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ABSTRACT
Study of the Internet’s high-level structure has for some time in-
trigued scientists. The AS-graph (showing interconnections be-
tween Autonomous Systems) has been measured, studied, mod-
elled and discussed in many papers over the last decade. However,
the quality of the measurement data has always been in question.
It is by now well known that most measurements of the AS-graph
are missing some set of links. Many efforts have been undertaken
to correct this, primarily by increasing the set of measurements, but
the issue remains: how much is enough? When will we know that
we have enough measurements to be sure we can see all (or almost
all) of the links. This paper aims to address the problem of estimat-
ing how many links are missing from our measurements. We use
techniques pioneered in biostatistics and epidemiology for estimat-
ing the size of populations (for instance of fish or disease carriers).
It is rarely possible to observe entire populations, and so sampling
techniques are used. We extend those techniques to the domain of
the AS-graph. The key difference between our work and the bio-
logical literature is that all links are not the same, and so we build
a stratified model and specify an EM algorithm for estimatingits
parameters. Our estimates suggest that a very significant number
of links (many of thousands) are missing from standard routemon-
itor measurements of the AS-graph. Finally, we use the modelto
derive the number of monitors that would be needed to see a com-
plete AS-graph with high-probability. We estimate that 700route
monitors would see 99.9% of links.

Categories and Subject Descriptors
C.2.3 [Computer-Communications Networks]: Network Opera-
tions—network monitoring; G.3 [Probability and Statistics]: Prob-
abilistic algorithms

General Terms
Measurement
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Topology Inference
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1. INTRODUCTION
Internet topology has drawn interest from areas as diverse as

physics and biology. The discovery of power-law degree in nodes [1]
resulted in a large number of papers. Though the nature of this
power-law has been disputed [2], a more problematic aspect is
whether inadequate measurements of the topology artificially in-
duce the power law [3]. The central issue is missing links. All
studies reporting measurements of network topologies potentially
have missing links. How do we know if they do? How do we know
how many they miss? These questions seem to be about things we
don’t know, and for this reason appear unanswerable, but here we
show that they are not.

We use techniques developed in biological research for estimat-
ing the population of say fish. The technique “capture-recapture”
works as follows. One goes into the field and catches some fish.
The captured fish are tagged and then released. Then, at some later
point in time one repeats the study. The number of tagged fish that
we recapture, along the number of captured fish allows us to make
an estimate of the total population.

However, the simple models of capture-recapture assume that all
“fish” are equally easy (or hard) to catch, so we sample at random
from the population. To paraphrase George Orwell, “All Internet
links are equal, but some are more equal than others.” Some links
are harder to see than others! Although this violates the assump-
tions underlying the simple capture-recapture model, there is a long
literature extending the ideas to many other cases. We draw on this
literature to develop a new model and estimation algorithm specific
to our problem.

So this paper provides us with a way of estimating what we don’t
know, in this case the number of hidden ormissing links in an AS
graph (here AS stands for Autonomous System, not Abominable
Snowman as you might guess from the title). The technique per-
forms well against the best data we have for validation, supplying
supporting evidence for these previous studies. In addition, this
approach is easily applied (in contrast to previous papers where ex-
tensive efforts were required to clean and combine multipledata
sources), and so we can use it to look at the size of the Internet over
time. We use it to examine the number of links in the AS-graph
over more than four years. From this extended dataset we lookfor
trends, and our results indicate that the AS-graph is growing at 18.7
links per day.

Finally, by mapping this data to link types: peer-2-peer (p2p),
customer-provider (c-p) and sibling-2-sibling (s2s) we can confirm
the intuition that p2p links are much harder to see than c-p and s2s
links. In fact, the classes in our model have a strong correspondence
to the link types.

However, there are caveats on the results. For instance, it is pos-
sible that there exists a class of links which are never observed. In



absence ofany data, our technique obviously cannot estimate the
size of this class of links. Hence, it is still possible that our ap-
proach underestimates the number of links present in the Internet.

There are many possibilities for extending this work. At themo-
ment we only examine the number of links in the AS-graph, but it
is clearly interesting to examine subsets of this graph, forinstance
to examine the node degree problem, or to estimate the numberof
backup links. We could also incorporate other data sources,or an
improved model. However, perhaps the greatest potential for these
ideas is in their extension to other Internet measurement problems,
such as estimating the number of hidden anomalies.

2. BACKGROUND
2.1 Capture-Recapture

Simple capture-recapture can be used as follows. Imagine an
unknown populationE, from which we capture two samplesE1

andE2. The initial samples are tagged so that we can also measure
E12 the number recaptured in the second experiment. Assuming
that the two experiments are independent, “fish” are all the same,
the population remains static, and that tags to not “drop off”, then
we can make an estimate ofE using Petersen’s formula [4,5].

Ê =
E1E2

E12
. (1)

The approach can be generalized in various ways [4,5], for instance
by introducingK measurements (often referred to asK-lists), or by
allowing for dependencies between monitors. The typical approach
seems to be to use regression on aK dimensional contingency table
generated from the measurements. Typically these techniques don’t
scale well for largeK (given the2K entries in the table). Hence
we will adopt a different approach in this paper.

2.2 Network Topology Measurements
One of the key ways to look at a network is to examine its con-

nectivity, which can be captured in a graphG = (N , E), whereN
is a set containing the nodes (or vertices) of the graph. These repre-
sent, for example, routers switches or even whole networks.E is a
set containing the edges of the graph, i.e., the connectionsbetween
nodes. We define the numbers of nodes and edges byN = |N | and
E = |E|.

For instance, consider the case of the AS-graph, where nodes
correspond to Autonomous Systems (ASes). There are many im-
portant details of inter-AS connections (i.e., the nature of the re-
lationships between connected ASes, the behavior of the Border
Gateway Protocol, etc.). Although it is possible to benefit from re-
taining these details [6], the simplicity of a graph based model has
its attractions.

A common mistake in using such data has been to treat the ob-
served data as completely accurate. It isn’t! For example, amajor
source of observations of the AS graph comes from BGP moni-
tors [7, 8]. Such monitors participate in the BGP routing protocol.
BGP propagates the AS-path of a route, and this path providesus
with information about the links in the AS-graph. However, BGP
is a path-vector protocol, which means that only “best” routes are
propagated. In contrast to a link-state routing protocol, we do not
see the whole topology of the network, only those routes which are
propagated. Hence, a BGP route monitor gets an incomplete view
of the topology.

There are other sources of data that can be used to infer the struc-
ture of the AS graph. In this paper we will concentrate on BGP
routing data, as this is the most up-to-date source of data. It al-
lows us to see routing changes as they occur, and this is important
because it allows us to see route exploration as a new route isprop-

agated, or an old one withdrawn. This route exploration process
reveals links that might otherwise be hidden. In addition, BGP
monitors are unlikely to see a non-existent link (in comparison to
other data sources such as registries or traceroutes) and this is a use-
ful property. In this paper we use data from RouteViews [7] from
Jan 1st 2004 until March 31st 2008. The data consists of all ta-
ble dumps, and routing updates seen from all peers of RouteViews,
grouped into one month periods. One month represents a reason-
able tradeoff between obtaining a more complete view (through
seeing additional updates over time), and the desire to measure dy-
namic properties of the network such as growth rates.

Each update, or table entry provides us with an AS-path, from
which we can determine a set of links (and nodes) that areobserved
or visible. There are also sets of links which are active, but unob-
served, and it is these links which cause all the trouble. We refer to
these links ashidden links. Note that for an AS to be reachable at
all, it must appear in observations, and so with any substantial set of
route monitors the set of hidden nodes should be almost empty[9].
There may be ASes which we don’t observe (private ASes for in-
stance) but as these are not routable from the general Internet they
are of limited interest. There is also the possibility that incorrectly
configured filters will restrict our view of some ASes [10], but the
lack of visibility means these ASes are still partitioned from the
rest of the Internet, and so will be unlikely to play a practical role
in the Internet topology.

Combining all of the observations of one monitor will reveala set
of edgesE (i)

obs where we drop theobs subscript where it is implied.
GivenK monitors, we observe{E (k)}Kk=1. The typical approach
to estimate the observed links is to take

Eobs = ∪K
k=1E

(k). (2)

Implicit in (2) is the belief thatE (k) contains few false positives,
but many false negatives (missing links). BGP measurementsgen-
erally fall into this category because the information provided cor-
responds to real routes through the Internet. Exceptions arise where
the protocol is abused, for instance by hackers seeking to hijack ad-
dress space. More importantly, when measurements are takenover
a period of time, they may include links which are not alive for the
entire measurement period. However, it is commonly assumedthat
the number of false positives introduced in this way is small.

2.3 A quick and dirty refutation
We can make a quick estimate of Petersen’s formula for the

RouteViews data. A typical monitor for RouteViews (in October
2007) sees of the order of 45,000 links. The typical intersection be-
tween a pair of such monitors is somewhere around 40,000 links.
We can easily calculate Petersen’s formula (1) to be≃ 45, 000 ∗
9/8 ≃ 50, 000 links. In fact, equation (2) indicates that at least
57,000 links exist. Though the calculation above is only rough, it is
representative of the real results. Given the estimates fall well be-
low a known lower-bound for the number of links, we know there
is something wrong with this approach as it stands.

We also considered the simpleK-list approach [4, 5] for this
problem. TakingK to be the number of monitors produced a prob-
lem with an unrealistically large number of table entries (∼ 240)
to estimate, but smaller values still showed very high variance in
the estimates. For instance, we found that taking three monitors
at a time produced estimates ranging from 10’s of thousands up to
millions of links depending on which three monitors were chosen.
Given the flaws in the above approaches, we seek a better model.

3. A MULTI-CLASS MODEL
The simple capture-recapture approaches described above clearly

fail. How can this be? Petersen’s assumptions are



1. independence (between measurements)
2. homogeneity (across links)
3. the population is static (between measurements).
4. tags do not drop off.

Clearly at least one of these is violated. The forth assumption is
valid for our measurements because we do not physically tag links
– we simply use their unique identifier (the nodes they connect).
The third assumption is also valid, because unlike a typicalcapture-
recapture experiment, our measurements are all taken at thesame
time using different monitors. So the problem lies in the first two
assumptions, which are in fact closely coupled (heterogeneity will
introduce correlations).

It has often been postulated, and at least been partially con-
firmed [9], that some links are harder to see than others. For in-
stance, a link that connects a stub-AS (a non-transit providing, sin-
gle homed AS) to the Internet will always be visible (whenever the
AS itself is visible). It must appear on any observed path originated
by that AS. On the other hand, it has been postulated that the ma-
jority of the missing links are “peering” links. The simple c-p/p2p
model of AS relationships, along with the resulting valley-free rout-
ing policy means that peering links between lower-tier ASeswill
only be visible from a small subsection of the AS-graph. Peering
links are therefore considered harder to observe.

Our approach to include these facts is to use a stratified model.
We assume that there are multiple classes of links, with different
observational properties. This immediately violates the homogene-
ity assumption, and hence invalidates the independence assumption
by introducing correlations between measurements dependent on
class. We are left with a substantially weaker set of assumptions

1. conditional independence
2. homogeneity (across monitors)

The conditional independence assumes that we incorporate the ma-
jority of the correlation structure through the stratification of links
into different classes. We do remove monitors with clear depen-
dencies (for instance those monitoring the same AS) to avoidthe
majority of graph-structure related dependencies. Other dependen-
cies such as related to “tiering” of the AS-graph, or geographic bias
(because RouteViews is focussed in North America) are incorpo-
rated through the different classes of links. The second assumption
is quite different from the earlier homogeneity condition in that it
says that any monitoring point has the same probability of observ-
ing a particular link. We also remove any monitors which substan-
tially violate this condition, e.g., monitors without a default-free
feed. We are left with between about 30 and 40 route monitors (see
Figure 4 for exact numbers).

We can model the above measurements using the Binomial Mix-
ture Model (BMM), i.e., the number of observations of a link is a
random variable formed by first choosing the class of the link, and
then choosing the number of observations of that link based on a
Binomial distribution with class dependent observation probability.

3.1 Estimation of parameters: known class
We first consider estimation of parameters assuming we know

the class of all links. In this situation, we can consider each class
independently as if it followed a single class model. If we have
K independent, homogeneous monitors, then the number of times
we observe a link in classj will follow a Binomial distribution
B(K, pj) wherepj is the probability that we observe the link with
a single monitor. The probability that we observe a classj link k
times withK monitors is

prob{k} =

 

K

k

!

pk
j (1− pj)

(K−k). (3)

If we knew that classj (which we denoteCj) hasEj links, then
the Maximum Likelihood Estimator (MLE) ofpj given link i is
observedki times out ofK is

p̂j =

P

i∈Cj
ki

EjK
. (4)

However, we do not knowEj a priori. We only know about links
that are observed at least once. Measurement ofEj is equivalent to
estimating the number of hidden links!

Ignoring for the moment the class (i.e., the subscriptj), in fact
what we really observe is the conditional distribution

prob{k|k > 0} =

 

K

k

!

pk(1− p)(K−k)

1− (1− p)K
. (5)

This is commonly known as a truncated Binomial distribution[4],
and estimation of its parameters will lead to estimates of prob{k =
0}, and hence an estimate for the number of hidden links.

The MLE for the truncated Binomial distribution is given in [11].
However, there is no simple closed form description of the MLE,
but rather the MLE estimator̂p will be the solution to the equation

EobsKp = [1− (1− p)K ]

Eobs
X

i=1

ki, (6)

whereEobs is the number of observed links. In the preceding statis-
tics literature (which dates from as far back as the 50’s) some effort
went into algorithms and tables to solve this equation without com-
puters. Given modern computing resources it is rather easier to use
a simple iterative solution. To find the value ofp̂ which satisfies
this equation we take

p̂(0) =

PEobs
i=1 ki

EobsK
,

p̂(i+1) =

PEobs
i=1 ki

EobsK
[1− (1− p̂(i))K ]. (7)

We can easily provêp(i) converges to a unique fixed point satis-
fying (6). In practice we found that it converged quickly. The
fact that it is a MLE estimate guarantees that it is asymptotically
unbiased and efficient. In practice we found that forE as small
as 1000 the bias is very small, and the mean-squared error of the
estimate is very close to the Cramér-Rao lower bound. Addition-
ally, tests of the errors showed that they were approximately Gaus-
sian. We omit these results to save space, and because they are
implicit in following results. An additional implication is thatÊ =
Eobs/(1−(1− p̂)K)) will be a MLE estimator for the total number
of links.

3.2 Multi-class observations
In the problem above, we assumed that we knew the classifica-

tion of the links. We don’ta priori know this classification, and so
we construct an Expectation Maximization (EM) estimation algo-
rithm (see for instance [12]) which estimates both the class, and the
class models.

The EM algorithm is an iterative approach that uses two steps:
(i) an Expectation step in which we calculate expected values of
some “hidden” variable (in this case the class of the links) and (ii)
a Maximization stage where we perform a MLE of the system pa-
rameters. In more detail define two additional parameters

wj = estimated proportion of links in classj,

c
(i)
j = estimated probability{link i ∈ classj}.

We start the algorithm by initializinĝpj andwj the estimates of
the important parameters for our distributions. The choiceof initial



Class pj wj

1 0.010906 0.248714
2 0.140579 0.052389
3 0.345960 0.036864
4 0.557597 0.049963
5 0.758552 0.060776
6 0.917098 0.068741
7 0.998352 0.482553

Table 1: Model parameters forC = 7 simulations. The param-
eters are those found from the EM algorithm applied to the
AS-graph data from October 2007.

conditions is not particularly important, though choosingparame-
ters closer to the true parameters will speed convergence. We use
the uniform initializationp̂j = j/(C + 1) andwj = 1/C, where
C is the number of classes.

The algorithm then acts as follows:

While (not converged) do
E step

estimate c
(i)
j

c
(i)
j ← ŵjP{ki|K, p̂j}

M step
for j=1 to C
While (not converged) do

p̂j ←
P

i kic
(i)
j

K
P

i c
(i)
j

[1− (1− p̂j)
K ]

end while

ŵj ←
P

i
c
(i)
j /(Eobs(1− (1− p̂j)

K))
end for

end while

whereP{ki|K, pj} is the Binomial distributionB(K, pj) given in
(3), ki is the number of observations of linki, andEobs is the total
number of links observed.

Convergence occurs when the total change in the estimatesp̂j

falls belowǫ = 10−6. The EM algorithm is in general guaranteed
to converge, and in our example we find it converges (for this case)
reasonably quickly (results below).

We also perform a hard classification of observed links for use
in assessing the relationship between link class and policies. We
select the class with the highest likelihood, i.e., the class of link i is
argmaxjc

(i)
j . The estimated number of observed links in each class

is defined to beÊj = Ej

obs/(1 − (1 − p̂j)
K), whereEj

obs is the
number of links observed in each class.

3.3 Performance
The first test of the above algorithm is its performance when the

model (e.g., the value ofC) is correct. We use a set of realistic
parameters derived from the AS-graph data (for October 2007) and
shown in Table 1. We will use a total number of observed links
E = 50, 000, which lies within the range of observations over the
time interval of our data. We simulate the observations of the links
5000 times using the BMM withC = 7. Results for estimates of
Ê are shown in Figure 1 in the form100Ê/E so that we can see
the relative errors as a percentage. We can see that bias is very
small and that errors are of the order of±1%, and approximately
Gaussian. The hard classification of the links was correct for 94%
of links (across all 5000 simulations, and 50,000 links).

4. MODEL SELECTION
When we consider real data, there is an additional problem:C is

unknown. From the perspective of simplicity we can easily argue
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Figure 1: Results of 5000 simulations of EM estimation algo-
rithm with 7 classes (as shown in Table 1). Vertical lines show
the 2.5th and 97.5th percentile, and mean.

in favor of smallerC, even if it creates small errors in the model
fit to the data, and so we need to trade off model accuracy with
the quality of the fit to the data. This tradeoff is often captured
through information criterion, e.g., the Akaike Information Crite-
rion (AIC). In the context of normally distributed errors, it is de-
fined by AIC = n[ln(2πRSS/n) + 1] + 2P , where RSS is the
Residual Sum of Squared errors,n is the number of data points
andP is the number of model parameters. The minimum value of
the AIC can be used to select the model that best satisfies the trade
off between model simplicity and accuracy. We compare the esti-
mated and empirical values of the truncated BMM’s distribution,
i.e., prob{k|k > 0}, son = K andP = 2C. We also calculate a
second version of the AIC, recognizing that the critical values (for
estimating the number of hidden links) of the BMM distribution
are those corresponding to class 1 and 2, and hence we calculated a
RSS for the first 9 elements of the distribution. Figure 2 (a) shows
the two AICs. They take their minima forC = 9 andC = 7.
Figure 2 (b) shows the estimated number of links with respectto
C. Note that it varies insignificantly (with respect to the 95th per-
centile confidence intervals shown on the plot) forC = 7−10.
Hence in tests (e.g., in Section 3.3) we have usedC = 7 because
of the reduced computational cost (see Figure 2 (c)).

Figure 3 shows the observed distribution of link observations,
and the estimated BMM forC = 7. We can see that the fit is quite
satisfactory. Note that the0 term of the histogram does not appear
in the observations because this data point is censored by our very
lack of observations. The BMM extrapolates this value estimating
the number of hidden links. The parameters of this distribution are
shown in Table 1.

5. HOW BIG IS THE AS-GRAPH?
We now have the required results to answer the question of inter-

est: how big is the Internet? More precisely, “how many linksare
there in the AS-graph?” We use the above algorithm choosingC
based on the AIC test. Figure 4 shows the number of observed and
inferred links since January 2004, along with the number of usable
monitors. We can see that the number of monitors has not changed
much, but that there is clear growth in both the observed, andesti-
mated number of links. The trend is approximately linear, asshown
by the linear trend fitted to the data. The trend avoids some ofthe
potential problems with variance of individual estimates (careful
examination of the largest deviations in early 2005 suggests that
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Figure 2: AS graph estimates for October, 2007 with respect to the number of classesC.
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Figure 3: The fitted distribution for C = 7. Bars show the
number of links with respect to how often each is observed, and
the curve shows the estimated distribution.

Paper dataset label date Ê
Zhanget al. [13] Updates(1M) 2004-10-24 55,388

He et al. [9] All 2005-05-12 59,500
Mühlbaueret al. [6] N/A 2005-11-13 58,903

Table 2: Past estimates of links in the AS-graph.

these are model selection errors). The trend has a growth rate of
18.7 links per day, as compared to the growth in observed links of
16 per day. On a larger scale our results give a yearly growth rate
of around 1000 hidden links.

Several prior studies have attempted to estimate total numbers
of links: 3 such are shown in Table 2. They have used additional
sources of data: e.g., Internet Routing Registries (IRRs),and Look-
ing Glasses, as well as additional route monitors (1000 suchin [6]).
IRRs in particular introduce the possibility of “false positives”, and
so they may have overestimated of the number of links. Figure4
shows each of these estimates by and asterisk ’*’. We can see that
the first and third are very close to our own estimate, while the
second is very close to the linear trend. While not absolute proof,
the correlation between the results of different approaches suggests
that all are producing reasonably accurate views. For instance, our
results suggest that Heet al. [9] have eliminated the vast majority
of false positive links. Good news!
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Figure 4: The trend in the numbers of links. The asterisks show
previous estimates from [6,9,13].

5.1 Do classes have meaning?
Until now, we have treated classes as an abstract division ofthe

links. Our classes were motivated by p2p vs c-p links, but were con-
structed without any reference to any model of inter-AS policies.
The classes incorporate a range of factors including geographic and
topological bias, but the prime motivation stemmed from previous
work showing that peer-2-peer links are harder to see that customer-
provider links. A natural question is “To what extent do our classes
reflect actual link policies?”

Dimitropouloset al [14] provides a recent classification of links
into types: p2p, c-p, and s2s. We cross-match their types to the
links in our data. Table 3 shows the breakdown of each type of link
into classes. We can immediately see that class 1 links are largely
made up of p2p links, with a few p2p links appearing in class 2.The
more easily observed classes are dominated by c-p and s2s links in
roughly similar proportions.

These results reflect two findings. Firstly, a significant determin-
ing factor of link class is the role for which a link is used, soour
classes do have meaning. The class is not a 100% classifier of the
link policy, though. There are some p2p links in the easily observed
classes, presumably because their place in the network topology
makes them easily viewed, though some may be classification er-
rors, either in our algorithm, or in that of Dimitropouloset al [14].
Secondly, the results clearly show that p2p links are much harder
to observe, supporting intuition generated by previous studies.



Class p2p c-p s2s
1 74.25 2.32 2.33
2 14.50 4.27 6.98
3 2.66 4.01 5.81
4 1.75 6.31 0.78
5 1.43 8.92 3.49
6 1.09 5.04 5.81
7 4.33 69.12 74.81

observed links 4830 48760 258
estimated links 15990 57400 300

Table 3: % of classes by link policies. Note that almost 90%
of p2p links fall into class 1 or 2, whereas well over 90% of c-p
and s2s links fall in classes 3-7.

6. HOW MANY MONITORS?
The most obvious question, following the above analysis, ishow

many monitors should we have? Under the above conditions, we
can answer this question. Let us seek to guarantee that we will
observe a given link from class 1 with probability1 − qj . How
many monitors would we need?

We focus here on class 1, because the observation probability of
the other classes is so much higher for any non-trivial number of
monitors. For small probabilityq1 of missing class one links, the
probability of missing any of the other links will be so much lower
it will be negligible. The probability of observing a class 1link,
with K monitors, under the above model is simply1− (1− p1)

K ,
wherep1 is the class 1 link measurement probability from a single
monitor, which we have shown to be around0.01. So we want the
minimal value ofK such thatq1 ≤ (1−p1)

K . Rearranging we get
K = ⌈ln(q1)/ ln(1−p1)⌉. Forq1 = 0.05, 0.01 and0.001, we get
K = 299, 459 andK = 684, respectively.

7. CONCLUSION
This paper provides us with a way of estimating the number of

hidden links in an AS graph. The technique performs well against
the best data we have for validation, and allows us to estimate the
trend in the size of the Internet — according to our data it grows
at 18.7 links per day. We use the model to derive the number of
(well placed) monitors that would be needed to see a completeAS-
graph with high-probability. We estimate that 700 route monitors
would see at least 99.9% of links. The results also support previous
studies, and their intuition that peer-2-peer links are much harder
to see than customer-provider links.

There are problems we still wish to explore here, for instance,
the underlying assumption of our approach that the stratified model
captures the dependencies and heterogeneity of our measurements
is only approximate, and we wish to further improve the model.
Moreover, it is possible that some entire class of links could be
missing from current measurements, and we need to investigate
this further. True validation of the results over the entireInternet is
impractical (for exactly the reasons that make this technique worth-
while), but it is possible that the methodology could be validated on
a smaller segment of the Internet, for which precise ground-truth
data was available.

Finally, this type of technique could be extended to a large num-
ber of Internet measurement problems that have a similar character.
For instance, in anomaly detection, we might see our anomalies
(say a worm, or DoS attack) through some set of monitors. We
could use capture-recapture based techniques to estimate the num-
ber of anomalies we are missing.
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