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In the last few years the discovery of the self-similar nature of packet traffic has high-
lighted the need for the estimation of parameters quantifying scaling phenomenon, such
as the Hurst parameter. An important practical question concerns the variation of the
Hurst parameter with time. The on-line real-time version of the wavelet based estimator
of Abry and Veitch, which allows data of unlimited length to be analysed, was used to
collect almost 6 months of Ethernet data. The question of the diurnal variation of the
Hurst parameter is investigated in detail, and its correlation with network load.

1. Introduction

In the last few years the discovery of the self-similar or scaling nature of many kinds of
packet traffic [7,9] has inspired a small revolution in the way study of high-speed traffic.
No single model is accepted as definitive, but the Hurst parameter H, which describes
the degree of self-similarity, holds a central place in the description of such traffic. Its
accurate measurement is therefore of considerable importance for the provision of quality
of service as well as for capacity planning.

In current models of traffic, H is a constant describing the scaling nature of traffic
which is deemed to be stationary. Naturally in real data this assumption holds only
approximately, or perhaps not at all. For example diurnal variation in load is a recognised
feature of traffic in most contexts, is this also true for H? Some central questions are:

e What are the empirical variations in H estimates observed over timescales including
minutes, hours, days and weeks?

e Over what time-scales can H be considered to be constant? (in other words to
what extent does it make sense to speak of H ’varying’, given that it is a parameter
describing stationary data?)

e What systematic variations in H are present, for example is there a consistent
diurnal pattern?

e What structural causes can be found explaining the variations of H, for example in
what way is it connected to load, if at all?

In this paper we present a preliminary investigation into the variation of H in Local

Area Network (LAN) traffic. A central aim is to gain experience in, and develop methods
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for dealing with the time variation of H. This is necessary if fractal models are ever to
bridge the gap between useful but over idealized theoretical tools, and workable practical
descriptions of real traffic. A knowledge of the time variation of H is also of interest in its
own right, as LAN traffic is an important component of the traffic in wide area networks.

In order to address such questions, two essential problems need to be resolved. The
first is that of reliable and practical H estimation. Many estimation methods suffer
from poor statistical performance, and/or high computational complexity. Recent work
based on wavelets however has provided a semi-parametric estimator for H, referred to
here as the Abry-Veitch (AV) estimator, which gives unbiased estimates with low variance
together with significant computational advantages, notably a run time complexity of only
O(n). In the present context, however, it is essential that the estimator behave robustly
in realistic non-stationary environments. The AV estimator has important avantages in
this area also, for example it can distinguish between true scaling behaviour and certain
kinds of non-stationary which lead most estimators to erroneously conclude that fractal
behaviour exists when in fact it does not. Properties of the estimator are summarized
below in Section 2, and can be found in [14] (see also [2,3]). Details and discussion of the
robustness properties and related stationarity issues can be found in [3,14,11,13].

The second problem is that of the difficulties posed by the need for data collection
and analysis over extended periods. In [12] an on-line, real-time implementation of the
estimator on inexpensive hardware was described. It was applied successfully to the real-
time measurement of 10 Mbps Ethernet traffic and has since been extended to 155 Mbps
Asynchronous Transfer Mode (ATM) traffic. The on-line implementation allows mea-
surements to be made over essentially unlimited time periods, withour extensive memory
requirements. Using it, we have no difficulty in performing continuous monitoring over
a period of months. Another aim of the paper is to illustrate the potential of such an
ability, and how the long term measurements it provides can be profitably used.

We focus on the diurnal or daily variation in traffic parameters. Section 4 shows results
based on nearly 6 months of Ethernet data. The results of the analysis are strongly
suggestive of a number of features that are likely to be applicable to more than just our
LAN, as they can be plausibly explained in terms of human usage of the network. Briefly
the important features are:

e A weak diurnal cycle in load linked with use of the network by humans, and with
backup loads. The natural variations during the day may be of larger magnitude
than diurnal variations.

e Differentiated diurnal cycle in load and H value on weekends (as opposed to week-
days), again due to the different usage of the people on the system.

e A weak diurnal variation in the nature of the data as a function of scale, and not
merely a change in the Hurst parameter.

e A dependence in the qualitative type of scaling observed on the nature (human or
machine generated) of the traffic on the network.

e Variation in the scaling behaviour on time scales of the order of 1-4 hours which
may be of larger magnitude than diurnal variations.

A conclusion of practical importance based on the above is that continuous measure-
ments of the parameters of long-range dependence are required for real time network needs



such as call admission control or applications which uses rate adaptation, in addition to
the network load measurements. This is because, although diurnal variations exist, local
changes are also very significant and may dominate. Our results suggests that in the case
of Ethernet traffic that such measurements should be based around time scales from 1 to
4 hours: any smaller and the data sets are not sufficient to obtain an accurate estimate,
any larger and the parameters may change substantially over the measurement interval.

2. The Abry-Veitch (AV) estimator

The basic theoretical framework of this paper is as follows. The time varying rate x(t) of
traffic is the key data, and we model it as a stationary stochastic process. Basic features of
this process are its mean p, = E[z], variance 02 = E[(r — p;)?], and correlation function
v:(k) = E[(z(t + k) — pug)(z(t) — pz)]. The self-similar properties of traffic manifest
themselves in a particular form of ~,(k), namely a decrease with lag k so slow that the
sum of all correlations downstream from any given time instant is always appreciable.
The past therefore exerts a long term influence on the future, exaggerating the impact of
traffic variability and rendering statistical estimation problematic. This phenomenon is
known as Long Range Dependence (LRD), and is commonly defined by 7, (k) ~ ¢, k|1~
« € (0,1), or equivalently as the power-law divergence at the origin of its power spectrum:
fz(v) ~ ¢|v|~*,|v| = 0. The Hurst parameter describes the (in practice, asymptotic)
self-similarity of the cumulative traffic process [; z(s)ds while the LRD parameter o
describes the rate process z(t). It is nonetheless common practice to speak of H in
relation to LRD via the relation H = (1 + «)/2, and we follow this convention here.

In [14] a semi-parametric joint estimator of (e, ¢s) is described based on the Discrete
Wavelet Transform (DWT) [5]. Wavelet transforms in general can be understood to
be a more flexible form of Fourier transform, where x(t) is transformed into a time-
scale wavelet domain rather than a frequency domain. Thereby allowinging simultaneous
observation of a time series over different scales a, whilst retaining the time dimension of
the original data. No information is lost if we sample the continuous wavelet coefficients
at a sparse set of points in the time-scale plane known as the dyadic grid, defined by
(a,t) = (27,27k), 4, k € N, leading to the DWT with discrete coefficients d(j, k) known as
details. Intuitively, the dyadic grid samples the wavelet domain at a resolution appropriate
to the scale. The octave j is simply the log base 2 of scale @ = 2/. For finite data of length
n, j will vary from j = 1, the finest scale in the data, up to some jnax = log,(n).

The estimator has excellent computational properties due to the fast ‘pyramidal’ filter-
bank algorithm [5] for calculation of the discrete wavelet transform, which has a com-
plexity of only O(n). The number of wavelet coefficients d,(j, k) thus generated is also of
order n, and subsequent computations of the estimator have only this complexity.

The main feature of the wavelet approach which makes it so effective for the statistical
analysis of scaling phenomenon such as LRD is the fact that the wavelet basis functions
themselves possess a scaling property, and therefore constitute an optimal ‘co-ordinate
system’ from which to view such phenomena. The main practical outcome is that the LRD
in the time domain representation is reduced to residual short range correlation in the
wavelet coefficient plane {7, k}, thus removing entirely the special estimation difficulties.

We can now outline the estimator as consisting of the following four stages:



1. Wavelet decomposition: A discrete wavelet transform of the data is performed,
generating the details d,(j, k).

2. Detail variance estimation: At each fixed octave j the mean squared detail p;
is computed giving an estimate of the variance of the details?>. For LRD processes
the p; follow a power-law in j with exponent a.

3. Analysis using the Logscale Diagram: Form the plot of y; = log,(;) against j,
the Logscale Diagram?, the scaling range (1, jo) where scaling occurs is determined®.

4. LRD parameters estimation: The LRD parameters H and ¢; are estimated by

weighted linear regression over the scaling region®®”.

The joint AV estimator offers excellent statistical performance: negligible bias and
close to optimal variance, and known confidence intervals, independent of the unknown
H value. The asymptotic variance is var(H(n)) ~ 211111{23 n~!. The 1/n decrease is a non-
trivial property for an estimator of LRD as it is normally a characteristic of estimates in
a short range dependent context. Also note that the AV estimator is semi-parametric and
therefore not dependent on a specific model for the data. It is also intrinsically robust with
respect to non-stationarities in the mean and variance of the underlying process [3,11].

The AV estimator is gaining acceptance as the method of choice for measuring LRD in
traffic [4,6]. Until recently however it has been used as an off-line, or batch estimator. It
is ideally suited to on-line use however [12], making it suitable for real-time estimation. In
the following section we will see that this method allows a traffic stream to be monitored
continuously for months at a time, without a large memory requirement.

3. Practical implementation of real-time estimation

This section describes the analysis of Ethernet data on the local area network at the
Software Engineering Research Centre (SERC) at RMIT University with simple low-cost
hardware. Ethernet was initially tested (though we have now extended our monitoring to
155 Mbps ATM systems) for two reasons apart from the obvious convenience. First it was
the first type of data network where self-similar traffic was shown to exist [7]. Second, it
is relatively easy to extract traffic from an Ethernet because of the broadcast nature of
the medium. The method is described in detail in [12], though the parameters used in
this experiment are described below.

The SERC LAN was based mainly around a standard passive hub (the hub has no
switching capability) 10baseT Ethernet with a file server, compute server, ~3 X-terms,
~6 Windows PC’s, ~6 FreeBSD Unix boxes, 2 printers, and 1 Maclntosh attached. The
numbers of user boxes and their type changed over the period of measurement as a number
of boxes were dual-boot Windows/Unix boxes, or laptops (which were not always attached

2Since the expectations of the details are all identically zero [8,5]

3In computing y; small corrective terms g(n;) are in fact subtracted from log, (p;).

41f the data is truly LRD then the upper cutoff scale jo = jmax & log,(n), however scaling in a finite
range is also observed in data [1].

SH is related to the slope of the plot, and ¢ to a power of the intercept.

6The weights are functions of the known variances of the y; and do not depend on the data.
"Confidence intervals for H are derived from the standard variance formulae for weighted linear regression
with mutually independent y;, and so again are not functions of the data.



to the network), and several new boxes were attached during the time period. In addition
there was a second 10Base2 leg of the network connected by a Router (which also provided
the gateway to the Internet) to which a small number of X-terms were attached.

The output from a packet filter, which read all of the transmitted packets, was passed
through a pre-filtering program which generates a time series corresponding to the number
of bytes transferred during each sampling interval. This series is the raw data x(¢) analyzed
by the on-line estimator. A sampling interval of 1ms was used in the experiments described
here. All of the possible scales were used in the estimation, i.e. j; was set to 1, though
we considered the log-scale diagrams themselves to inform our conclusions.

The use of commodity PCs and NICs allowed us to build very cheap monitoring systems,
ie. < $5000 AUS. Such a low capital outlay is a requirement if such monitors are to
become common enough to be useful.

4. Long term measurements

As already stated, a major advantages of on-line measurement is that measurements
can be collected over long periods. For instance, data from the SERC LAN has been
collected from March the 4th to August the 26th of 1998. A major reconfiguration of our
local network occuring at the end of August was the trigger for our current study.

The data was collected by running a set of monitors almost continuously over the above
period. However, the monitors were also used for other purposes, and therefore could not
be used continuously. Therefore the data has some gaps over the time period.

We performed monitoring using blocks of data 1, 4 and 24 hours long, with the intention
of studying the diurnal and weekly variations of both the load and H values of the traffic.
An important aim was to determine over what time scales the Hurst parameter might
vary, to determine an appropriate practical measurement interval. Another aim was to
investigate structural features of the variation. For example if the variation was dominated
by the diurnal behaviour of the system, it may be sufficient to measure this diurnal cycle
thoroughly once and then to use it to predict H estimates at given times of day, or
to choose the worst case as in the traditional “busy hour” used by Telcommunications
providers. Naturally such an idea relies on a concept of having a time interval over which
it is reasonable to consider that H does not vary, so that it be well defined and therefore
measurable. Measurements over such an interval, say an hour, can then be used to track
changes in H over longer intervals, such as days or weeks. We rely on the robustness
properties of the AV estimator for reliable H estimates where aspects of the data vary.

Figure 1 shows example sample paths for the Hurst parameter over one week in April
1998. The graph shows that, typically, there would seem to be considerable variation in
the Hurst parameter over these time periods. (Space limitation prevent the presentation
of the sample paths over the entire measurement interval. For a larger time-set please see
[10].) The broad correspondance between 1 and 4 hour estimates (within the limitations
of the measurements) seems to indicate that H can be taken to be constant at times scales
up to 4 hours. The disagreement between the 4 and 24 hour measurements (at least in
some cases) is evidence that H cannot be taken as constant over 24 hour intervals. The
hypothesis test reported in [13] would enable such questions to be answered in a more
objective fashion, however its use is beyond the scope of this study.
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Figure 1. Example sample paths for the Hurst parameter. The three curves are based on
1 hour blocks of data (x), 4 hour blocks of data (o) and 24 blocks of data (O).

The next set of figures shows the diurnal, or daily cycle of load at SERC. In Figure 2(a)
and (b) we display the average from Wednesday, the 4th of March to Wednesday the
26th of August, 1998, of the load on the Ethernet during each one hour period. Figure
(a) shows the weekday load, while Figure (b) shows the weekend load® — the two are
substantially different, and it does not seem appropriate to combine them. The figure
also shows the standard deviation of the load, and the mean + the standard deviation.

The two most notable features of the mean load during the week are firstly a weak
busy cycle we refer to as the user busy cycle. We refer to the user busy cycle as weak,
because its magnitude is not large compared with the natural variation during the day —
this view is supported by quantile plots (not shown here) of the data. Only by averaging
measurements obtained over a large number of days, does this gentle diurnal variation
emerge from the highly variable background. The peak of this cycle appears to occur at
4pm. The second notable feature is a large peak early in the morning. This is the result
of the nightly backups starting at ~ 3 am following each weekday.

Also notable in Figure 2(a) is the fact that the standard deviation of the results (over
the days in the average) does not appear to correlate well with the user busy cycle, but
that it does seem to be correlated with the backup peak.

8Backups on our system begin at approximately 3am and may extend past 6am after weekdays and
therefore occur on Saturday morning but not Sunday or Monday morning. We consider the backups to
be part of the week day workload, and hence we have adjusted the measured beginning and end of the
weekend to 7am on Saturday morning, 7am on Monday morning respectively.
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Figure 2. Diurnal cycle in load and Hurst parameter.

The traffic on the weekends is significantly lower than during the week — not surprisingly.
However there is also a user busy cycle during the weekends which has a later peak, around
7 or 8 pm, which is not inconsistent with the observed behaviour of workers at SERC —
they tend to work later in the day on the weekends.

Figure 2 (c) and (d) show the equivalent picture for Hurst parameter estimates. The
standard deviation itself has not been plotted in the results, but it remains roughly
constant with a value slightly larger than 0.1.

Figure 2(d) seems to indicate that the weekend traffic has a variable Hurst estimates
(witness the size of the confidence band), but that the Hurst parameter does not depend
strongly on the time of day. On the other hand Figure 2(c) indicates that during the
week the Hurst parameter does depend on time of day, though not strongly. In particular
there is a peak at about 4am which appears to be correlated with the backup peak, and
a cycle corresponding to the user busy cycle, i.e.the Hurst parameter seems to have some



correlation to the network load. Interestingly the peak due to the backups fits the backup
load peak, while the busy cycle behaviour of the load seems to lag the Hurst parameter.
This behaviour is thought to relate to the type of traffic present — for instance, SNMP vs
X11 traffic. It would be interesting in future work to partition the data into types before
study, though this would require separate monitors for each applications class considered.

Note that in all cases natural variation is greater than that observed across the di-
urnal cycle — and sample paths confirm that the variation occurs between continuous
measurements in a single day, rather than being quasi-constant within a day and highly
variable across days. Thus, estimates change quickly enough to justify fine scale ongoing
monitoring rather than, for example, weekly measurements.

There are many potential causes for the observations above apart from the ideal case
where each measurement is giving a true indication of the nature of the system. For
instance, the AV estimator, while remarkably robust, is not completely immune to the
effects non-stationarity, and is dependent of a good choice of j;. Thus in order to assess the
validity of the results we examine the Logscale Diagrams as well as the Hurst parameter
estimates. The Logscale Diagram is in fact first of all an analysis tool to examine the
average second order behaviour (energy) in the data as a function of scale, independently
of the desire to measure scaling behaviour. Recall that long range dependence is detected
in the Logscale Diagram if a region of alignment is detected, with lower cuttoff scale j;.
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Figure 3. Diurnal cycle in log-scale diagrams.

In Figure 3 we show Logscale Diagram averaged by time of day for week days. Figure
(a) shows the values of the log-scale averages y; by scale j and time of day. Figure (b)
shows the same set of data by time of day with one curve per scale. The plots show that
the averaged y; vary over the course of a day. Note that one kind of non-stationarity
which might effect the H estimates would show up here in a certain characteristic form
of the Logscale Diagram (for details see [11]) which is not apparent here. It seems then
that there is real variation in the Logscale Diagram over the course of a day.



However, the changes in the Logscale
Diagram cannot be captured solely by o
the estimate of H. Consider Figure 4
which shows the log-scale coefficients y;
by scale for three sets of times respec-
tively dominated by — low load (8am-
10am and 10pm-3am), high load (1lam-
6pm) and backup loads (4am-5am). Each
set of data has a different charateristic
shape. During the high load periods the
curves are approximately straight lines
meaning the Hurst parameter estimates
are useful in describing the range of scales e I R T T TR
in the data. However, at night, and in octavel cctave] octavel
the early morning when the load is low, Figure 4: Diurnal cycle in log-scale diagrams
the log-scale curves are not straight, and — week day values of y; by scale j.
hence the Hurst parameter estimates are
only relevant for the asymptotic behaviour of the data, or not relevant at all.

The behaviour of the Logscale Diagram during the backup load is not characteristic of
scaling behaviour at all, but rather there is a strong phenomena occuring on scales 3 to 5
(time scales from 23 = 8 to 2° = 32 ms). This is interesting, but not at all unreasonable.
We know that during these times the load is due to machine driven processes (the backup
software AMANDA) which may well generate quite regular traffic. Note that the system
may still be asymptotically self-similar, however on the times scales observed the dominant
behaviour is the fixed scale behaviour.

In the same vein note that during the busy hours of the day human interaction dom-
inates the workload, whereas at times of low load (night, the weekend), computer inter-
actions dominate. Thus the workload type seems to have a strong effect on the nature
of scaling. Thus it is unsurprising that the weekend Logscale Diagrams (not shown here)
are all qualitatively similar to the low load diagrams from the weekdays. Hence it would
seem that human interaction plays an important role in self-similarity in traffic.

Therefore, although the Hurst parameter may not be capturing enough of the traffic
behaviour at certain times, the scaling behaviour certainly does exist and has some diurnal
variation, which is related to the level of human interaction with the system.

8-10am, 10pm-3am 1lam-6pm 4-5am

30

30

5. Conclusion

This study has applied the data reduction of the on-line AV estimator to nearly six
months of LAN traffic. It it not the intention of this paper to bring out all of the
information in this data, but rather it is intended to provide a taste of the possibilities
created by the cheap, ubiquitous monitoring allowed by an on-line estimator, and to give
some interesting results on interpretion of time variation in H.

The limitations of the data also restrict the utility of the data and it is clear that
further study, ideally broken down by traffic type, will be required before drawing firm
conclusions about the daily variation of the parameters of LRD, however, the data is



strongly suggestive of a number of features described in detail above.

A conclusion of practical importance is that for real time network needs such as call ad-
mission control or rate adaptive applications one should make continuous measurements
of the Hurst parameter (and other parameters of LRD). This is because, although diurnal
variations exist, local changes are also very significant and may dominate. Our results sug-
gests that in the case of Ethernet traffic that such measurements should be based around
time scales from 1 to 4 hours: any smaller and the data sets are not sufficient to obtain
an accurate estimate, any larger and the parameters of interest may change substantially
over the measurement interval. Ideally a measurement scheme will be developed which is
adaptive, and can choose the best possible measurement interval from the data.
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