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The YetiApparently we have found the Yeti
http:
//www.canberratimes.com.au/news/local/news/
general/yeti-truth-a-hairs-breadth-away/
1227921.aspxWhat about the other missing links?

The Missing Links – p.2/29



Graph Theory and the Internet

The Internet is made up of a bun
h of 
onne
teddevi
esdevi
es = nodes or verti
es
onne
tions = links or edgesRepresent as a graph G = (N ,E)set of nodes Nset of edges Ee.g. AS-graphnodes are Autonomous Systems (ASs)edges mean two ASs are 
onne
ted by a �link�a link 
an a
tually represent multiple
onne
tions
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Example

N = {1,2,3,4,5,6}
E = { (1,2),
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Measuring Graphs

We often want to measure a graphstru
ture of graph 
an tell us somethinggraph might be used later (e.g. to predi
t paths)Measurements in the Internettomographytra
erouteroute monitorsAll measurements have problemswe'll fo
us on route monitors hereprovide the most up to date information
an see dynami
s
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Route monitorsInstall our own �node�listens for routing messages
an infer some of the routes in the networkea
h route tells us about some linksProblemmissing linksa single viewpoint only sees a subset of linksmultiple viewpoints in
rease 
overagehow many are enough?how do we know what we are missing?
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Example
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Example
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Example
Both monitors
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Example
Missing links
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Capture-re
apture

How many �sh are there in the lake?
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Standard biologi
al approa
h


apture a group of �sh, tag them, and releasesome time later
apture another group of �shnote how many are taggedPetersen's formula

Ê =
E1E2

E12where

E1 = the number of "�sh" seen in 
apture 1

E2 = the number of "�sh" seen in 
apture 2

E12 = the number of tagged "�sh" seen in 
apture 2

Ê = the estimated number of "�sh" in the pond

The Missing Links – p.9/29



Links = �shCapture-re
apture AssumptionsNo 
hange in population over timeTags don't fall offHomogeneity: all �sh are the sameIndependen
e between experimentsIn our 
ase we want to estimate linksnumber of links = number of �shdon't perform su

essive experimentsea
h monitor is a separate measurementdon't need tags be
ause links have unique IDwe have K ≃ 40monitors
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But it doesn't work!Produ
es ina

urate estimatesbelow a lower boundAssumptions of Petersen aren't valid:links in AS-graph aren't homogeneousP2P and C-P links have different visibilitypropose a strati�ed model
C different 
lasses of linksprobability of 
lass j is w jobservation probability of 
lass j is p j
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New modelNew model is 
alled a Binomial Mixture ModelWe a
tually observe a trun
ated version of thismodel.We have a new EM algorithm for estimating theparameters w j and p j for a given number of 
lasses.
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SimulationsParameters, C = 7 ParameterClass p j w j1 0.010906 0.2487142 0.140579 0.0523893 0.345960 0.0368644 0.557597 0.0499635 0.758552 0.0607766 0.917098 0.0687417 0.998352 0.482553
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Performan
e of EM Algorithm

Simulated performan
e:
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Choi
e of CNeed to 
hoose C for real data
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Choi
e of C
C = 2
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Choi
e of C
C = 3
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Choi
e of C
C = 4
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Choi
e of C
C = 5
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Choi
e of C
C = 6
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Choi
e of C
C = 7
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Choi
e of C
C = 8
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Systemati
 
hoi
e of C

Akaike's Information Criteria = n[ln(2πRSS/n)+1]+2C,
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Workload
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Previous studies
Paper label date ÊZhang et al. [1℄ Updates(1M) 2004-10-24 55,388He et al. [2℄ All 2005-05-12 59,500Mühlbauer et al. [3℄ N/A 2005-11-13 58,903
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Results: C = 7Monthly data sin
e January 2004.
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Con
lusionMethod for estimating how mu
h we don't knowUsed it to study the AS graphPotential improvementsa

ount for monitor dependen
iesa

ount for heterogeneity amongst monitorsThere still might be something missing � what abouta 
lass of links that we never observe?Mu
h wider appli
abilitySo
ial networks?Network Dynami
s
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Trun
ated binomialUsing same assumptions as Petersen's the number ofobservations k of a link will follow a Binomial distribution

prob{k}=

(

K
k

)

pk(1− p)(K−k)

However, we only observe a link if k > 0, so we observethe 
onditional distribution

prob{k|k > 0}=

(

K
k

)

pk(1− p)(K−k)

1− (1− p)K

whi
h is a trun
ated Binomial distribution.
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EstimatorMLE (Maximum Likelihood Estimator) p̂ has to satisfy
EobsK p̂ = [1− (1− p̂)K]

Eobs

∑
i=1

ki

where

K = the number of monitors
Eobs = the number of observed links (via all monitors)

ki = the number of observations of the ith link

p̂ = the MLE estimator of the observation probability p
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EstimatorMLE (Maximum Likelihood Estimator) p̂ has to satisfy
EobsK p = [1− (1− p)K]

Eobs

∑
i=1

ki

Solution by repeated substitution
p̂0 =

∑Eobs
i=1 ki

EobsK

p̂i+1 =
∑Eobs

i=1 ki

EobsK
[1− (1− p̂i)

K]

Can prove that this 
onverges to a �xed point of theabove equation.
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Simulated estimates p̂
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Varian
e of p̂
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Estimator ÊOn
e we know p, then MLE for E is
Ê =

Eobs

1− (1− p̂)K
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New modelBinomial mixture modelprobability of 
lass j is w jBinomial distribution B(K, p j) for ea
h 
lassDistribution fun
tion
prob{k}=
C

∑
j=1

w j

(

K
k

)

pk
j(1− p j)

(K−k)

Of 
ourse, we observe a trun
ated version of this.
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EM Algorithm

While (not converged 1) do

E step:

estimate c(i)
j

c(i)
j ← ŵ jP{ki|K, p̂ j}

M step:

for j=1 to C

While (not converged 2) do

p̂ j←
∑i kic

(i)
j

K ∑i c(i)
j

[1− (1− p̂ j)
K]

end while 2

ŵ j← ∑i c
(i)
j /(E(1− (1− p̂ j)

K))

end for

end while 1
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Systemati
 
hoi
e of C
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