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ABSTRACT

Study of the Internet’s high-level structure has for sonneetin-
trigued scientists. The AS-graph (showing interconnestibe-
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1. INTRODUCTION

Internet topology has drawn interest from areas as divesse a
physics and biology. The discovery of power-law degree besd1]

tween Autonomous Systems) has been measured, studied, modresulted in a large number of papers. Though the nature sf thi

elled and discussed in many papers over the last decade.vidigwe
the quality of the measurement data has always been in qoesti
It is by now well known that most measurements of the AS-graph
are missing some set of links. Many efforts have been urkiarta

to correct this, primarily by increasing the set of measwaets, but

the issue remains: how much is enough? When will we know that

power-law has been disputed [2], a more problematic aspect i
whether inadequate measurements of the topology artifidial

duce the power law [3]. The central issue is missing links! Al
studies reporting measurements of network topologiesnpiatly

have missing links. How do we know if they do? How do we know
how many they miss? These questions seem to be about things we

we have enough measurements to be sure we can see all (ot almoglon’t know, and for this reason appear unanswerable, bet\wer

all) of the links. This paper aims to address the problem tifneg-

ing how many links are missing from our measurements. We use

techniques pioneered in biostatistics and epidemiologgdtimat-
ing the size of populations (for instance of fish or diseasgas).

It is rarely possible to observe entire populations, andesoping
techniques are used. We extend those techniques to therdomai
the AS-graph. The key difference between our work and the bio
logical literature is that all links are not the same, and sobwild

a stratified model and specify an EM algorithm for estimaiisg
parameters. Our estimates suggest that a very significanbeu

of links (many of thousands) are missing from standard rode-

itor measurements of the AS-graph. Finally, we use the mimdel
derive the number of monitors that would be needed to see a com
plete AS-graph with high-probability. We estimate that 76Qte
monitors would see 99.9% of links.

Categories and Subject Descriptors

C.2.3 [Computer-Communications Networkg: Network Opera-
tions—network monitoring; G.3 [Probability and Statistics]: Prob-
abilistic algorithms
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show that they are not.

We use techniques developed in biological research famasti
ing the population of say fish. The technique “capture-reca)
works as follows. One goes into the field and catches some fish.
The captured fish are tagged and then released. Then, atatame |
point in time one repeats the study. The number of taggedtfesh t
we recapture, along the number of captured fish allows us i@ma
an estimate of the total population.

However, the simple models of capture-recapture assurhaltha
“fish” are equally easy (or hard) to catch, so we sample ataand
from the population. To paraphrase George Orwell, “All intet
links are equal, but some are more equal than others.” Sarke li
are harder to see than others! Although this violates thenags
tions underlying the simple capture-recapture modelgtisea long
literature extending the ideas to many other cases. We dnah®
literature to develop a new model and estimation algorithetic
to our problem.

So this paper provides us with a way of estimating what wetdon’
know, in this case the number of hiddenmiissing links in an AS
graph (here AS stands for Autonomous System, not Abominable
Snowman as you might guess from the title). The technique per
forms well against the best data we have for validation, kg
supporting evidence for these previous studies. In additibis
approach is easily applied (in contrast to previous papeesevex-
tensive efforts were required to clean and combine multiaie
sources), and so we can use it to look at the size of the Irtevee
time. We use it to examine the number of links in the AS-graph
over more than four years. From this extended dataset weftmok
trends, and our results indicate that the AS-graph is grpairi8.7
links per day.

Finally, by mapping this data to link types: peer-2-peemip2
customer-provider (c-p) and sibling-2-sibling (s2s) wa canfirm
the intuition that p2p links are much harder to see than ceps@s
links. In fact, the classes in our model have a strong cooredgnce
to the link types.

However, there are caveats on the results. For instanegds-
sible that there exists a class of links which are never okserin



absence ofiny data, our technique obviously cannot estimate the
size of this class of links. Hence, it is still possible that ap-
proach underestimates the number of links present in tieerlet.
There are many possibilities for extending this work. Atthe-
ment we only examine the number of links in the AS-graph, but i
is clearly interesting to examine subsets of this graphinfstance
to examine the node degree problem, or to estimate the nuofiber
backup links. We could also incorporate other data sourrean
improved model. However, perhaps the greatest potentidhése
ideas is in their extension to other Internet measuremeri@ms,
such as estimating the number of hidden anomalies.

2. BACKGROUND
2.1 Capture-Recapture

agated, or an old one withdrawn. This route exploration gsec
reveals links that might otherwise be hidden. In additioGMB
monitors are unlikely to see a non-existent link (in comgami to
other data sources such as registries or traceroutes)iarnsl ahuse-
ful property. In this paper we use data from RouteViews [@]rir
Jan 1st 2004 until March 31st 2008. The data consists of all ta
ble dumps, and routing updates seen from all peers of Roeineyi
grouped into one month periods. One month represents anreaso
able tradeoff between obtaining a more complete view (iinou
seeing additional updates over time), and the desire tounedy-
namic properties of the network such as growth rates.

Each update, or table entry provides us with an AS-path, from
which we can determine a set of links (and nodes) thablaser ved
or visible. There are also sets of links which are active, but unob-
served, and it is these links which cause all the trouble. &fiéx to

Simple capture-recapture can be used as follows. Imagine any,ase jinks asidden links. Note that for an AS to be reachable at

unknown population®, from which we capture two samples;

and E». The initial samples are tagged so that we can also measure

all, it must appear in observations, and so with any subsiast of
route monitors the set of hidden nodes should be almost ety

Ey2 the number recaptured in the second experiment. Assuming thare may be ASes which we don’t observe (private ASes for in-

that the two experiments are independent, “fish” are all #rees
the population remains static, and that tags to not “drofy tfen
we can make an estimate Afusing Petersen’s formula [4, 5].

- E1E»
E=—" 1
Fi2 @

The approach can be generalized in various ways [4,5], &tante
by introducingK’ measurements (often referred tafadists), or by
allowing for dependencies between monitors. The typicpi@gch
seems to be to use regression di dimensional contingency table
generated from the measurements. Typically these techsidpn’t
scale well for largek™ (given the2 entries in the table). Hence
we will adopt a different approach in this paper.

2.2 Network Topology Measurements

One of the key ways to look at a network is to examine its con-
nectivity, which can be captured in a gragh= (N, £), where N/
is a set containing the nodes (or vertices) of the graph. &regze-
sent, for example, routers switches or even whole netwdtks.a
set containing the edges of the graph, i.e., the connedbetvgeen
nodes. We define the numbers of nodes and edgéé by|\/| and
E =&

stance) but as these are not routable from the general &ty
are of limited interest. There is also the possibility thatarrectly
configured filters will restrict our view of some ASes [10] t tae
lack of visibility means these ASes are still partitionednfr the
rest of the Internet, and so will be unlikely to play a praatiole
in the Internet topology.

Combining all of the observations of one monitor will revaalet

of edgesséé)s where we drop thebs subscript where it is implied.

Given K monitors, we observéS®)}5 | The typical approach
to estimate the observed links is to take

Eobs = Up— W, @)
Implicit in (2) is the belief thatt ) contains few false positives,
but many false negatives (missing links). BGP measurengstts
erally fall into this category because the information [led cor-
responds to real routes through the Internet. Exceptioss where
the protocol is abused, for instance by hackers seekingaokad-
dress space. More importantly, when measurements are ¢aken
a period of time, they may include links which are not alivetfee
entire measurement period. However, it is commonly assutrad
the number of false positives introduced in this way is small

For instance, consider the case of the AS-graph, where nodes2.3 A quick and dirty refutation
correspond to Autonomous Systems (ASes). There are many im- We can make a quick estimate of Petersen’s formula for the

portant details of inter-AS connections (i.e., the naturé¢he re-
lationships between connected ASes, the behavior of thddBor
Gateway Protocol, etc.). Although it is possible to benedinf re-
taining these details [6], the simplicity of a graph basedleidas
its attractions.

RouteViews data. A typical monitor for RouteViews (in Oatob
2007) sees of the order of 45,000 links. The typical inteisete-
tween a pair of such monitors is somewhere around 40,008.link
We can easily calculate Petersen’s formula (1) ta~bd5, 000 *
9/8 ~ 50,000 links. In fact, equation (2) indicates that at least

A common mistake in using such data has been to treat the ob-57,000 links exist. Though the calculation above is onlygiotit is

served data as completely accurate. Itisn't! For exampieagr

representative of the real results. Given the estimatésvél be-

source of observations of the AS graph comes from BGP moni- low a known lower-bound for the number of links, we know there

tors [7,8]. Such monitors participate in the BGP routingtpcol.
BGP propagates the AS-path of a route, and this path prousles
with information about the links in the AS-graph. HoweveGB
is a path-vector protocol, which means that only “best” esudre
propagated. In contrast to a link-state routing protoca,de not
see the whole topology of the network, only those routes ware
propagated. Hence, a BGP route monitor gets an incomplete vi
of the topology.

There are other sources of data that can be used to inferrtioe st
ture of the AS graph. In this paper we will concentrate on BGP
routing data, as this is the most up-to-date source of ddtal- |
lows us to see routing changes as they occur, and this is targor
because it allows us to see route exploration as a new ropteys

is something wrong with this approach as it stands.

We also considered the simpl€-list approach [4, 5] for this
problem. TakingK to be the number of monitors produced a prob-
lem with an unrealistically large number of table entries2(°)
to estimate, but smaller values still showed very high vergain
the estimates. For instance, we found that taking three torsni
at a time produced estimates ranging from 10's of thousapde u
millions of links depending on which three monitors were s
Given the flaws in the above approaches, we seek a better model

3. A MULTI-CLASS MODEL

The simple capture-recapture approaches described aleavg/c
fail. How can this be? Petersen’s assumptions are



independence (between measurements)
homogeneity (across links)

. the population is static (between measurements).
4. tags do not drop off.

Clearly at least one of these is violated. The forth asswmps
valid for our measurements because we do not physicallyin&g |
— we simply use their unique identifier (the nodes they cofinec
The third assumption is also valid, because unlike a typiapture-
recapture experiment, our measurements are all taken aathe
time using different monitors. So the problem lies in thet fivgo
assumptions, which are in fact closely coupled (heteragemel
introduce correlations).

It has often been postulated, and at least been partially con
firmed [9], that some links are harder to see than others. r=or i
stance, a link that connects a stub-AS (a non-transit pitayjcin-
gle homed AS) to the Internet will always be visible (wherrehe
AS itselfis visible). It must appear on any observed patgionated
by that AS. On the other hand, it has been postulated that &ie m
jority of the missing links are “peering” links. The simplepp2p
model of AS relationships, along with the resulting valfege rout-
ing policy means that peering links between lower-tier A&#b
only be visible from a small subsection of the AS-graph. Peer
links are therefore considered harder to observe.

Our approach to include these facts is to use a stratified mode
We assume that there are multiple classes of links, witleifit
observational properties. This immediately violates thembgene-
ity assumption, and hence invalidates the independenocengsi®n
by introducing correlations between measurements depérute
class. We are left with a substantially weaker set of assiompt

1. conditional independence

2. homogeneity (across monitors)

The conditional independence assumes that we incorptratad-
jority of the correlation structure through the stratifioatof links
into different classes. We do remove monitors with clearedep
dencies (for instance those monitoring the same AS) to abaid
majority of graph-structure related dependencies. Otbpedden-
cies such as related to “tiering” of the AS-graph, or geolgi@pias
(because RouteViews is focussed in North America) are pazor
rated through the different classes of links. The seconagnaggon
is quite different from the earlier homogeneity conditionthat it
says that any monitoring point has the same probability sEolb
ing a particular link. We also remove any monitors which saibs
tially violate this condition, e.g., monitors without a deft-free
feed. We are left with between about 30 and 40 route monigas (
Figure 4 for exact numbers).

We can model the above measurements using the Binomial Mix-
ture Model (BMM), i.e., the number of observations of a liskal
random variable formed by first choosing the class of the lamd
then choosing the number of observations of that link based o
Binomial distribution with class dependent observatioobability.

3.1 Estimation of parameters: known class

We first consider estimation of parameters assuming we know
the class of all links. In this situation, we can considerheclass
independently as if it followed a single class model. If wedha
K independent, homogeneous monitors, then the number of time
we observe a link in clasg will follow a Binomial distribution
B(K, p;) wherep; is the probability that we observe the link with
a single monitor. The probability that we observe a claiak &
times with K monitors is

prob{k} = <Il§> Py (1 —py) =Y.

1.
2.
3

®)

If we knew that clasg (which we denote”;) hasEj; links, then
the Maximum Likelihood Estimator (MLE) op; given link i is
observed:; times out ofK is

ZZECj ] (4)
E;K

However, we do not know; a priori. We only know about links

that are observed at least once. Measuremeat; é§ equivalent to

estimating the number of hidden links!

Ignoring for the moment the class (i.e., the subscj)pin fact
what we really observe is the conditional distribution

ki o \(K—k)
prob{k|k > 0} = <II§> %

This is commonly known as a truncated Binomial distributiéh
and estimation of its parameters will lead to estimates olbfr =
0}, and hence an estimate for the number of hidden links.

The MLE for the truncated Binomial distribution is given ]
However, there is no simple closed form description of theBVIL
but rather the MLE estimatgi will be the solution to the equation

Eobs

Eobst = [1 - (1 _p)K] Z ki7 (6)

1=1
whereFE,s is the number of observed links. In the preceding statis-
tics literature (which dates from as far back as the 50’s)eseffort
went into algorithms and tables to solve this equation wittomm-
puters. Given modern computing resources it is rather efsiese
a simple iterative solution. To find the value pfwhich satisfies
this equation we take

pj =

®)

PO S ka
EobsK ’
Eobs k-
~(i41) _ Zi:1 g 1—(1— ~(1)\ K 7
P T L (=) @)

We can easily provg!” converges to a unique fixed point satis-
fying (6). In practice we found that it converged quickly. €rh
fact that it is a MLE estimate guarantees that it is asymgadi
unbiased and efficient. In practice we found that foras small
as 1000 the bias is very small, and the mean-squared errbeof t
estimate is very close to the Cramér-Rao lower bound. Aaiditi
ally, tests of the errors showed that they were approximaielus-
sian. We omit these results to save space, and because they ar
implicit in following results. An additional implicatiorsithatE =
FEobs/(1—(1—p)*)) will be a MLE estimator for the total number
of links.

3.2 Multi-class observations

In the problem above, we assumed that we knew the classifica-
tion of the links. We don’a priori know this classification, and so
we construct an Expectation Maximization (EM) estimatitgoa
rithm (see for instance [12]) which estimates both the ¢laisd the
class models.

The EM algorithm is an iterative approach that uses two steps
(i) an Expectation step in which we calculate expected whfe
some “hidden” variable (in this case the class of the linke) @i)

a Maximization stage where we perform a MLE of the system pa-
rameters. In more detail define two additional parameters

estimated proportion of links in clags

w
() i ilitClink i ;
c; estimated probabilitflink ¢ € classj}.

We start the algorithm by initializing; andw; the estimates of
the important parameters for our distributions. The choidaitial



Class| p;
0.010906
0.140579
0.345960
0.557597
0.758552
0.917098
0.998352

wj

0.248714
0.052389
0.036864
0.049963
0.060776
0.068741
0.482553

~NOoO O~ WNPRE

Table 1: Model parameters for C' = 7 simulations. The param-
eters are those found from the EM algorithm applied to the
AS-graph data from October 2007.

conditions is not particularly important, though choospazame-
ters closer to the true parameters will speed convergenesusd/
the uniform initializationp; = j/(C + 1) andw; = 1/C, where
C'is the number of classes.
The algorithm then acts as follows:
Whil e (not converged) do
E step
estimte c”
c\ — w; P{ki| K, p;}
M st ep
for j=1 to C
Wil e (not converged) do
~ > ki(fy)

P — Ky, oD [1 - (1 _ﬁj)K]
end while
Wi — 30, 87 [ (Bopa(1 — (1= 5)))
end for
end while

whereP{k;|K,p;} is the Binomial distributiomB( K, p;) given in
(3), ki is the number of observations of linkand E, is the total
number of links observed.

Convergence occurs when the total change in the estinates
falls belowe = 107%. The EM algorithm is in general guaranteed
to converge, and in our example we find it converges (for théeg
reasonably quickly (results below).

We also perform a hard classification of observed links fa us
in assessing the relationship between link class and psliciVe
select the class with the highest likelihood, i.e., theslzdink i is
argma>§c§i). The estimated number of observed links in each class
is defined to bes; = E7,_/(1 — (1 — p;)¥), whereE?, _ is the
number of links observed in each class.

3.3 Performance

The first test of the above algorithm is its performance wien t
model (e.g., the value af’) is correct. We use a set of realistic
parameters derived from the AS-graph data (for October paod
shown in Table 1. We will use a total number of observed links
E = 50, 000, which lies within the range of observations over the
time interval of our data. We simulate the observations eflitiks
5000 times using the BMM witl’ = 7. Results for estimates of
E are shown in Figure 1 in the forfDOE /E so that we can see
the relative errors as a percentage. We can see that biasyis ve
small and that errors are of the order-6t%, and approximately
Gaussian. The hard classification of the links was correc®486
of links (across all 5000 simulations, and 50,000 links).

4. MODEL SELECTION

When we consider real data, there is an additional probi&ris:
unknown. From the perspective of simplicity we can easituar

1500

number

%

99 100 101

relative estimate of N

102 103
Figure 1: Results of 5000 simulations of EM estimation algo-
rithm with 7 classes (as shown in Table 1). Vertical lines she
the 2.5th and 97.5th percentile, and mean.

in favor of smallerC, even if it creates small errors in the model
fit to the data, and so we need to trade off model accuracy with
the quality of the fit to the data. This tradeoff is often captu
through information criterion, e.g., the Akaike InfornwatiCrite-
rion (AIC). In the context of normally distributed errors,is de-
fined by AIC = n[ln(27RSS/n) + 1] + 2P, where RSS is the
Residual Sum of Squared errors,is the number of data points
and P is the number of model parameters. The minimum value of
the AIC can be used to select the model that best satisfiesatthe t
off between model simplicity and accuracy. We compare thie es
mated and empirical values of the truncated BMM's distiiitmut
i.e., profk|k > 0}, son = K andP = 2C. We also calculate a
second version of the AIC, recognizing that the criticalreal (for
estimating the number of hidden links) of the BMM distrilmuti
are those corresponding to class 1 and 2, and hence we tattala
RSS for the first 9 elements of the distribution. Figure 2 (eves
the two AICs. They take their minima fat' = 9 andC = 7.
Figure 2 (b) shows the estimated number of links with respect
C. Note that it varies insignificantly (with respect to thel®per-
centile confidence intervals shown on the plot) r= 7—10.
Hence in tests (e.g., in Section 3.3) we have uSeg 7 because
of the reduced computational cost (see Figure 2 (c)).

Figure 3 shows the observed distribution of link observetjo
and the estimated BMM faf' = 7. We can see that the fit is quite
satisfactory. Note that theterm of the histogram does not appear
in the observations because this data point is censoredroyeoy
lack of observations. The BMM extrapolates this value easting
the number of hidden links. The parameters of this distidouare
shown in Table 1.

5. HOW BIG IS THE AS-GRAPH?

We now have the required results to answer the questionestint
est: how big is the Internet? More precisely, “how many liaks
there in the AS-graph?” We use the above algorithm choo&ing
based on the AIC test. Figure 4 shows the number of obsenad an
inferred links since January 2004, along with the numbersable
monitors. We can see that the number of monitors has not eldang
much, but that there is clear growth in both the observed estiel
mated number of links. The trend is approximately lineastamsvn
by the linear trend fitted to the data. The trend avoids sontkeof
potential problems with variance of individual estimatearéful
examination of the largest deviations in early 2005 suggtsit
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Paper| dataset label | date E
Zhanget al. [13] | Updates(1M)| 2004-10-24| 55,388
Heetal.[9] | All 2005-05-12| 59,500
Mihlbaueret al. [6] | N/A 2005-11-13| 58,903

Table 2: Past estimates of links in the AS-graph.

these are model selection errors). The trend has a grovglofat
18.7 links per day, as compared to the growth in observed lifik
16 per day. On a larger scale our results give a yearly groatéh r
of around 1000 hidden links.

Several prior studies have attempted to estimate total etsnb
of links: 3 such are shown in Table 2. They have used additiona
sources of data: e.qg., Internet Routing Registries (IR&s),Look-
ing Glasses, as well as additional route monitors (1000 Bu&j).
IRRs in particular introduce the possibility of “false pogs”, and
so they may have overestimated of the number of links. Figure
shows each of these estimates by and asterisk '*'. We carhsge t
the first and third are very close to our own estimate, whike th
second is very close to the linear trend. While not absoltefp
the correlation between the results of different approasiiggests
that all are producing reasonably accurate views. Formestaour
results suggest that H al. [9] have eliminated the vast majority
of false positive links. Good news!

90
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40t e 1
30k ST T e : i
20k = estimated links (1000's)|]
—trend estimate
101 ---observed links (1000's) |
0 ‘ ‘ -~ number of monitors (K)
Jan04 Jan05 Jan06 Jan07 Jan08

Figure 4: The trend in the numbers of links. The asterisks shw
previous estimates from [6, 9, 13].

5.1 Do classes have meaning?

Until now, we have treated classes as an abstract divisitimeof
links. Our classes were motivated by p2p vs c-p links, buewen-
structed without any reference to any model of inter-AS qge8.
The classes incorporate a range of factors including gebgrand
topological bias, but the prime motivation stemmed fronvimes
work showing that peer-2-peer links are harder to see tisiomer-
provider links. A natural question is “To what extent do olasses
reflect actual link policies?”

Dimitropouloset al [14] provides a recent classification of links
into types: p2p, c-p, and s2s. We cross-match their typeketo t
links in our data. Table 3 shows the breakdown of each typialof |
into classes. We can immediately see that class 1 links agelya
made up of p2p links, with a few p2p links appearing in clasetz
more easily observed classes are dominated by c-p and &&srlin
roughly similar proportions.

These results reflect two findings. Firstly, a significaned®in-
ing factor of link class is the role for which a link is used, @ar
classes do have meaning. The class is not a 100% classifiee of t
link policy, though. There are some p2p links in the easilyeslbed
classes, presumably because their place in the networkotppo
makes them easily viewed, though some may be classification e
rors, either in our algorithm, or in that of Dimitropoulesal [14].
Secondly, the results clearly show that p2p links are muctdra
to observe, supporting intuition generated by previoudietl



Class p2p c-p s2s

1| 7425 2.32| 2.33

2| 14.50 4.27| 6.98

3 266 | 4.01| 5.81

4 1.75 6.31| 0.78

5 1.43 8.92| 3.49

6 1.09 5.04| 5.81

7 4.33| 69.12| 74.81

observed links| 4830 ( 48760| 258
estimated links| 15990 | 57400 300

Table 3: % of classes by link policies. Note that almost 90%
of p2p links fall into class 1 or 2, whereas well over 90% of c-p
and s2s links fall in classes 3-7.

6. HOW MANY MONITORS?

The most obvious question, following the above analysispig
many monitors should we have? Under the above conditions, we
can answer this question. Let us seek to guarantee that we wil
observe a given link from class 1 with probability— ¢;. How
many monitors would we need?

We focus here on class 1, because the observation prolpatfilit
the other classes is so much higher for any non-trivial nunolbe
monitors. For small probability; of missing class one links, the
probability of missing any of the other links will be so mudhwier
it will be negligible. The probability of observing a clasdirdk,
with K monitors, under the above model is simply- (1 —p1)*,
wherep; is the class 1 link measurement probability from a single
monitor, which we have shown to be aroumd1. So we want the
minimal value ofK such thay; < (1—p:)™. Rearranging we get
K = [In(g1)/In(1—p1)]. Forg: = 0.05, 0.01 and0.001, we get
K = 299,459 and K = 684, respectively.

7. CONCLUSION

This paper provides us with a way of estimating the number of
hidden links in an AS graph. The technique performs well @gjai
the best data we have for validation, and allows us to estirfnet
trend in the size of the Internet — according to our data itvgro
at 18.7 links per day. We use the model to derive the number of
(well placed) monitors that would be needed to see a complgte
graph with high-probability. We estimate that 700 route itas
would see at least 99.9% of links. The results also suppeviqus
studies, and their intuition that peer-2-peer links are Imiarder
to see than customer-provider links.

There are problems we still wish to explore here, for instanc
the underlying assumption of our approach that the strdtifiedel
captures the dependencies and heterogeneity of our messnise
is only approximate, and we wish to further improve the model
Moreover, it is possible that some entire class of links ddag
missing from current measurements, and we need to invéstiga
this further. True validation of the results over the entinternet is
impractical (for exactly the reasons that make this teammigorth-
while), but itis possible that the methodology could bedatéd on
a smaller segment of the Internet, for which precise grauuith
data was available.

Finally, this type of technique could be extended to a largan
ber of Internet measurement problems that have a similaacte.

For instance, in anomaly detection, we might see our anesali
(say a worm, or DoS attack) through some set of monitors. We
could use capture-recapture based techniques to estingatelin-

ber of anomalies we are missing.

Acknowledgement

Olaf Maennel was supported in this work by ARC grants DP05570
at the University of Adelaide. The data used in this paper aeas
rived from the Oregon RouteViews project. We would also like
to gratefully acknowledge useful conversations with RaBdigh
regarding this work.

8. REFERENCES

[1] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On pdeer-
relationships of the Internet topology,” ACM SGCOMM,
(Boston, MA, USA), 1999.
J. C. Doyle, D. L. Alderson, L. Li, S. Low, M. Roughan,
S. Shalunov, R. Tanaka, and W. Willinger, “The "robust yet
fragile" nature of the InternetProceedings of the National
Academy of Sciences of the USA, vol. 102, pp. 14497-502,
October 2005.
[3] A. Lakhina, J. Byers, M. Crovella, and P. Xie, “Sampling
biases in IP topology measurements,Piroc. |IEEE
Infocom, April 2003.
S. E. Fienberg, “The multiple recapture census for aose
populatiosn and incomple®¥ contingency tables.,”
Biometrika, vol. 59, no. 3, pp. 591-603, 1972.
International Working Group for Disease Monitoring and
Forecasting, “Capture-recapture and multiple-recortesys
estimation i: History and theoretical development,”
American Journal of Epidemiology, vol. 142, no. 10,
pp. 1047-1057, 1995.
[6] W. Mihlbauer, A. Feldmann, M. R. O. Maennel, and
S. Uhlig, “Building an AS-topology model that captures
route diversity,” inACM S GCOMM, (Pisa, Italy), 2006.
[7] “University of Oregon Route Views Archive Project.”
WWW. I out evi ews. or g.
[8] “Ripe NCC: routing information service raw data.”
http://ww.ripe.net/projects/ris/.
[9] Y. He, G. Siganos, M. Faloutsos, and S. V. Krishnamurthy,
“A systematic framework for unearthing the missing links:
Measurements and impact,” WSENIX/S GCOMM NSDI,
(Cambridge, MA, USA), April 2007.
R. Bush, J. Hiebert, O. Maennel, M. Roughan, and S. Uhlig
“Testing the reachability of (new) address space/NM’07:
Proceedings of the 2007 S GCOMM workshop on Internet
network management, (New York, NY, USA), pp. 236-241,
ACM, 2007.
P. F. Rider, “Truncated binomial and negative binomial
distributions,”Journal of the American Satistical
Association, vol. 50, pp. 877-883, Sept. 1955.
[12] T. Hastie, R. Tibshirani, and J. Friedmare Elements of
Satistical Learning: Data Mining, Inference and Prediction.
Springer, 2001.
B. Zhang, R. Liu, D. Massey, and L. Zhang, “Collecting th
Internet AS-level topology,ACM SSGCOMM Computer
Communication Review (CCR) special issue on Internet \ital
Satistics, January 2005.
X. Dimitropoulos, D. Krioukov, M. Fomenkov, B. Huffake
Y. Hyun, kc claffy, and G. Riley, “AS relationships:
Inference and validationACM SSGCOMM Computer
Communication Review (CCR), vol. 37, no. 1, pp. 29-40,
2007.

(2]

(4]

(5]

[10]

[11]

[13]

[14]



