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Overload control is critical in preventing congestion of modern switching networks. One
method, hysteretic overload control, uses two thresholds, a congestion onset, and a con-
gestion abatement threshold to determine congestion status. Variations of this method
of overload control have been used in the Signaling System Number 7 (SS7) protocol
specified by the ITU-T (International Telecommunications Union, Telecommunications
Standardization Sector), and also proposed for use in broadband networks. This paper
provides an analytic technique for investigating the performance of such congestion con-
trols, and thence setting the key parameters such as the threshold levels. The technique
relies on a martingale based relationship between a queueing process and an embedded
renewal process.

1. Introduction

How do you protect a modern switching network from overload? Answering this ques-
tion has become critical to the reliable operation of a modern switching network, due to
the increase in services with unpredictable traffic loads; for example, the Common Chan-
nel Signaling traffic associated with Intelligent Network services such as “Televoting”. In
essence, there are two related questions: how do you detect or measure the congestion
caused by an overload, and how do you mitigate the effects of the overload. A simple and
intuitively appealing mechanism to detect congestion is a queue-length threshold. The
purpose of this paper is to examine the behavior of systems that use two distinct queue-
length thresholds to detect congestion. Such a technique has been recommended for the
Signaling System Number 7 (SS7) protocol [1, p. 313], [2], and proposed for application
in broadband networks [3].

Congestion is detected via a pair of queue-length thresholds: a congestion onset K,
and a congestion abatement threshold K,. For example, in the SS7 protocol, a link is
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considered congested if the number of messages in the Signaling Transfer Point (STP)
link transmit buffer exceeds the onset threshold, and the link only returns to the uncon-
gested state when the number of messages in the buffer falls to the congestion abatement
threshold (or below). The two thresholds typically are chosen so that K, < K,, leading
to a hysteretic effect, described below.

When congestion occurs the control acts to reduce the input traffic by discarding some
of the input packets. In broadband networks selective discard of packets [4] discards low
priority packets to minimize the impact on perceived quality of service. The model used
here for the discard strategy is Percentage Throttling (PT), where some percentage of
the originating traffic is randomly blocked at the source. In this model we assume that
blocked traffic is lost from the system, that is, customers do not retry at a later date, or
alternatively packets are not retransmitted.

Rumsewicz and Smith [2] used simulations to compare a realistic implementation of this
overload control with others used in SS7. Their results indicated that a simple system,
such as that described above (though with more than one level of throttling) was preferable
to more complex systems that use multiple thresholds for different priority messages.

There are a number of mathematical analyses of various overload control systems in
which K, = K,. For instance, Morrison [5] investigates a system in which a second server
is added when congestion is detected. Gong and Cassandras [6] considered a system in
which the arrival rate is dependent on the number of customers in the queue. However,
both of these examples are limited to systems in which the service times are exponentially
distributed. Perry and Asmussen [7] consider a queue with generally-distributed service
times and an admission policy based on either the workload in the queue, or the sojourn
time of a customer in the queue, and more recently Leung [3] considers a system with the
service-time distribution dependent on the workload in the system.

The papers above do not allow for two distinct thresholds leading to the hysteretic effect
where the queue exhibits different behavior as the load increases from that as the load
decreases. Hysteresis has been suggested as a mechanism to reduce the number of times
the congestion status switches state [1], reducing any cost associated with this switching.

The block matrix methodology of Neuts [8] has been used by Neuts [9] and Li [10] to
derive numerical results for systems with hysteretic thresholds. In this paper we use an
analytic form for the generating function of the number of messages in the buffer, found
using an elegant martingale-based methodology. The closed-form result requires little
computation to evaluate the queue-length distribution, and thence the queue utilization
and the blocking probability in the finite buffer case. Further, the method allows the
derivation of critical features of the overload control, such as the time between onset and
abatement of congestion.

The buffer is modeled using a variant of the M/G/1 queue in which the queue state is
separated into two regimes: congested and uncongested, each with a different arrival rate.
The technique used to produce the results relies on a martingale analysis based on the
work of Rosenkrantz [11], and Baccelli and Makowski [12,13], and extended by Roughan
in [14] and [15]. Perry and Asmussen [7] also use similar arguments.

The principal contribution of this work derives from the result described in Theorem 1
which gives the probability generating function for the distribution of the number of
customers in the system (as seen by an arriving customer). This paper makes a number



of other original contributions, the chief of these being estimates of
e the probability of a customer arriving to a congested queue,

e the traffic load accepted by the system, and

e the time between onset and abatement of congestion.
We also present examples of numerical results for each of these performance measures
which quantitatively verify the intuition about the effects of hysteretic overload controls.
This paper is organized as follows. Section I describes our overload control model, and
provides analytical results. Section III provides numerical results for the performance
measures listed above. Section IV summarizes the key results of the paper and suggests
an extension to the work.

2. The model

This section provides a definition of our model of a buffer which uses hysteretic overload
control. The model is a variant of the M/G/1 queue, a simple queue with Poisson arrivals,
generally-distributed service times, a single server, and an infinite waiting room.

The M/G/1 queue is generalized to model the overload control by separating the be-
havior of the queue into two regimes of operation: congested and uncongested. The PT
source overload control changes the uncongested arrival rate A\, to A. during the congested
regime.

An alternative to source overload control is to alter the service-time distribution of the
process — for instance, by stripping the headers to find the message priority and discarding
those of low priority, resulting in a short service time for these messages. If the service
times for the discarded packages were zero, then this model would be essentially the same
as the source control model described above (from the point of view of arrivals). In reality
it takes some processing time even to discard a message. Furthermore, in practice, retrials
may result in significant problems for this type of control. Therefore source control, as
considered below, is preferable.

The regime changes from uncongested to congested when, after completion of a service
(the processing of a message in the buffer) the number of messages in the system is
greater than the congestion onset threshold K,. The regime changes from congested to
uncongested when the number of messages in the buffer falls to the congestion abatement
threshold K, (or below). Typically, K, < K,, resulting in hysteretic behavior. Note
that the case K, = K, is included in the analysis described here, but that the case with
K, > K, makes little sense, and is not included.

Formally, the process is modeled as follows. Take the number of customers in the
system at time ¢ to be X(¢), and the service completion epochs to be t; < to < -,
where t,, is the departure time of the nth customer. We consider the process embedded at
customer departure epochs, that is, the process X,, = X (¢,+), the number of customers
in the system as seen by the nth departing customer. Cooper [17, pp. 154] shows that the
arriving customers see the same queue length distribution as the departures. Note that,
in practise the distribution seen by the arrivals is or equal or greater importance than
the stationary distribution. Furthermore, in the model described above, the congestion
status may only be changed at the completion of a service and therefore depends only on
the embedded queueing process X,.



Arrivals are Poisson with rates A, and ). depending on the current congestion status.
The service times are Independent Identically Distributed (IID) Random Variables (RV)
with probability distribution function G(-), and mean 1/p. The traffic intensities p; are
given by p; = Aj/u for j = u,c.

We model the arrivals using two sequences of IID RV, A7, j = u,cand n = 1,2,....
Here A} and A¢ are respectively the number of customers to arrive during the nth service
given that during this service the queue is considered to be uncongested or congested.
The probability generating function for the number of arrivals during a service is a;(z) =

® alzt = G\[1 — 2]), 7 = u, ¢, where a! = prob{A4] = i} and G(-) is the Laplace-
Stieltjes transform of the service-time distribution [17].

2.1. Stability

Of obvious interest are the conditions for stability of the queue. Simply stated, the
queue is stable if and only if 0 < p. < 1, while the queue is null-recurrent for p. = 1 and
transient for p. > 1. A desirable consequence is that stability of the queue is independent
of the uncongested traffic intensity, and hence an overloaded queue will be stable, so long
as the originating traffic is sufficiently throttled.

For a proof of the stability conditions see [15]. The result can be easily understood by
noting that, when congested, the queue behaves as if it were a standard M/G/1 queue
with traffic intensity p.. This queue is always considered congested when there are more
than K, customers in the buffer. Hence, regardless of the behavior of the queue when
uncongested, the queue reverts to the standard stability behavior of the M/G/1 queue
whenever there are more than K, customers in the buffer.

2.2. The queue-length distribution

We now provide the result which will be used to examine the behavior of the overload
control considered here.
Theorem 1: For the process described above, when p, > 0 and p. < 1 the probability
generating function for the number of customers in the system a seen by an arriving
customer is given by
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The mean number m, of customers served in one busy period, is given by

m = 1 + {pu B pC}RKoKa(]‘)

Y

1- Pe
and the column vectors e; = (614,02, - . ., 0k,i)" and z = (z,2%,...,25)T.
Proof: For brevity the proof, which appears elsewhere [15] and [18], is omitted. O

Remark 1: The form of the solution is that of the Pollaczek-Khintchine Equation [17] for
the probability generating function of the number of customers in the M/G/1 queue with
traffic intensity p., plus a correction term which takes into account the altered behavior
of the queue in the uncongested regime. The solution, though more complicated, is very
similar to that for the M/G/1 queue with generalized vacations where only the first arrival
to an empty system notices altered behavior.

Remark 2: The solution requires a matrix inversion, but the matrix to be inverted,
(I — Pg,), is already in upper-Hessenberg form [19] and the inversion is therefore easily
performed — even for quite large matrices.

Remark 3: The theorem has been described in terms of a source control model, but
it applies equally well to packet discard models where the service-time distribution of
discarded packets is changed. In which case a;(z) = G;j(A[1 — 2]), where Gj(-) is the
service-time distribution during the congested phase.

2.3. Simple performance estimates

In this analysis we make some simple definitions. The offered load refers to the load
offered to the system prior to any overload control, and is denoted by p,. The accepted
load p,, is that part of the load accepted by the system after application of overload
controls.

To calculate the accepted load we apply Little’s law L = AW to the processor, rather
than the queue, so that L is the average work in the system which is given by the processor
utilization, while A is the arrival rate to the system, and W is the mean service time. The
processor utilization is one minus 1/m, the probability of the system being empty. The
arrival rate times the mean service time is the accepted load p,. Thus

p _ 1 _ i _ pC + (pu - pC)RKoKa(l)
’ m 1+ (pu = pe)Ric k(1)

To calculate the proportion of time that the system spends in the congested state we
note that when PT is applied the load on the system is reduced from p, to p.. Thus the
accepted load on the system is p, = (1 — 9)p, + ¥p., where 1) is the proportion of time
the queue is seen (by arrivals) to be congested. In conjunction with Equation (1) this
expression yields

1 + (pu - 1)RKoKa(]‘)
1+ (pu = pe) Rie,x, (1)
2.4. The time spent in the congested region

One of the principal reasons for introducing the hysteretic effect into this type of thresh-
old based overload control is to limit the oscillatory behavior that can occur for a single
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fixed threshold. A simple estimate of the rate of oscillation is given by the number of
customers served during a cycle from the start of a congested phase to the start of the
next congested phase, whose mean value is given in the following theorem.

Theorem 2: The mean number of customers served in a cycle through two consecutive
phases (congested and uncongested) is given by

m(1 —h)

Bl = 25—,

where v is the cycle time, and Theorem 1 defines m, h and h,.
Proof: Again, due to space limitations, the proof is omitted; it appears in both [15] and
[18]. O

3. Numerical results

This part of the paper describes some examples, and provides numerical results for
these. The chief result given above is in the form of a probability generating function,
and to obtain queue length distributions this must be inverted. Daigle [20] demonstrates
an efficient method for inverting generating functions for variants of the M/G/1 queueing
process using the Discrete Fourier Transform. Our calculations were written in C++
using a free matrix library called NEWMAT [21], which included Fast Fourier Transform
code, and the code used for matrix inversion. Note that although we derive the queue
length distribution for the infinite buffer case, loss probabilities for the finite buffer case
can be derived from the infinite buffer distribution.

The threshold values used, taken from realistic values given by Rumsewicz and Smith [2],
are shown in Table 1.

Table 1
Congestion Threshold Settings.

Threshold Set 1 Set 2

Abatement 50 90
Onset 62 100

3.1. The number of messages in the buffer

The probability distribution for the number of messages in the buffer may be calculated
using the method above applied to the probability generating function given in Theorem 1.

Figure 1(a) shows the results of applying the overload control with the first set of
thresholds from Table 1, for the three overload scenarios p, = 1.2,1.5 and 1.8, and the
two non-overload scenarios p, = 0.8 and p, = 1.0, with exponential service times, and 50%
throttling in the congested regime. The two cases without overload provide a comparison
to the overload cases. Figure 1(b) shows what happens when the second set of thresholds
are used in the cases with p, = 1.0, 1.2 and 1.8.

The effect of applying the overload control to the standard 0.8 load scenario is negligible.
The net result of applying this overload control to the overload scenarios is to isolate



the probability mass between the two thresholds, with a geometric drop off outside the
immediate region surrounding the thresholds. This geometric drop off can be seen in
the figure by the straight line asymptotes of the curves. This behavior exactly matches
what you might expect - Remark 1 notes the similarity of the generating function being
investigated to that of the standard M/G/1 queue which exhibits this sort of geometric
tail. The fact that the tail behavior of the queue is similar to that in the M/G/1 queue

makes setting the size of the buffer a reasonably simple task in the finite state case.
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Figure 1. The queue length distribution with exponential service times.

Note that, importantly, the behavior of a queue under this type of control matches the
requirements of such a control, namely,
e it does not significantly effect normal performance,
e it limits excursions to large queue sizes.

We have also studied the queues behavior with more complex service-time distribu-
tions such as the Erlang distribution with similar observations (though space prevents
presentation of these results).

3.2. Other performance measures

As noted in Sections 2.2 and 2.3 there are several simple performance measures which
may be used to assess the behavior of the queueing system. Two reciprocal measures
are the probability that the system is empty p(0) and the mean number of customers
m served in one busy period. Figure 2(a) shows the values of log(m) for offered loads
pu = 1.0,1.2,1.5 and 1.8, exponential service times, 50% throttling and an onset threshold
set to 62. The independent variable chosen here was the abatement threshold, given a
constant onset threshold; the reasons for choosing this will become clear. The large values
of m correspond to very high server utilization.

Equation (1) gives the accepted traffic load. Figure 2(b) shows this performance mea-
sure. Notably this performance measure is near 1 for all of the overload scenarios. Hence,
nearly the maximum possible number of messages are being accepted by the server, a de-
sirable result. The insensitivity of this result to the value of K, is also important, because
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it means that K, can be set to achieve other performance goals, such as minimizing the

number of congestion status switching
events, with almost no cost.

Equation 2 gives an expression for the
probability of the queue being congested.
Figure 3 illustrates this probability over
a range of abatement thresholds. We can
note that for the overload scenarios, the
results are quite insensitive to the value
of the abatement threshold.

Section 2.4 provides an estimate of
the cycle length between the uncongested
and congested regimes. The estimate of
the cycle time is given by F[v] which
directly estimates the mean cycle time.
The result given in Theorem 2 is illus-
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the cycle time is not linearly dependent on the threshold because the behavior during the
uncongested phase is that of a mean-zero random walk, while in the overload scenarios
the behavior is that of a random walk with drift.

From comparison between Figures 4 (a) and (b) which show the same scenarios for
exponential, and deterministic service times respectively, we can note that the mean cycle
time seems to be insensitive to the service-time distribution.

4. Conclusion

Obviously the model analyzed here does not encapsulate all of the features used in
overload controls, in particular SS7 congestion controls; nor is it intended to. The aim
was to study the hysteretic overload control mechanism. Such controls are of recent
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interest [3] due to the need to provide overload controls in broadband networks. This
paper provides some key results describing the behavior of a queue using this control:
the PGF of the queue-length distribution, the probability of the queue being congested
(as seen by an arriving customer), the traffic load accepted by the system, and the time
between onset and abatement of congestion.

These results have been used to show that the control behaves as desired: limiting
excursions to long queue lengths during overloads with little impact under normal loads.

Intuitively, the reason for introducing a second distinct threshold for measuring the
abatement of congestion separately from the onset of congestion is that the congestion
cycle time will increase with increasing separation between the onset and abatement
thresholds. This paper demonstrates that this is indeed the case, and provides a direct
method for estimating the increase in cycle time.

The closed-form nature of the results makes them applicable to finding optimal thresh-
old settings. Additionally, the results are also applicable to so called heavy-tailed dis-
tributions such as the Pareto distribution which have been receiving recent interest [22]
for modeling packet traffic. These distributions may have infinite variance making many
methods for calculating solutions inappropriate. Future work is intended to examine these
extensions.
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