
− M

–2

,

where where ŷ(1) and ŷ(2) refer to measurements from either
end of the link, and ȳ is the average traffic on the link. The
mean relative errors M are shown in Table 1, and are al-
most negligible as expected. The SDs lie between 0.0038 and
0.0078, with an average of 0.0054 representing relative errors
around 0.5%. Results are discussed in more detail below.

4.1 Missing Data
The number of missing data from each link is shown in Ta-

ble 1. The numbers, when compared with the overall number
of data points (23,498), are very small (< 0.8%). However, it
is interesting to consider the structure of these losses — they
do not occur completely at random. Figure 2 (a) shows a
time-event plot with “o” showing the location of the missing
data. There are two prominent features

1. vertical structure: many of the missing data are corre-
lated (in time) across all, or a substantial subset of the
interfaces. This can represent a problem in the NMS,
resulting in data loss across multiple sources.

2. burstiness: although the loss rate is low, losses tend
to occur in bursts; see particularly the bursts in mid-
February on the Atlanta-Indianapolis link. The fact
that this burst occurs on the only low speed (2.5 Gbps)
link in the network is suggestive of the problem being
related to capacity constraints on the interface cards,
perhaps because the measurements were deprioritised
while the link was heavily utilized, or possibly because
polls were dropped in transmission across the link when
it was congested.

4.2 Error Magnitude
Table 1 shows the SD of the relative errors on each link.

It is also interesting to consider the distribution of these er-
rors, which we plot in Figure 2 (b) across the whole network.
This figure shows the CCDF (Complementary Cumulative

Source → Destination missing M SD
Atlanta → Houston 8 -4.9e-05 0.0054

Houston → Atlanta 1 2.9e-05 0.0049
Atlanta →Indianapolis 178 -1.5e-05 0.0065

Indianapolis → Atlanta 173 -3.8e-05 0.0066
Atlanta →Washington 5 -3e-05 0.0054

Washington → Atlanta 1 -3.4e-05 0.0065
Chicago →Indianapolis 3 -6e-05 0.0060

Indianapolis → Chicago 3 2.8e-05 0.0056
Chicago → New York 2 1.6e-05 0.0039

New York → Chicago 7 -3.3e-05 0.0041
Denver →Kansas City 5 -3.9e-05 0.0061

Kansas City → Denver 5 1.8e-05 0.0034
Denver → Sunnyvale 5 -7.9e-06 0.0041

Sunnyvale → Denver 6 -6.1e-06 0.0054
Denver → Seattle 5 6.3e-06 0.0048
Seattle → Denver 5 -2.9e-05 0.0049

Houston →Kansas City 5 -1.3e-05 0.0072
Kansas City → Houston 5 -3.3e-05 0.0063

Houston →Los Angeles 5 7.6e-05 0.0078
Los Angeles → Houston 5 -3.9e-05 0.0053
Indianapolis →Kansas City 4 4.3e-05 0.0048
Kansas City →Indianapolis 5 -3.6e-05 0.0054
Los Angeles → Sunnyvale 5 2.1e-05 0.0040

Sunnyvale →Los Angeles 5 -3.7e-05 0.0043
New York →Washington 6 -4.7e-05 0.0066

Washington → New York 6 4.3e-06 0.0038
Sunnyvale → Seattle 4 -1.1e-06 0.0066

Seattle → Sunnyvale 4 3.1e-05 0.0054

Table 1: Error sizes: “missing” refers to the total
number of missing data points from either end of
the link (out of 23,498 entries). M and SD are the
mean and standard deviation of the relative error
calculated as described in the text.

Distribution Function) of the absolute value of the relative
errors. The distribution is heavy-tailed (though does not
follow a simple power-law type distribution). A very large
proportion of relative errors are small (approximately 90%
are less than 1% in size) but there are some errors as large
as 100%. This is a critical insight, though it is not new.
Anecdotally, this type of phenomena has been reported be-
fore, and may arise from poor implementations of counters,
or counter-rewraps/resets. It is one of the underlying mo-
tivations for 95th percentile billing [13]. In 95th percentile
billing, the goal is to bill based on the peak rate of utiliza-
tion, but it is assumed that SNMP measurements are flawed,
and so the more robust 95th percentile is used as a proxy
measure of the peak utilization. Our measurements support
this view of the errors, in that a small number or errors are
large, certainly large enough to affect billing.

Spike-like errors also have distinct implications for anomaly
detection algorithms [7], which are often aimed at detecting
sudden changes in traffic. Spikes caused by measurement ar-
tifacts such as we observe here will also register as anomalies
unless care is taken to eliminate such artifacts from the data.

Figure 2 (b) also shows a crude simulation of the errors,
created by using a mixture of an exponential distribution (for
the smaller errors) and a Pareto distribution (for the larger
errors). These were chosen as the simplest distributions that
show the required properties in the regimes of interest. The
simulated data is generated using a mixture model where the
error is drawn from an exponential distribution with mean
0.0035 and probability 0.99882 of selection, and a Pareto
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Figure 2: SNMP errors and missing data.

distribution with cumulative distribution function

F (x) = 1 −

„

b

x

«α

,

with probability of selection of 0.00118, and parameters α =
0.12 and b = 0.0005.

The simulation fits the real distribution at either end quite
well, though there is some deviation around the transition,
which is too sharp in the simulated data. Perhaps there is
a third class of error that occurs in this region, though it is
hard to separate these cleanly from the other two types of
errors.

In any case, the fitting itself is not the most interesting
feature. The feature that is perhaps most important is that
the parameters of the Pareto distribution used here falls in

the set of cases where the mean is infinite (at least in the-
ory though in reality it would be truncated). In these cases
it is common to observe slow convergence of estimators for
means and variances [14], and hence the need in this paper
to analyze such a long set of data. Essentially, we need a
long enough dataset to see the rare (but very large) error
events that occur occasionally. The need for long datasets in
this type of analysis is another factor that makes calibrating
measurements harder than one might naively expect.

4.3 Source of Errors
Figure 2 (c) shows the magnitude of the errors on each

link as a function of time. We can see that at least one burst
of errors is associated closely with the missing data in mid-
February (see Figure 2 (a)). When an SNMP poller restarts,



it is possible that it loses track of a counter, resulting in a
large error in the estimate of traffic in the interval following
restart. Even if the SNMP poller maintains its state, some
pollers are not smart enough to realize that previous data is
missing, and hence miscalculate the average rate over the ac-
tual measurement interval (ignoring the missing polls). This
can explain one errored measurement interval.

When we more closely examine the time series of mea-
surements we do indeed see errors in intervals following the
missing data, but we also observe subsequent errors, which
we cannot explain. Likewise, there are other bursts of mea-
surement errors in the data shown in Figure 2 (c) that cannot
be explained by missing data. However, they could still be
the result of a restart of the NMS, which occurs within a
single measurement interval, avoiding missing any polls, but
still resetting counters. Such resets are detectable in some
systems (the value of the counter drops to nearly zero), and a
well designed NMS may elide these data points, though this
results in additional missing data.

So what of poll-timing errors? In Figure 2 (b) we see that
the distribution is apparently a mixture of two main types of
errors: small (perhaps exponentially distributed) errors with
magnitude less then about 1%, and large (approximately
Pareto) errors, with magnitude greater than 10%. We will
attempt to determine the major cause of these types of errors
through aggregation.

Figure 2 (d) shows the effect of aggregation on the data,
on a log-log graph, as well as a 1/n and 1/

√
n curves. The

curve labelled “data” is based on aggregations the whole time
series; whereas the curve labelled “small errors” is based on
a subset of data from the middle sixth of the sequence where
errors are all small. The pattern we see in the results is obvi-
ous. When we use the complete dataset, including the large
errors, the data more closely follow the the 1/

√
n curve, at

least asymptotically. As discussed above, this is an indication
that jitter is not the major source of error in these measure-
ments. On the other hand, when we restrict our attention to
portions of the data with smaller errors, then the curve very
closely follows the 1/n curve.

The implication is that the larger errors (above 10% say)
tend to be caused by singular problems in data collection,
which is consistent with Figure 2 (c) which shows that these
errors are correlated with missing data. On the other hand,
the smaller errors (below 1%) are likely to be caused by
timestamp jitter. Converting the magnitude of the errors
into a crude estimate of the size of the timestamp jitter, we
might expect such jitter to be below 3 seconds in size (1% of
the time interval).

Obviously, it would be ideal to verify the root cause of
the errors using direct “ground-truth” measurements, but a
key point of this article is that operators rarely have such
measurements. They are expensive to obtain, and require
their own calibration experiments before they can be used as
a benchmark. In the mean time, the above analysis provides
some insight into probable causes.

5. CONCLUSION
This paper presents a case study of the errors in SNMP link

traffic measurements. The results indicate that most mea-
surement errors are small, but the distribution has a heavy
(Pareto-like) tail, and that a few measurement errors can be
as large as the measurements themselves. Correlations in
errors across links suggests that the major cause of these is
problems in the NMS, most likely because of counter resets.

The fact that the majority of large errors seem to related
to problems in the NMS suggests that a long-term strat-

egy should be to make this more reliable. This is often
achieved through using multiple redundant servers. How-
ever, we should note that this can be expensive, complicated
to get right, and the current reliability may be sufficient for
many tasks. For instance, in the system above, there appear
(from Figure 2 (c)) to be no more than three significant prob-
lems over the course of nearly three months. Many network
operators would be sanguine about such a level of error in a
measurement system (if not in their network itself).

However, we do not argue that these results are represen-
tative, as the type and magnitude of errors in any system
depends on its details. The errors could be much larger, but
network operators often assume that such errors are negligi-
ble, or deal with them through crude rules of thumb. How-
ever, calibration of instruments is a basic scientific tenet, and
so such studies should be a basic requirement in all NMS in-
stallations. The key contribution of this paper is a simple,
almost cost-free technique to perform such calibration. It is
so easy it could even be performed continuously to provide
an ongoing test of the validatity of link load measurements.
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