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ABSTRACT

There are a group of problems in networking that can most-natu
rally be described as optimization problems (network dedigf-

fic engineering, etc.). There has been a great deal of résdarc
voted to solving these problems, but this research has baen c
centrated on intra-domain problems where one network tera
has complete information and control. An emerging field terin
domain engineering, for instance, traffic engineering ketwarge
autonomous networks. Extending intra-domain optimizatech-
nigues to inter-domain problems is often impossible withie
measurements and control available within a domain.

This paper presents an alternative: we propose a methodfer t
fic engineering that doesn’t require sharing of importafirima-
tion across domains. The method extends the idea of geretic a
gorithms to allow symbiotic evolution between two parti@oth
parties may improve their performance without revealirgrttiata,
other than what would be easily observed in any case. We diow t
method provides large reductions in network congestiarsecko
the optimal shortest path routing across a pair of netwoikise
results are highly robust to measurement noise, the metheety
flexible, and it can be applied using existing routing.

1. INTRODUCTION

Global optimization is the natural approach to many prolsliém
networking. For instance network design, traffic enginegrand
routing are all optimization problems. We typically seek #olu-
tion with the global minimum cost (where cost may be an abstra
measure).

However, in the Internet there is no one authority which can
perform such an optimization. The Internet is broken intayna

Autonomous Systems (ASes), each of which is managed indepen

dently, and so any optimization must be distributed. Furtiee,
these individual sub-networks are often unwilling to ceate,
and so cannot attain the global optimum. For these reasong ma
problems in network are treated as game-theory problenmsseit-

ish participants, each trying to optimize for their own biradone.

Games with selfish participants have been often studiedsxor

ample, the Prisoner’s Dilemma [1]. In this game, the prissne
could maximize their joint beneficial outcome if they co-ogie,
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but the game is such that if one prisoner acts selfishly (amd co
fesses), he can minimize losses. If both confess, theiidaaled.
Unfortunately (for the prisoners, if not society) they cantrust
each other, and so they will not co-operate, and the mutiuebme

is then the worst possible (for the prisoners).

These games were not invented for the benefit of criminalgawa
ing prosecution, but rather because many situations imbssj and
in particular in network management can be modelled the same
way. Corporations are often assumed to follow a selfish mel
a result of their requirement to return benefit to their stocklers),
and hence network operators are likewise assumed to follotva
model.

The key point at which we differ from the literature is that are
gue that network operators are not "selfish". Rather, they#ten
willing to co-operate as long as they can be assured theyatilbe
exploited. For instance current Internet routing reliesaarertain
amount of co-operation to ensure smooth operation. Thergis
Dilemma is easily resolved if both prisoners can trust edbobro—
neither confesses and they're released. Likewise, myttraibt-
ing network operators are often willing to co-operate to riave
performance.

Attaining trust is non-trivial. Trust relationships beveindi-
viduals are not sufficient, as individuals change jobs, a&sgonsi-
bilities. We need trust between corporate entities. Thisstane-
times be achieved through intense legal negotiation, bsgeéms
unlikely that flexible, multilateral agreements can be aebd in
this manner. Another approach is to have an independernt thir
party that acts as an arbiter. Such approaches also requnmglex
negotiation, and/or careful legislation. Again, flexibyilis lacking.

This paper describes an alternative based in part on the idea
of privacy-preserving distributed computation. Such catapion
can be used to create methods for joint optimization betwetn
works, without the type of “risky” co-operation that mosepr
ous methods of joint optimization require. We focus herelen t
inter-domain Traffic Engineering (TE) problem. In parti&ylour
method is aimed at allowing TE to proceed without the progide
sharing information that they consider private. This présehe
partners in the optimization exploiting information gadrebout its
competitors, prevents gaming of the situation, and prevalbasis
for trust.

We exploit two key ideas: firstly, we use an optimization heur
tic based on the metaphor of Darwinian evolution, commoalied
a Genetic Algorithm (GA). GAs proceed by describing the -opti
mization variables using a series of “genes”. A populat®re-
ated, allowed to compete, and the most successful are alltove
reproduce. We call our approacbATEway(Genetic Algorithm
Traffic Engineering). GAs are ideally suited to cases wheesob-
jective function is hard to compute, and we use this here bgneix
ing the metaphor to allovgymbiosisbetween pairs of providers.



In nature, symbiotic organisms jointly evolve, but they doreed
to share genetic material to do so. Analogously, GATEwagva|
two providers to optimize their routing without sharing thetails
of their own networks (their genes). Despite this secreeyshow
that on Rocketfuel networks GATEway dramatically impropes-
formance as compared to existing provider routing, andseléiut-
ing procedures. In fact, GATEway provides results within 68
a reasonable lower-bound on the possible performance, land a
40% better than closest equivalent selfish routing.

As in biology, some information sharing is still requiredeav
in the above approach, primarily in the form of fitness fuoresi.

the links on that path. Traffic is routed along the shortettigpan
cases of ties the flow is generally split roughly evenly asndsil-
tiple Equal-Cost Paths (MECP).

Explicit path optimization has less constraints, and foeeamust
achieve a superior solution to the shortest-path optinadzaiNaively,
one supposes that explicit path optimization will perforigngi-
cantly better. However, there is now substantial litemsupport-
ing shortest-path optimization. It has been shown thatrfalistic
networks) one can get within a few percent of the performarice
explicit path routing [6], even where the inputs containdicgon
or inference errors [13, 15]. What's more shortest-patlintipa-

The fitness of each member of the population must be evaluatedtion can choose sets of weights that perform well over a rarfige

(in biology this would be implicit in whether individuals siive to
breed). We then use techniques from the secure distribated c
putation community to substantially reduce even this maodiof
information sharing. This allows the above optimizatioéocon-
ducted without leaking any direct information about theviters,
for instance, they do not need to share topology, link capaci
ternal traffic, or routing details. In fact, in the strictestrsion of
GATEway, the providers share almost no information at héiuigh
there is a penalty to be paid for such parsimony. Ironicdigpite
sharing less information, the communication cost increase

Applying symbiosis to GAs represents a new approach to eecur
distributed computation. Previously, many of the algarnishap-
plied for secure distributed computation have been baségols
two-party protocol, which can compute any polynomial timad-
tion. We show here that we can find approximate solutions to NP
hard problems. The problem we consider here is quite spelific
there are many other fields where similar issues are enaeghte
Our approach is quite generic, and so may be applicable & oth
problems both in network engineering, and outside.

We further address some of the practical problems of usiog su
a protocol. We demonstrate the flexibility of the approachuby
ing alternative optimization objectives, and we also findt tthe
method is highly insensitive to measurement noise. Adatily,
we illustrate how this type of traffic engineering could beplex
mented using today’s technology, demonstrating that sacapa
proach is practical within today’s networks.

2. BACKGROUND AND RELATED WORK
2.1 Traffic Engineering

There are many tasks in network operations which fall uriger t
heading of optimization. In this paper we shall concentoaté@raf-
fic Engineering (TE), the process of balancing one’s traffioss
the existing links in a network. One may think of this as ojiting
the routing parameters of a network, such that the resultogy
ing is “beneficial” in some sense. The routing parametersreet
mine, for each source-destination pair, the fraction dfitrgoing
on different paths from the source to the destination. Maky T
technigues have been presented (for examples see [2-16p. T
majority of the TE literature concerns intra-domain TE. s
optimization of routing parameters within a single networkere
are many approaches to this problem, though the two mosaprev
lent are given below.
Explicit path where the traffic is arbitrarily routed to satisfy the re-
sults of a multi-commaodity flow optimization [16, Chapter] 1Ex-
plicit path routing is generally instantiated through MP{\Bulti-
Protocol Label Switching) or IP-in-IP encapsulation [17].
Shortest-path where the routing uses shortest-paths, but the link
weights are arbitrarily chosen as the result of some opéititn.
Shortest path routing is appealing because it can be impiete
easily using today’s most commonly used Interior Gatewayd?r
cols (IGPs) In these protocols each link is associated wibsiive
weight, and path length is defined as the sum of the weight#l of a

traffic (say the variations over the course of a day) [9, 15)rater
link failures [14,18,19].

Either technique is appropriate within a single network,ldmth
have flaws for inter-domain TE, a topic of recent interest PD7-
28]. The Internet has a broad two-level hierarchy in itsiraytsep-
arating intra-domain routing from inter-domain routing.GBv4
(the Border Gateway Protocol version 4) is the de facto stahd
for inter-domain routing. When considering inter-domainting,
one must consider the interactions between IGP and BGP (29, 3
Inter-domain MPLS solutions could in theory avoid some @ th
problems of interaction, but there are still practical ctexjies
in using MPLS in inter-domain routing [26, 27]. Shortesthsa
routing cannot be used because it might violate BGP polidtes
example, peering agreements typically prohibit transiffitr (i.e.
traffic that use backbone B to transit between two points ak-ba
bone A), but shortest-path routing allows transit.

There is another problem: traditional traffic engineeritgpa
rithms require complete topology and traffic informatioarfr all
networks. ISPs are typically unwilling to share informat&uch as
their topology, link capacities, internal traffic volumesd routing
policies, particularly with potential competitors. As adtin [27]
optimization methods which do not have complete infornmmaté
ten fall short in performance. Similarly [31] shows that$Rs co-
operate in determining inter-domain routing they can aehimetter
performance. Can we still attain this improved performaifitiee
ISPs will not share information? It is this problem that wacen-
trate on hereHow may we perform inter-domain traffic engineer-
ing without sharing detailed topological and traffic infoatron?
This is the major difference between our work and the majarfit
the literature on TE.

The primary problem we consider here is a connected pair of
ISPs who wish to optimize the routing of traffic on their joiet-
work. We do not separate the problem into separate intrairded
domain TE problems, but regard the joint TE problem. The most
closely related works to our own are [31, 32]. Our resulteagr
completely with [31] in that ISPs may gain much larger bepefit
from TE if they cooperate. We attempt to go further in promdgi
secrecy for the parties. In [31] the providers must revealqoe
preference classes per flow. These certainly hide a gredbflea
the internal information of a network, but still open thewetk to
indirect inference about its properties if not very cargfimnple-
mented. We aim to show just how little information needs to be
shared to perform a joint optimization, and the tradeoffsvieen
sharing information and performance.

GATEway is pragmatic in the sense that we aim to solve the
problem in a way implementable using current routing prokec
without modification. The primary constraint this appliesaur
work is that we use BGP for inter-domain routing. BGP proside
quite good means to control outgoing traffic, but only lirditeeans
to control an ISP’s incoming traffic. However, if two netwaok-
erators jointly control their outgoing traffic the effectdentrol in
both directions. In [31] this is achieved through negotiatof the



exit points. We shall also aim to control exit points for figf
though the choices will only be negotiated implicitly. Welwefer
to the type of routing solution we consider gisned-exit routing
because the ISREn the exit point of particular flows. However, we
will use shortest-path routing within an ISP, and we will atow
path sharing other than across MECPs.

2.2 Privacy Preserving Computation

The problem we consider comes under the headingestire
distributed computationi.e. computing some function of several
pieces of data without explicitly combining data (and thexsaling
it). Another term used to describe this wouldgyésacy-preserving
multiparty computatiorfwe use the terms synonymously).

The area of secure distributed computation has been heaavily
fluenced by Yao's two party protocol [33, 34], which is a pab
between two peers that can compute any polynomial-timetifumc
pair (fz(x,y), fy(x,y)), wherex andy are the inputs andx (-)
and fy () are the functions of interest to the two parti€sandY’,
respectively. The impressive thing about the protocol & tiei-
ther party learns the other’s input data, or their outpet, X only
learnsfx, not fy ory. The classic example of Yao’s protocol is the
computation of the minimum of two values. The protocol regsii
two rounds of communication and h@§n) computation and com-
munication cost (where the numbers are represented liits).
However, the protocol is not always efficient, and so many-tec
nigues have been developed to improve computational cotityle
and communications costs for specific problems. This araavis
well developed — see [35] for a listing of a number of significa
papers. Relatively little work has been done on privacy gmgsg
computation for Internet applications. Brickell and Shikat [36]
provide an algorithm to solve the shortest-paths throughiagd
connected networks, and Machiraju and Katz [32] considefithw
maximization problem for a pair of networks. Note thoughttha
these both have polynomial time algorithms for the nonritlisted
problem. Yao’s two party protocol, and related approachesige
methods for computing polynomial time functions. The peoh$
here are NP hard.

Note, we may still assume that the providers are selfish, diLin
quite the same sense meant elsewhere. They will seek to rizaxim
their own gains. However, in the approach we propose, wegehan
the outcome of problems such as the Prisoner’s Dilemma bg-int
ducing a type of trust. If the prisoners can trust each otthen
they can achieve the global optimum. Note that both aresstiihg
selfishly, but given the additional information, the cotreelfish
choice is also the global optimum.

The model we assume for network operators is sometimesicalle
"semi-honest". It assumes that the providers are not makgii.e.
they will not deliberately aim to cause damage other netvopek-
ators, without any positive gain for themselves. They wiit act
like a “Dog in the Manger” (Aesop). Such participants are sem
times called “honest but curious”, because they may seektb fi
out information, and exploit this information to their owerefit
(and possibly to the detriment of other operators). Thisfaraas-
sumption because the current Internet relies on this cteaistic.
One large operator could cause considerable problems fierst
were they to act maliciously — it has, for instance, happemed
accident on more than one occasion.

24 GAs

The concept of a Genetic Algorithm (GA) (see [38] and the vast
number of publication since) is based on the metaphor of Dar-
winian evolution — survival of the fittest. The idea, in brie$
to create a population of solutions to a problem, and thethéan
reproduce and evolve such that we tend to keep better sodutiio
the problem.

One key advantage of a GA is that the fitness need not be speci-
fied in closed form. For instance, GAs are often used in ogtimgi
strategies for games where the fithess is determined by diiope
between the members of a population. This advantage is kayrin
application because it allows the parties involved in thegota-
tion to share only limited information about fitnesses, eattihan
the details of each others networks.

We extend the use of biological metaphors in GATEway to the
use of the ternsymbiosisIn biology, symbiosis (sometimes mutu-

Also importantly, note that in some problems, even though an alism) refers to two different organisms that form a mutuatine-

algorithm leaks no side-informatiotx’ or Y might still derive in-
formation the inputs from the output alone. A good examplhés
shortest-path problem: the privacy-preserving algorifbnshort-
est paths on a pair of connected networks is strictly privamey
serving [36]. However, knowledge of the output (shortestp) is
sufficient to derive information about the weights of thenjaiet-
work [37]. There is an important distinction between ensyithat
the computation is private as opposed to the results beingso
thing that the two parties are willing for their partner tookn

ficial union. A classical example occurs in coral reefs [39pral
polyps are a small colonial organism that build large erdzetal
reefs out of calcium carbonate. However, they get the ntgjofi
their food supply from photo-synthetic algae (called zaukallae)
which reside inside them, and incidentally provide thenhwliteir
attractive coloration. The algae gain a safe home, whilectal
polyps gain a food supply — both parties benefit from the ater
tion. Typically such organisms co-evolve to this state, iboth
evolve together jointly (ancient corals did not exhibitstnélation-

able by both parties in any case. For instance, in the shqrégs

it can also occur for competitors for instance — but the point

sure it. Hence leakage of this information is inconseqaén@iven
these two features, we do not concern ourselves with stiicqy-
preservation here. Instead, we seek to minimize the leaksothe
algorithm or solutions) of information that could not be etivise
observed by the participants. Itis no longer a formal, pobyalef-
inition (as is strict privacy-preservation) but it's costgint with the
aims of potential participants in GATEway.

2.3 Assumptions

Most approaches to inter-domain traffic engineering carhbe-c
acterized as selfish (where one provider acts unilaterallymt:
prove its own performance), or as co-operative where theigiecs
are willing to share information and co-operate (exceptibe-
ing [31, 32]). In GATEway we aim to get the best of both worlds.

material to perform such a co-evolution. We may exploit this
GATEway.

3. EVALUATION METHODOLOGY

3.1 Test networks

We have tested GATEway on two sets of topology data. Random
networks, and Rocketfuel networks. While we also use random
networks to validate GATEway these tests are omitted, piiyna
because of space restrictions, but also because they asisteom
with, and add little to the findings on more realistic topaésy

The Rocketfuel topologies [37] consist of a large numberetf n
works and their peering links mapped primarily using tracéss.
The network maps produced are not perfect, however, they rep



Table 1: The Rocketfuel networks used in this study.

ASN | Name PoPs (degree 2) | links
1| Genuity 24 74

701 | UUNet 48 | 368

1239 | Sprint 33| 130
2914 | Verio 47| 176
3356 | Level 3 46 | 536
3561 | Cable & Wireless 59 | 592
7018 | AT&T 35| 136

resent the best current maps showing both the intra-doman a

inter-domain topologies of a significant number of largenmeks.
We concentrate on a group of tier-1 networks, based priynaril
North America (though some have significant components in Eu
rope, Asia and the Pacific). We choose these because theseall p
with each other with multiple physical connections. In aiddi,
these networks are the largest, and thus provide the besf e
scalability of GATEway. The result is that we consider 7 rates,
which each interconnect resulting in 21 possible pairs oithvto
trial the method. Additionally, there is little point in ing to opti-
mize routing for degree one nodes (there is only one link teey
use), and so we eliminate such nodes from the networks under ¢
sideration. The networks used, and their parameters arensimo
Table 1.

The Rocketfuel data do not contain link bandwidths, and so in
the absence of this information, we shall use the simplessipte
assumption of equal bandwidth links (as in [27]). One exXoept
to this policy is that we will investigate the impact of varyithe
peering link capacities because these links are often derably
different from backbone links in a number of respects, asalte
of being created through negotiations between multiplégzar

3.2 Traffic generation

The units of traffic we shall manipulate will Hiows A flow
represents the traffic between some source and destinatiorgd
some time interval. We shall ignore time dependence hersiifior
plicity. Sources and destinations of traffic in IP networkesgroups
of IP addresses, often with a commprrefix Note though, that the
groupings we use here are arbitrarily decided by the netwprk
erators, i.e. they do not have to correspond to a particulefixp
customer, router, or other logical structure in the netwaditke only
constraint is that we will not divide flows when routing thesther
than across intra-domain MECPs.

For simplicity, we shall use flows aggregated to the levetaff t
fic between PoP pairs. Note that this is not a requirementhier t
method. In general an operator might wish to conceal theesdds
allocated to particular PoPs, or simply the number of PoRkén
network. Hence, they could use arbitrarily de-aggregatefixes,
(for instance break the ISPs address space into /24's)egrcibuld
aggregate address space allocated to routers. The chgeadte
on the balance between complexity and the level of optintmat
required (finer granularity requires more computation,garhaps
allows a greater degree of optimization).

We need to synthesize traffic matrices for our simulationsl, a
so we extend the simple from [40]. We generate the traffic deima
matrix between nodes using a gravity model with randomlyseho
local traffic vectors. That is, we generate the independqutreen-
tial random variables

X{fm = the traffic at PoR in networkm in directionk,

wherek € {in, out}. The demand matrix elements giving the traf-
fic from to j in networksm andn areD™" (i, j) = X (i) (out)

i,m < g,n

Although this method is extremely simple, it was shown in] [#0
match real traffic-matrix statistics well.

3.3 Performance metrics

We evaluate the performance by measuring maximum utiliza-
tions. However, the maximum utilization on its own may rdvea
only the size of the traffic, which is being generated via aloan-
ization process. In order to create a basis for fair compasisve
will output the performance (the maximum utilization) rt@fa to
the measured routingn the Rocketfuel data. Results are reported
as a percentage relative to this maximum utilization (senathlues
indicate better performance).

4. WEIGHT OPTIMIZATION USING
GENETIC ALGORITHMS

The problem of intra-domain traffic engineering can be esged
thus: find the network routing parameters that balancesloadhe
existing links in a “beneficial” way. There is a very simpleapach
to solving the intra-domain traffic engineering problemmedy by
using the shortest-path routing with a set of optimized Virgights.
This has the advantage of being easily implemented usingmur
IGPs.

We call this approach thehortest-path link-weight optimization
problemand it has been extensively studied [4-12, 15]. Despite
the apparent limitation of shortest-paths routing, thehoéthas
been shown (for realistic networks) to perform almost ad a®l
the most general approaches to routing available, and ®tawny
other advantages (see Section 2.1 for more details).

Take a network described by a gragh= (N, £), whereN is
the set of nodes andl is the edges of the graph. We denote the
number of nodes in the graph By and the number of edges .
We seek to choose a functian: £ — IR, giving the link weights
of each link, such that when we solve the All-Paths Shortest P
(APSP) problem, the solution minimizes the maximum uttima
of the links in the network. We use the notatien, c., and f. to
denote linke's weight, capacity, and load, and the link utilization
is defined to bei.. = f./c.. Given a set of link weights, the APSP
routing is the routing that minimizes for allj € N the distances
dij = Zeemj we between nodes andj, wherep;; is the set of
links along the path chosen betweieand ;.

The problem of finding an optimal weight setting is NP hard [6]
and so we must find heuristic approaches to the solution qfrthte
lem. Several proposed heuristic are based on GAs [7,8, 14 U4/

a slightly different GA here in order to make it easier to gehe

ize to the joint TE problem. The chromosome for each member of
the population is a vector containing. for each edge. We restrict
these elements to be representedbbits, restricting the range of
values tow. € [0, 1,...,2% — 1]. The GA algorithm is then:

1. initialization: create (randomly) an initial set é¥
solutions called the populatiof®, = {x;}

2. while not finished
a. evaluate fitness:f(x;) of eachx; € P
b. generate a new populationithe offspring
i. selection: select two parents from the populatipn
based on fitness.
ii. crossover: combine the parents genes to form ¢
spring.
iii. mutation: with a probabilityqg mutate each gene.
c. replace old population with offspring.

ff-

However, in designing a GA there is a great deal of flexibility
each of the mechanisms listed here. We take the approactohere
using simple techniques with the aim of demonstrating timeept
rather than providing the best possible optimization atgor:

1. Crossover: We a single (random) point crossover.



2. Mutation: We perform mutation gene by gene independently,
with some small probability.

Selection: Selection is determined from the fithess function
f(-) based on the maximum utilization of a given routjfig; ) =
1/max.cr ue, andRoulette Wheel Selectipie., given a set
of solutions{x; }, we select a member of the population with

probabilityp; = f(x:)/ ZiEP f(xi).

Termination criteria: We terminate the algorithm after a fixed

numberG of generations.

In addition, there are many tweaks one can apply to GAs to im-
prove performance. The only one we use herelitssm, i.e. the
retention of the best member of the population during eadeige
tion with no crossover or mutation. This results in a norréasing
maximum fitness for each generation (a property not guagdnte
otherwise).

We use themeasured routin@gs an initial value, seeded into the
population. This initial value does not have quite the samgoir-
tance as in many other optimization techniques, becauspléges
only one of the initial population. Note we confine our weight-
ues to a smaller range of integers than the Rocketfuel dataiis
initial solution may have different routing from the measairout-
ing, and hence our results will not all start at 100% perfaroea

4.1 Validation of the GA approach

We tested the above approach on a range of simulated network
in order to choose reasonable parameter settings (resultted
because of space restrictions). Our main parameters aprdbe
ability of mutationg = 0.01, the population size®> = 50, the
number of bits to use in representation of a weifht= 4, and 2
elite solutions were retained. We compared our resultsasettof
Fortz and Thorup (FaT) using their code, performi&g= 10000
iterations for both algorithms. Figure 1 (a) shows the retaper-
formance of our approach, and FaT with respect to the peenca
on the measured routing on the Rocketfuel networks. Both ap
proaches produce similar improvements (though FaT ped@¥h
better overall). Figure 1 (b) shows the computation timdwe GA
times are better by 27% on average. Although these compntati
times are not insignificant in some cases, weight optinopaich-
nigues have a number of advantages. For instance, Roughan
al. [15] showed that one could get a large part of the improve-
ment of weight optimization using a much smaller number of it
erations, thereby creating a potentially favourable toffdeetween
time and performance — we demonstrate the same phenomena i
Section 5.3.1. Furthermore, [15] also showed that weigtitopa-
tion could be performed to create a set of weights that weresto
over a period of at least 24 hours (taking into account ptigtic
errors, and daily variations). Hence, significant compaoitetimes
can be amortised over such periods.

In some cases we observe that the performance of both algo
rithms was somewhat limited. For instance, in Figure 1, #réqp-
mance improvement for ASN 7018 was only around 70%. In this
particular case we investigated the reason, which was liese t
were two components of the graph that were poorly connedted.
particular, three PoPs in Florida were connected to theafetste
North American nodes via a single pair of links. Given onlyotw
links, the opportunities for load balancing are somewmaitéd. In
the real network this would be reflected in the fact that theeltnks
in questions would either have increased capacity, or tlwlypo
connected network segment would have little traffic. Thigesps
to be a relatively common occurrence in the Rocketfuel togiels,
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Figure 1. Simple weight optimization using the GA for G =
10000, and Fortz and Thorup (FaT) also using 10000 iterations.
The results show the mean relative performance for 30 random
simulations, and compute times.

heading ASN 7018a. Clearly a great improvement was obtdored
the reduced network. In the remaining work in this paper wié wi
continue to work with ASN 7018a, the Rocketfuel topologyhwit
out the Florida nodes, but we leave the other topologiesuatied,
Sthus providing some contrast as to the impact of this issue.

4.2 Computational complexity

The algorithm proceeds in a number of iterati@giswith popu-
lation sizeP, hence its computational cost is proportionalR6,
but the critical factor in the computational cost is the aistvalu-
ating the fitness function, which requires the solution ® AiPSP
problem. We use a simple implementation of the Floyd-Wdksha
algorithm to perform this step (the algorithm h@éN?) computa-
tional complexity) and Figure 7 confirms cubic complexity.

5. SYMBIOTIC OPTIMIZATION

The previous section considered optimization over onlynglsi
network, and similar results have been described elsewhéfe
now describe the generalization of this approach to a paietf
works joined together at a set péeringlinks. The GA algorithm
is extended to allow joint evolution of two “symbiotic” polations
of solutions, one for each ISP. As in biological symbiosis plar-
rticipants don’t have to share all their genetic material.wigeer,
there is some information leakage in our initial approacid we
consider how to limit it in Section 6.

5.1 The problem

The problem we wish to solve here is the problem of optimizing
-the routing of two connected networks. In principle thisagsmore
complex than optimizing one large network (comprised oftthe
inter-connected networks). However, business conssragstrict
the type of routing allowed. For instance, transit routiagot al-
lowed between peers. One peer cannot use another netwadks b
bone to transit its traffic across the country using its owtwoek
only at the end points. Hence the simple generalization aftekt-
path routing to the joint network created from inter-cortivegthe
two peers will create unacceptable solutions.
Furthermore, as noted earlier, we wish to limit the exchasfge
information between the two peers. The joint shortest-gath-
tion would require each network to share its topology, aaffitr

and hence we wished to assess how much our results were biaseéh detail. More precisely, take two networks = (N1, &1), and
by such features. To do so, we excise the 3 Florida nodes (andG. = (N2, £2), which are inter-connected by a set of peering links

8 edges) from the AT&T network, and perform the optimization
on this new network. The results are shown in Figure 1 under th

Q, where forg € Q we haveq = (n1,n2) wheren, € N; and
nz € N2. We can create a joint netwoi = (N, &), where



N = N1 UN2, and€ = £ U &2 U Q. We shall use the solution to
the shortest-path (SP) link-weight optimization problemagjoint
network as a basis of comparison, because we have subktntia
idence [6, 9, 15] that it will be close to the best possibletira
solution. To be clear, in this solution (which we calint SP), the
peering links have no special role, and we do not attempteegot
transit traffic. Hence the solution is an unrealizable idadilon, but
we use it as a loose lower bound on performance, for compariso

At the other end of the spectrum, we will also compare results
with selfish routing, where each provider optimizes its oawiting
with information it can measure itself. Théglfishsolution will be
poor because each provider cannot anticipate the changeshér
will make to its inbound traffic. On the other hand, GATEway

1. can be computed with limited sharing of information;

2. prevents transit; and

3. is reasonably simple to implement with standard routing

protocols (e.g. shortest-path IGPs and BGP).

We do this using the mechanism exit point pinning Given a
traffic flow from network 1 to 2, we would choose a particulait ex
point, and pin this flow so that it uses that exit point. Tharea

indicator function, i.el(A) = 1if Aistrue, and O otherwise. The
computation forl'® is similar. Notice that the matricé&” may
not follow a gravity model even wher® does. Computing™™"
takesO(N? 4+ N7 N2) operations, and so the resulting computation
is of similar order to the shortest-paths computation. Téraahds
D2 andD?' are measurable by either party using flow collection.
The internal demand®®* do not have to be shared.

In addition, we need to be able to compute the traffic on each
peering linkg, which we can do by

N1 Ny
1,2 s y
r2 = ST DYk, m)I(g(k) = j),

k=1m=1
Ny Ny
(20

y > > D¥(k,m)I(a(k) = j),

k=1m=1

wherer®? andr®>% are vectors of the loads on peering links.
Both providers know the capacity of peering links.

Network operatog can now compute the APSP, and hence com-
pute the internal links loads on netwogk using only local infor-

number of mechanism one could use to implement such a pinning mation: the IE traffic matrices, a set of exit points, and liveights

(see Section 5.5), and the pinning could be performed atiatyar
of granularities. As we have previously discussed, we stwait
sider PoP level flows. We also simplify by pinning based sobel
source or destination, not both. In the examples we showceour
based routing, as it is slightly simpler to explain, thougdstit
nation based routing (which is an equivalent, though traseg
problem) would be easier to implement. For example, traffionf
nodes in network 1, to node in network 2, would be pinned to
peering linkg(i) € Q (note we can specify a peering link by its
end pointsg = (k,m), k,m € N or its index in the set, e.g.
qg=7j€1,...,Q]). The exit point chosen for a given traffic flow
is not necessarily the closest to the point of origin, soithi®t hot-
potato routing, but we do not need the full flexibility of a safe
like TIE [17].

Before we can continue, we must also briefly discuss the dif-
ference between Origin-Destination (OD) demand matrie@s]
Ingress-Egress (IE) traffic matrices. As noted earlier wésim-
ulate using an OD demand matrix generated via a gravity model
which specifies the traffic from origin to destination in thoén
networkG, and so is @V x N matrix, whereN = N; + N> and
N, = |N;| is the number of nodes in netwotk Denote the OD
matrix by D where its element® (i, j) are the traffic from origin
1 to destinatiory, and we can writeD in the form

1,1 1,2
D:<D D )

D2,1 D2,2
whereD™ ™ is the matrix whose element3™ ™ (i, j) give the traf-
fic from nodei to j in networksm andn.

The IE traffic matrix describes the traffic matrix as seenrinte
nally on a single one of the networks, which is not the saméas t
demands (see [41] for detailed explanations of this phenaine
For instance, for network 1, the observed traffic matrix wdt be
D!, Using pinning, we can easily construct an IE traffic matrix
T™*) for network k from the OD matrix. We simply take, for ex-
ample

No

TW(i,5) = D"'(ij)+ Y D"*(i,m)I(a(i) = (j, )

No B
+ 3" D*(m, )I(q(m) = (%,1)),

for all nodesi, j € N1, wherex is a wildcard, and (-) denotes an

on¢&;.

5.2 GA solution

Consider the problem above. We wish to find a solution that
limits the sharing of information to the necessary minimang yet
allows optimization to take place. We shall apply the metauf
symbiosisere, allowing each network to co-evolve without sharing
all their genetic material.

We start by specifying the chromosomes — there will be four.
For each network we use one chromosome to describe its weight
and another to describe the pinning positions. We separativb
groups of information as we may wish to perform cross-ovet an
mutation in different ways for each type of gene. More speilfy,
each member of the population will be described by the vestoer
and q;, giving the links weights, and pinned exit points, respec-
tively, for networksi = 1, 2. As before, the weights are restricted
to[l,...,2% —1]andg; € [1,...,Q], where there ar peering
links. Network operatot holdsw; andq;. The values of the pin-
nings are shared, but the network weights are not, theretpitkg
secret each networks’ internal topology.

Each network uses the traffic matrices, pinnings, and itsiown
ternal weights to compute its own internal link utilizati@and the
peering link utilization. The information necessary to qgute the
joint fitness function (the maximum utilizations) is shared that
each network knows the joint fitness of all members of the popu
lation. From this each performs selection, sharing the sesdd
in pseudo-random number generation such that they ead tede
same population members. The two then perform cross-omdr, a
mutation independently (only on the chromosomes they hold)

5.3 Evaluation

5.3.1 Performance

We first compare the joint SP optimization, with the symlaioti
solution, and selfish pinned-exit routing. We perform 1Qisea
tions of each pair of networks (a total of 210 simulations)d a
show the Cumulative Distribution Function (CDF) in FigureThe
performance of the symbiotic approach is very close to th#te
joint SP problem (despite that solution being unrealigablén
the other hand the selfish routing results are profoundlyse/din
about a third of cases the provider is actually worse offrafpply-
ing selfish routing). Table 6 summarizes the average petnce
Figure 3 shows the performance after each iteration for eifépe



network pair. Most importantly we learn from this graph tta
majority of improvements in performance occur early on ia dip-
timization. Hence, one could find useful tradeoffs betweeriqp-
mance and speed. The graphs for other provider pairs algmgup
this view. Additionally, we considered how various chaeaistics
of the networks influenced performance. Figure 4, showstheat
performance was correlated with the network size. We spézul
that this is because larger networks provide more oppditsrior
route diversity, which may be beneficial for shortest-patiting
optimization (we see a similar phenomena in Section 5.4af@er
networks).
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Figure 2: The CDFs showing the performance of the TE tech-
niques with respect to the measured routing withG = 5000.
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Figure 3: TE across the Rocketfuel AS 1239 and 7018.
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Figure 4: Performance of the symbiotic algorithm with respect
to the joint network size.

5.3.2 Peering vs internal links

In the work above, we have deliberately kept things simple in
having all link capacities equal. However, anecdotallyerpey
links are often supposed to be smaller than internal linkrifg
links are built through negotiation between competitorsitier
party wishes to pay for the links, and so they are sometimes al
lowed to reach a state of congestion before any action isteke
upgrade the links. In comparison, anecdotal evidence stgtfeat
most major backbones are relatively lightly utilized, anel kely
to remain so under due to the requirements for failover dgpac

Figure 5 shows the relative performance of the algorithmeas-p
ing link capacity varies with respect to backbone capad@ihe fig-
ure shows the maximum link utilization relative to the measu
routing for the Rocketfuel networks 1239, and 7018 averayed
10 simulations. The figure also shows the maximum peerifg lin
and internal link utilizations. For normalized peeringklicapaci-
ties below about 0.4 the performance of the algorithm is deaeid
by the peering link performance, i.e. the maximum link loadws
on a peering link. Under such circumstances, the relativiope
mance is dominated by a bin-packing problem, which unsspri
ingly can be solved significantly better than the measurating.
On the other hand, as the peering capacity increases, thenket
performance becomes dominated by the internal link capaciin
particular, note that the performance approaches theithdivper-
formance of network 1239.
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Figure 5: Maximum utilizations of the network, internal lin ks,

and peering links as the normalized peering capacity varies

0.8 1

5.3.3 Alternative metrics
The algorithm above has been shown to find a good min-max

link utilization solution to the routing problem. Howeveetwork
operators may not share this goal; they may wish to optintizero
objective functions. A key advantage of GAs is their flextiilith
respect to objective functions. We have tested our appragaimst
the metrics drawn from [6, 9] and shown that in this case we als
see good performance gains, if anything even faster (sesuoiitted
because of space limitations).

5.3.4 Robustness
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Figure 6: Robustness results for Rocketfuel networks 1239wl
7018, averaged over 100 simulations.

TE is typically applied predictively, i.e. one measures tie¢-
work, determines the routing to be used, and then this isiegppl
in some future time interval where the traffic may not be ident
cal to that measured. In addition, measurements themselags
contain errors, for instance where sampling or infereneesé in
data collection. Hence, robustness to measurement orcticedi
noise is a highly desirable characteristic of any TE alfonit One
of the advantages of optimal weight assignment is robusttes
noise [5, 13, 15].
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Figure 7: The computation times of the algorithm with respet¢
to number of nodes for the Rocketfuel topologies® = 5000),
and fitted cubic polynomials.

We test the robustness of GATEway by determining the optimal
(or near optimal) routing using the symbiotic GA, but theras@-
ing its performance on a network where a different trafficnirat
is applied. For each initial OD demand matiiX(i, j), we mea-
sure performance on a traffic matrix with multiplicative smi i.e.
Derr(3,5) = D(4,5) [L + oN(3,5)] , whereN (i, 7) is an indepen-
dent standard normal random variable, for eaahdj, where we
vary o such that the standard deviation of the noise relative to the
initial traffic varies from 0 to 20%. For each of the 10 initiedffic
matrices we repeat this experiment 10 times, adding differeise
each time, for a total of 100 experiments. Figure 6 showsdbelts
for the Rocketfuel networks 1239 and 7018. The figure showls bo
the average performance, and the worst case performanceg. (ma
Even the worst performance over the set of 100 experimentgsh
great insensitivity to the errors. Similar results are obse for
other values of peering capacity. It may seem surprisingthigere-
sults are quite so insensitive to the input traffic, but thisoughly
consistent with the results of [5, 13, 15], which showed néxalle
insensitivity to noise in the simple weight assignment feob

5.3.5 Computational Complexity

The issues surrounding computational complexity of thipal
rithm are essentially the same as those for the simple ddraain
problem, resulting irD (IN?) complexity. Note though that the size
of the network on which we evaluate shortest paths is thevihdi
ual networks, not the joint network, and so the computatitine
is O(N{ + N3) which is much faster than th@((N: + N»)?)
computational time for the joint network. Given two equalesl
networks the reduction in computation time is a factor of 4g-F
ure 7 confirms the algorithms’ complexities.

5.3.6  Communications Cost

The implementation of this algorithm as a distributed atton
requires a transfer of information between the two peer ifh
formation to be transferred consists of:

1. The pinning points for each member of the population, for
each generation.

2. Theinformation needed to compute the fitness functiooym
case, the maximum link utilizations).

The information require to compute fitnesses is small coep &

the pinning information. The pinning information requiresctors

of size N; to be transmitted for each netwoikfor each member

of the population, and at each generation. Hence the communi

cation volume isO(NmaxPG). Note also that each value to be

transmitted is an integer in the ranfe. . ., Q], whereQ is typi-

cally small < 16), and can therefore be represented with around

4 bits without compression. However, after an initial ramdse-

lection, the pinning vectors are not random, but are theltrefa

highly non-random process of evolution, and so are quit cesg

relative performance
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Figure 8: Performance of multi-party GA as a function of the
number of participants, relative to performance for two partic-
ipants.
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ible. We tested this by writing the population of pinning t@s for
each network to a file (for the example considered above \nith t
two networks ASN 7018 and 1239), and using gzip to compress th
files. Compression ratios of around 4:1 were achieved witbin

15 generations. Thus the pinning data can be communicatid wi
around 2 bits per value. Given parameter values used har@{fo
stanceP = 50, Q@ ~ 10, N ~ 50), the communications cost is
< 1 kB per generation.

5.3.7 Other violations of assumptions

The largest assumption in all of this work is the “honest huit ¢
rious” assumption. It is a fair assumption — the current rimé¢
relies on this as well, given the relatively insecure natfrater-
domain routing at present. However, it is interesting tosider
what happens if this assumption is violated. Imagine that @i
the ISPs either lies about, or is mistaken in the data it plewio
the algorithm, or chooses not to follow the routing detewedity
the algorithm. It is a simple matter then for the other ISP t&am
sure the traffic across its peering links using flow captund,feom
this determine that a problem has occurred. If the probletaaes
their performance, then they may either renegotiate a newing
(via our algorithm or otherwise), or go back to their old ingt
so they are no worse off than before commencing the use of this
algorithm. The other ISP may possibly be better off in the'shm
through its dishonest behavior, but in the long run they atikely
to make any more gains than they would by violating currenPBG
policies.

5.4 Multiple-party optimizations

The extension of this work to more than one party is quitdgtta
forward. N peers (in the sense of neighbouring networks that do
not allow transit) can perform the same type of optimizatguch
that each network retains the information about its own\elghts,
and shares appropriate pinnings with each peer. Given the GA
ability to cope with arbitrary fitness functions, the gefieedion is
obvious. Figure 8 shows relative performance of the optitiin
as the number of participants increases. Again this seeis &
result of the increased diversity of routes in a larger nekwo

5.5 Implementation

The GA would use a protocol independent of the routing proto-
col. The optimization only requires concrete instantiatio rout-
ing once an optimal solution has been determined. Therenare t
approaches to instantiate the derived routing using stenex-
isting routing mechanisms. Firstly, tunnelling techniggeich as
MPLS, or IP over IP encapsulation allow explicit choice oftex
points. Such techniques have already been proposed fan (54 i

Alternatively, one could use BGP mechanisms to alter exittgo



Mechanisms such as local preference, and MEDs are used to con
trol exit points. These apply control across a whole netwerk.

the exit point for all source nodes for a particular destoratvould

be the same), which implies a destination based pinning.Héeed

that such a pinning would still provide excellent gains imfpe
mance. Even if BGP is used, only exit points are changed, so an
nouncements outside the AS are not needed, and iBGP coneerge
times will be much shorter than eBGP convergence times.

6. PRIVACY MAXIMIZATION

The above approach to joint network optimization limitsoinf
mation sharing, but there is still some leakage through theimgy
vectors and fitness functions. The joint fitness calculatémuires
the ISPs to share maximum utilization data. This problenilés a
viated in part through the use of the utilization metric of9p but
can be improved further.

One of the advantages of the GAs is that the fitness function ca
be arbitrarily chosen. All we really need to know are the cele
tion probabilities for each member of the population of jjuss
solutions. We have a polynomial-time algorithm for consting
these probabilities, and therefore Yao'’s two party protapplies.
This is now a well researched area (for instance see someeof th
reference at [35]), and so, given space limitations, we bnigfly
describe the approach. There are three steps: firstly, wesolye
the APSP for each network, given its internal weights. This be
done internally by each provider. Then these routes musted u
to compute the load on each link from the OD demands. For in-
ternal links f. ijzl D(i,5)I(e € pi;). This can be directly
computed where, j € Ny, but fori € M, andj € N, k # m
we need to break the indicator into two parts

Heepy) = S Ie€pu)l(al) = (k+))
+ 3" 1(e € pup)I(ali) = (+,m)),

m

whereq(3) is the peering link for traffic originating at node The
number of bits forD (4, j) is O(nN?) where we represent the val-
ues withn bits, while for the indicator functions there ﬂ)&éEN%—
N log Q) bits. Yao’s protocol’s communications cost is linear in
the number of bits [34], and so requi@$n. N2+ EN?+ N log Q)
overhead. The above computation has to be performed for each
edge, so given that typically’ > n, and we can write the com-
plexity asO(E2N?). The third step is to compute the maximum
of these values, for which a standard version of Yao’s paltec
sufficient, and with comparably negligible overhead (akésaver-
head of computing the peering link loads). Additionallycse
operations can be composed, hiding intermediate data. eHers
possible to perform a step of the symbiotic algorithm whiatiss
fies the definition of privacy preserving, in the sense thattio
ISPs need not share (i) utilization data, (ii) pinning ddii@), any
other details of their internal network. We call this sabmtprivacy-
maxand note its performance is the same as the previous symbioti
solution. The cost for using this approach is an increasethuo
nications cost associated with performing Yao'’s protocol.

An alternative to strict privacy preservation via Yao's toal
is to separate selection into the two networks. More prégise
each network computes its own fitness function, and eachthises
to select one parent for cross-over. The two networks sheae t
pinning information which is needed to compute link utitipas
(again Yao's protocol could be used here to avoid this inftiom
being shared). However, the two network use completelydaede
dent fitness functions — the fitness functions need not evehebe
same, thus avoiding any need to share this information. €Tlser

a cost in performance. The method (which we refer to as “sym-
biotic 2"), doesn'’t perform as well as the simpler algorithithe
results for this independent symbiosis are shown in FigRieesd 3,
and Table 6 summarizes the performance of all methods cenesid
here. The average performance after 5000 generations4%Gss
compare to 51.5% for the previous algorithm, though stibbasid-
erable improvement on the selfish solution. The performaace
duction occurs because, although we still use elitism, eatlvork
chooses its own elite member of the population without kedge
of the fitness function of the other network. As a result, thesen
elite members of the population are not necessarily eldmfthe
point of view of the other network or a joint fitness functidtence
performance (as measured by the joint maximum utilizatismp
longer monotonic. Figure 3 shows this non-monotonicitye Tihal
solution is actually worse than some of the solutions chedeng
the way, but without knowledge of the joint fitness, we havevag
to know this, and choose the better solution.

Table 2: Comparison of approaches. Communications cost for
the privacy-maximization approach are a worst case, with tle
likely cost being significantly smaller.

Approach Shared data Communications cosf Perf.
joint SP Gi,ci,w;, D O(NZ +EK) 46.6%
symbiotic dis maxeer; e | O(GPNmaxlogQ) | 51.5%
symbiotic 2 | qs, O(GPNnax log Q) | 68.4%
privacy-max | sel.prob.o(x;) O(GPE?N?) | 51.5%
selfish none zero | 91.2%

Note that the results for “symbiotic 2” also illustrate ametim-
portant point. In these examples we ubferentfitness functions
in the two networks. The fitness are computed independesly,
this is easily incorporated.

7. CONCLUSIONS AND FUTURE WORK

This paper presents GATEway, a set of algorithms for joint TE
between two networks who do not wish to make disclosure ofinf
mation about their networks. We demonstrate a distinctatdge
to combining information, but we present methods here thava
combination of data, without needing to share it. Such aqgres
could have a significant impact on the way network operatdes-
act.

The approach we have proposed here for a specific problem is ac
tually quite general. It could be applied to other networsigems,
for instance inter-ISP capacity planning, and perhapsailsis pos-
sible to extend these methods outside of the networkingdwv@itie
important point is that GAs make the approach inherentlyilflex
to a range of problems where information sharing is undetgra
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