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Problem

Have link traffic measurements
Want to know demands from source to destination
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Example App reliability analySISJu
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Under' a Imk fculure, routes change
want to predict new link loads
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Ne’rwork Engmeermg
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"Wha’r you want ’ro do
a)Reliability analysis
b)Traffic engineering
c)Capacity planning

<» What do you need to know
»Network and routing
»Prediction and optimization techniques
? Traffic matrix

University of Adelaide



Outline

% Part I: What do we have to work with - data sources
¢ SNMP traffic data
¢ Netflow, packet traces
# Topology, routing and configuration

< Part IT:Algorithms
¢ Gravity models
¢ Tomography
¢ Combination and information theory

< Part III: Applications
¢ Network Reliability analysis
¢ Capacity planning

¢ Routing optimization (and traffic engineering in general)
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Part I: Data Sources
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DaTa Avculablh’ry packeT traces
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Packet traces limited availability — like a high zoom snap shot

* special equipment needed (O&M expensive even if box is cheap)
e lower speed interfaces (only recently OC192)

e huge amount of data generated
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DaTa Avculablh’ry flow level data
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Flow level data not available everywhere — like a home movie of the network
e historically poor vendor support (from some vendors)

e large volume of data (1:100 compared to traffic)

o feature interaction/performance impact
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Netflow Measurements
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% Detailed IP flow measurements

¢ Flow defined by
% Source, Destination IP,
% Source, Destination Port,
% Protocol,
* Time

& Statistics about flows
* Bytes, Packets, Start time, End time, etc.

¢ Enough information to get traffic matrix

< Semi-standard router feature
¢ Cisco, Juniper, etc.
¢ not always well supported
¢ potential performance impact on router

< Huge amount of data (500GB/day)
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Da‘ra AVC(IIClbIIITy SNMP
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SNMP traffic data — like a time lapse panorama

e MIB II (including IfInOctets/IfOutOctets) is available almost everywhere
e manageable volume of data (but poor quality)
e no significant impact on router performance
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¢ Comparatively simple
¢ Relatively low volume
¢ Tt is used already (lots of historical data)

< Con

¢ Data quality - an issue with any data source
% Ambiguous
% Missing data
% Irregular sampling

¢ Octets counters only tell you link utilizations
* Hard to get a traffic matrix
* Can't tell what type of ftraffic
% Can't easily detect DoS, or other unusual events

¢ Coarse time scale (>1 minute typically; 5 min in our case)
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Topology and conflgur'aTlon
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< Router configurations

¢ Based on downloaded router configurations, every 24 hours
% Links/interfaces
% Location (to and from)
% Function (peering, customer, backbone, ...)
% OSPF weights and areas
* BGP configurations

¢ Routing
% Forwarding tables
% BGP (table dumps and route monitor)
% OSPF table dumps

< Routing simulations
¢ Simulate IGP and BGP to get routing matrices
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Part IT: Algorithms
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The problem
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Zroute 2 Want to compute the traffic x; along
route j from measurements on the

links, y;
/yl\ (1 0 1\/x1\

Yo I 1T Offx,
\vs/ \0 1T 1]x;)
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The problem _

Want to compute the traffic x; along
route j from measurements on the
links, y;

y = AX
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Underconstrained
~linear mverse problem -
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Traffic matrix

Link measurements \ . .
Routing matrix

Many more unknowns than measurements
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Naive approach

JUSLWS|8 X1eW palewi1sa

actual matrix element
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Gravu’ry Model
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< Assume traffic be’rween sites is proportional to
traffic at each site

X1 %Y1Y2
X2 *Y2Ys3
X3 X Y1Y3

< Assumes there is no systematic difference between
traffic in LA and NY

¢ Only the total volume matters

¢ Could include a distance term, but locality of information is
not as important in the Internet as in other networks
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Simple gravity model

JUSWI[8 XIeW palewi]sa

actual matrix element
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Generaluzed graw’ry mode]
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% Internet rou‘rmg 1S asymme‘rmc

< A provider can control exit points for traffic going
to peer networks

peer links

access links
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Generaluzed graw’ry mode]
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% Internet r'ou‘rmg 1S asymme‘rmc

< A provider can control exit points for traffic going
to peer networks

% Have much less control over where traffic enters

peer links

access links

University of Adelaide 23



estimated matrix element

Generalized gravity model
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actual matrix element
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Direct Tomographic approach

— = ————— z

< Under-constrained problem
< Find additional constraints

% Use a model to do so

¢ Typical approach is to use higher order statistics of the
traffic to find additional constraints

< Disadvantage
¢ Complex algorithm - doesn't scale (~1000 nodes, 10000
routes)

# Reliance on higher order stats is not robust given the
problems in SNMP data

¢ Model may not be correct -> result in problems

¢ Inconsistency between model and solution
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Combining gravity model and tomography
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tomographic constraints

(from link measurements)
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RZQUIGF'IZC(TIOH approach
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% Minimum Mutual Informa’rlon

& minimize the mutual information between source and
destination

% No information

¢ The minimum is independence of source and destination
* P(5,D) = p(S) p(D)
* P(D|S) = P(D)
% actually this corresponds to the gravity model
¢ Add tfomographic constraints:
* Including additional information as constraints

* Natural algorithm is one that minimizes the Kullback-Liebler

information number of the P(S,D) with respect to P(S) P(D)
Max relative entropy (relative to independence)
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% Observables even better

estimated matrix element

actual matrix element



More res_u‘l_’fs_

percentage of demands
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Robustness (input errors)
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relative error
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Dependence

on Topology
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Additional information - Netflow
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Part III: Applications
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Applications

< Capacity planning
¢ Optimize network capacities to carry traffic given routing
¢ Timescale - months

< Reliability Analysis
¢ Test network has enough redundant capacity for failures
¢ Time scale - days

< Traffic engineering
¢ Optimize routing to carry given traffic
¢ Time scale - potentially minutes
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Capacity planning
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< Plan network capacities
¢ No sophisticated queueing (yet)
¢ Optimization problem

< Used in AT&T backbone capacity planning
¢ For more than well over a year
¢ North American backbone

<+ Being extended to other networks

University of Adelaide
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Ne’rwork Rellablll‘ry Analysis
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% Consuder the link Ioads in the network under failure

scenarios
& Traffic will be rerouted
& What are the new link loads?

< Prototype used (> 1 year)
¢ Currently being tfurned form a prototype into a production
tool for the IP backbone

¢ Allows "what if" type questions to be asked about link
failures (and span, or router failures)

¢ Allows comprehensive analysis of network risks

* What is the link most under threat of overload under likely
failure scenarios
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Example use: reliability analysis

estimated link load

actual link load
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Traffic engineering and routing
_opfimization
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< Choosing route parameters that use the
network most efficiently

¢ In simple cases, load balancing across parallel
routes

% Methods

® Shortest path IGP weight optimization
% Thorup and Fortz showed could optimize OSPF weights

¢ Multi-commodity flow optimization
*Implementation using MPLS
*Explicit route for each origin/destination pair
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scaled maximum utilization
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Conclusion

“» Properties
¢ Fast (a few seconds for 50 nodes)
¢ Scales (to hundreds of nodes)
® Robust (to errors and missing data)
@ Average errors ~11%, bounds 20% for large flows

<» Tomo-gravity implemented
¢ AT&T's IP backbone (AS 7018)
@ Hourly traffic matrices for > 1 year
¢ Being extended to other networks
http://www.maths.adelaide.edu.au/staff/applied/~roughan/
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< Look at a real network
¢ Get SNMP from links
¢ Get Netflow to generate a traffic matrix
¢ Compare algorithm results with “"ground truth”

& Problems:

* Hard to get Netflow along whole edge of network
If we had this, then we wouldn't need SNMP approach

* Actually pretty hard to match up data

Is the problem in your data: SNMP, Netflow, routing, ...

< Simulation
¢ Simulate and compare

¢ Problems
* How to generate realistic traffic matrices
* How to generate realistic network
* How to generate realistic routing
* Danger of generating exactly what you put in

University of Adelaide
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Our me’rhod
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» We have netflow around part of the edge (currently)

< We can generate a partial traffic matrix (hourly)
¢ Won't match traffic measured from SNMP on links

< Can use the routing and partial traffic matrix to
simulate the SNMP measurements you would get

< Then solve inverse problem

< Advantage
@ Realistic network, routing, and traffic

¢ Comparison is direct, we know errors are due to algorithm
not errors in the data
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Es’r‘i mates over time
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Local traffic matrix (George Varghese)
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