An Automated System for Emulated Network
Experimentation

Simon Knight
University of Adelaide
Cisco Systems

lain Phillips
Loughborough University

Hung Nguyen
University of Adelaide

Nickolas Falkner
University of Adelaide IJ

Olaf Maennel
Loughborough University

Randy Bush

Matthew Roughan
University of Adelaide

ABSTRACT

Emulated networks and systems, where router and server
software are run in virtual environments, allow network op-
erators and researchers to perform experiments at large scale
more economically than in testbeds. Running real code pro-
vides a greater level of realism than simulation.

However, large scale comes with a problem: running real
software means each test needs at least as much configura-
tion as a real network. To recognise the true value of emula-
tion at scale, we need to reduce the complexity of building,
configuring, deploying, and measuring emulated networks.

We present a system to facilitate emulation by provid-
ing translation from a high-level network design into a con-
crete set of configurations that are automatically deployed
into one of several emulation platforms. Our system can be
used to construct multi-domain networks in minutes, and
is scalable to networks with over a thousand devices. It is
modular, allowing support for different protocols, topology
designs, and target platforms: Quagga, JunOS, I0OS, etc.
Users, from both the research community and industry, have
already demonstrated its value in research and education.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Network
Operations—Network Management

Keywords

Emulation; Configuration Management;

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CoNEXT’13, December 9-12, 2013, Santa Barbara, California, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2101-3/13/12 ...$15.00.
http://dx.doi.org/10.1145/2535372.2535378.

This paper presents a tool that allows quick and easy con-
figuration of large-scale emulated networks. This tool repre-
sents network topologies as a series of layered mathematical
graphs. By using such an abstraction, we allow a user to
specify their network topology at a high-level—similar to
planning a network on a whiteboard—with an API to write
design rules. These construct topologies to represent the
complex relationships involved in protocol or service config-
uration. The abstraction allows users to quickly bootstrap
a network, with design rules to either allocate defaults for
parameters such as IP addressing, or to be specified directly.

Simplifying emulated network configuration allows net-
work researchers, operators, and educators to quickly pro-
totype low-cost large-scale network experiments, that can
realistically model network behaviour.

The aim of the system is not to provide network emu-
lation, but to generate configurations for existing network
emulation platforms. This paper discusses using the system
to generate configurations for the Netkit platform. However
it can easily be adapted to new routing protocols, services,
or emulation platforms, due to our use of overlay attribute
graphs to provide an abstract network representation.

Real networks consist of heterogeneous devices connected
by multi-layer protocols with higher-layer services. These
services run over the network itself, but also provide vital
features of the network (e.g., DNS or authentication ser-
vices). The interactions of these systems are complex, even
when devices perform as described. Subtle (often unspeci-
fied) features can cause unpredictable behaviour. And yet,
network operators need to deploy these networks with pre-
dictable results, students need to experiment with them as
part of active learning, and researchers need to develop new
ideas in just such realistic settings. The obvious solution—
building a hardware testbed—is costly and beyond the reach
of most, especially at a large scale. An alternative, where
software models the theoretical behaviour of an algorithm
or protocol in software, lacks vendor-specific bugs and im-
plementation details.

Emulation, where real router or server software is run in-
side virtual machines, enables large-scale networks to be con-
structed on modest or commodity hardware [9,23]. How-
ever, the very thing that makes emulations useful—their

verisimilitude—is also their Achilles heel. Real networks re-
quire configuration, and this is equally true for emulated
networks. The configuration problem has been shown to
be difficult to solve [4,8,13], and there are various projects
trying to solve it for live networks. However, the existing
solutions typically focus on particular aspects of the prob-
lem (most often routing, which is seen as both hard and
relatively dynamic), whereas for emulation, we need to con-
figure the entire network starting from blank configuration
files.

The configuration problem for emulation is further dif-
ferentiated from that of real networks by its typical use in
experimentation: we don’t just want to configure a single
network, but instead be able to consider many different net-
works to see the affect of changing parameters, protocols, or
even the network topology.

The goal of our work is to facilitate such experimenta-
tion by providing a system to automate configuration and
deployment of emulated networks.

Providing effective configuration tools for emulated net-
works involves many of the same problems of configuring real
networks. Historically, real networks have often been con-
figured by manual configuration of devices, using low-level,
device-centric configuration languages. However, device-level
configuration scales at best linearly in the size of the net-

work, but typically super-linearly because consistency amongst

all devices must be maintained. For instance, to set up a
single point-to-point link, two routers must have interfaces
correctly configured, including consistent IP addresses (that
must not overlap any others allocated in the network); rout-
ing protocol policies (e.g., link weights) must be correctly set
(also considering their effect on the whole network’s rout-
ing); and DNS entries must be correctly configured to map
the IP addresses to names. The repetitive, yet complex, na-
ture of the task has been shown [27] to cause many of the
problems observed in real networks.

Easing the burden of this task requires high-level, network-
wide abstractions, analogous with abstraction in program-
ming languages. Our system starts from such abstractions
with network design passed through a compiler to gener-
ate a device independent network resource database. This
is then converted into device-specific configurations using
templates, and deployed: deployment in emulated networks
involves creation of the virtual machines, their connectivity,
and their invidual configuration.

A crucial part of emulation is measurement. This allows
a user to test that the emulated network is functioning as
intended, but also to collect results from the experiment.
Mechanisms are provided to configure basic measurements,
for example traceroutes, as part of the emulation. An ad-
vantage of an emulation is that when traceroute is used, it
is the same binary application used by real world operators:
we are using the same, and can see the results that would
arise from real experiments. It also enables new network
tools to be tested on a realistic testbed: for instance, a load-
balancer-aware traceroute could be run.

A critical feature of our approach lies in the abstrac-
tions used, based on representing the network as a graph.
However a single graph does not capture the complexity of
IP networks, consisting of multiple layers, including service
overlays that each may be represented by a different graph.
Our multi-layed graph approach naturally allows construc-
tion of these graphs.

The result is a system that provides high-level, progra-
matic network design, template-based configuration, and au-
tomated deployment and measurement. It allows us to spec-
ify a network at an abstract level, but study it in all of its
complexity: networks of over 1,000 routers and 800 servers
have been created and run. It is flexible enough to allow ex-
perimentation with new protocols [17], or to consider com-
plex research questions, e.g., [18,19]. The system does not
cover all possibilities, but is extensible, and has been ex-
tended for use in several projects [10,28,31].

2. BACKGROUND

Experiments are an important part of research; a way for
operators to test new configurations before deployment; and
useful in teaching students. However setting up experiments
can be time-consuming and error-prone.

So how can researchers and operators conduct such ex-
periments? PlanetLab provides resources for realistic ex-
periments, but only limited control and repeatability. Hard-
ware testbeds offer realism and control, but purchase and
maintenance are expensive and devices may need to be re-
cabled for each new experiment, also limiting the scale of
such experiments.

Another choice is to use simulation software. Simulations
are low-cost, and scale to large networks, but simulations
focus on certain aspects of a network, sacrificing detail in
other aspects in order to constrain the simulation complex-
ity. Some simulation tools focus on a single issue (e.g., c-
BGP and the Border Gateway Protocol (BGP) [32]), but
even those that seek to be realistic over a wide range of net-
working components cannot replicate the full complexity of
real software. For instance, simulations don’t recreate soft-
ware bugs (unless specifically designed to do so). Further,
if a new protocol, service, or application is to be added to a
simulation, a new simulated version must be created.

Emulation [2, 22,23, 25,29] lies between the extremes of
hardware testbeds and software simulation. Instead of pur-
chasing specific physical hardware, routers and servers can
be run in software, as virtual machines on physical servers.
This brings realism, as both the individual protocol deci-
sion processes and the inter-protocol interactions are the
same as on production routers. It also simplifies creating
experiments: it is much simpler to create a virtual machine
than to purchase and ship physical routers and PCs, and
inter-device connections don’t require physical and complex
cabling. Finally, if we wish to add a new service, protocol
or other application, we can often use an existing software
package.

While emulation offers many benefits to networking re-
search, it is important to realise that it isn’t a complete
replacement for hardware testbeds. Router and switch ven-
dors have spent many years optimizing the performance of
their hardware, and so emulation versions cannot realisti-
cally expect to have the same throughput. Emulation is
also limited to seeing software bugs—we can’t see hardware
faults.

Emulation creates realistic routers that need realistic con-
figuration: a problem to solve in a static network (for a short
list of papers that discuss the problem see [4,8,13]). Auto-
configuration of emulations is more demanding:

e Experimentation requires changing variables to observe
the effects: emulation must support configuration of mul-
tiple networks.

e Scientific rigour requires that we repeat experiments mul-
tiple times to obtain statistical confidence in results, and
that we enable others to repeat our experiments (as ex-
actly as possible).

e It is important to avoid errors in real network configu-
rations, but at least they are detectable. In emulation
experiments, we must always be concerned that what we
are emulating is what we intend: particularly as there is
no feedback from customers on network events.

e We need more flexibility than a commercial environment:
typical networks consist of limited set of devices, but an
experiment may require observing an effect across equip-
ment models or vendors.

Configuration is a significant limitation of existing emula-
tion systems, which focus on providing an emulated network
environment. Netkit [29], Junosphere [23] and Dynagen [2]
all make it easy to create and connect virtual machines
to form complex network topologies, but leave the prob-
lem of configuration to the experimenter. Current research
on autoconfiguration, e.g., [4,8,13], focuses on production
networks and doesn’t directly solve the problems outlined
above.

A number of tools exist to aid in network configuration.
However these are typically written to assist with one spe-
cific aspect of the configuration process — commonly ex-
pressing BGP routing policy. These include RtConfig [33],
which uses the RPSL routing policy language, and can build
configurations for devices including Cisco IOS and Juniper
JunOS; bgp++_conf [5], which generates configurations for
the BGP++ simulator; and the Scalable Simulation Frame-
work [34], which automates the configuration required to
simulate routing protocol behaviour. In contrast, our system
has been designed to be holistic by providing a framework
to configure the network protocols and services required in
an experiment, rather than to meet a specific use-case. This
flexibility allows experiments to be extended to new proto-
cols and services and conducted across a variety of target
platforms. Further, with Python as the host language, our
system is cross-platform and easily extensible.

Our discussions with users of emulation in both the re-
search and operator communities confirmed the need for
autoconfiguration in experimentation and teaching. Recog-
nising the benefits of an automated system, some groups
we spoke to had developed their own custom set of scripts
to simplify emulation. However this is a sub-optimal solu-
tion: ideally there would be a standard platform provided to
the network community to facilitate repeatable research. It
should be vendor neutral (so as to allow comparisons across
different “equivalent” devices); flexible and extensible; scal-
able; and provide an integrated work-flow with a consistent
view of the whole experiment.

3. MOTIVATING CASE STUDIES

This section motivates the requirements of an emulation
system through a series of case studies.

3.1 Netkit Small-Internet BGP Lab

An initial motivation for automated network configura-
tion came from recreating Netkit’s tutorial Small-Internet
Lab [11] shown in Figure 1. Manually creating the required
configuration files for Netkit took several days, including
configuring OSPF and BGP in Quagga, entering 1P Ad-
dresses, creating the Netkit topology description of the vir-

/;e

szoh\

as OQ @\%

[==]
-
as200r1 as30r1 as40x1
~g -
asi 00% 1 00r1 assron asaToe
(==
as1 0013 -

as300r3 as300r4

Figure 1: The Netkit Small Internet Lab [11], with seven
Autonomous Systems (ASes) and fourteen routers.

tual routers and their interconnections, and testing and de-
bugging the setup. Much of the configuration becomes an
exercise in almost copying and pasting configuration blocks,
but ensuring that a few values are updated consistently.

This is instructive to learn about network configuration,
but large-scale experiments are impractical if small problems
takes days to configure. This led us to develop a prototype
configuration automation system [26]. The approach, mo-
tivated by [4], modelled the network as a series of objects,
which were pushed into templates to generate the device
specific configuration.

The Small-Internet lab could be described in approxi-
mately 100 lines of high-level API code (compared to 500
lines of configuration code), but in a more natural syntax,
and took under an hour to write. However, this tool was
still fundamentally device-oriented and required a human
operator to transcribe the network topology into the appro-
priate format. This is better than manual configuration, but
still time-consuming and error-prone: it is difficult to spot
topology mistakes in such a format. Additionally, it can be
repetitive to express network-level concepts at a device level.

This in turn motivated our current system, which aimed at
expressing network-level abstractions at the network level,
using attribute graphs. The system allows input from mul-
tiple sources, including graphical editors and network topol-
ogy collections.

Drawing, labelling, and connecting the routers and as-
signing them to ASNs took approximately two minutes. The
output was saved in GraphML and directly read into our sys-
tem, which took under a second to build the overlay topolo-
gies (discussed in §6), and compile these to templates. This
both dramatically sped up the process of specifying the net-
work, and means we can modify or rerun the experiment in
only seconds.

3.2 Large-Scale Model: European NRENs

Our tool can also build large networks, through the use
of abstraction in the design process. High-level design rules
operate on the provided input network topology. Our im-
plementation choices, which we discuss later in this paper,
have been made to allow fast design and configuration, that
scales for large numbers of nodes.

Data for experiments commonly come from a variety of
sources, including RocketFuel [35], the Internet Topology

Zoo [24], and programmatically generated network topolo-
gies. As a consequence, the system has been designed to
easily accept data from a variety of formats. In addition,
scale is a key issue for many experiments.

As an example of a large-scale network, we used the Euro-
pean Interconnect Model from the Internet Topology Zoo [24],
which is a model of the European National Research and Ed-
ucation Networks (NRENSs), connected through the GEANT

backbone network. This model contains 42 ASes, 1158 routers,

and 1470 links. On a typical laptop our system took 15 sec-
onds to load and build network topologies, 27 seconds to
compile the network model, and 2 minutes to render the
model to configuration files. The resulting set of configu-
rations files was 20MB uncompressed, with 16,144 items.
Large-scale emulations approach the limits of commodity
hardware: the NREN model consumes approximately 37GB
of RAM when implemented using Netkit, and uses signifi-
cant processor resources. The size of the emulated network
experiments is limited by the available hardware to host the
emulation, not the configuration tool: larger networks can
be generated for hosts with more memory and compute re-
sources.

3.3 Services

One of the key features of emulation, in comparison to
simulation, is its ability to include standard software ser-
vices, using the existing software for those services. For
instance, as Netkit is Linux based, it is straightforward to
run standard Linux packages in a Netkit VM. It also imposes
additional requirements on configuration software, which we
illustrate with two example services: DNS and RPKI.

The first example, the Domain Name System (DNS), is
a major part of modern networks. It provides translation
between domain names and IP addresses. Although often
seen as a service to network customers, DNS allows opera-
tors to label devices meaningfully, and used both for forward
translation, and as a reverse lookup (for instance in tracer-
outes). The ability to run standard services on our virtual
routers simplifies including a DNS server. As as with every
other component of the network it must be configured, and
that configuration has to be consistent with the name and
IP address allocations in the network. DNS can be config-
ured using our system, and has been used in an extension
involving content distribution [31].

However routing alone comprises a small set of network
experiments. There are many network experiments that re-
quire a realistic routing topology, but are concerned with
network services built on the top of these. In these cases au-
tomated configuration is even more important: automating
the experiment setup allows the researcher to concentrate
on their experiment, rather than setting up the laboratory.

Network experiments that combine both routers and servers
running network services are particularly well suited to em-
ulation. As Netkit is Linux based, it is straightforward to
run standard Linux packages. Our system can be extended
to configure such network services, with our routing config-
uration providing a realistic network to conduct such exper-
iments on.

A second extension of our basic system was conducted
by a group working under the auspices of the SIDR group
within the IETF, who are concerned with the creation of the
Resource Public Key Infrastructure (RPKI). The RPKI con-
sists of a set of CA servers with cryptographically secured

Input
Topology

‘ Configuration System

Network R Config
> +—| Compiler —

Design Generation

A4

Visualization

Device

& Plugins Configs
A
Measurement Deployment

Emulated Network

Figure 2: Our emulated network experimentation system,
consisting of a Configuration System and automated deploy-
ment and measurement modules. The Config Generation
and Network Design components are shown in greater de-
tail in Figure 3 and 4.

relationships in place. A set of cryptographically signed ob-
jects known as Route Origin Authorisations (ROA) are used
to attest the ownership of address space. The intention is
to distribute ROAs and Certificates to caches that will hold
data that routers use to make routing decisions so that pos-
sibly incorrect routes can be filtered.

The service network therefore consists of a set of CA
servers to which address space is assigned, publication points
where the data are made available and a distribution hierar-
chy to cryptographically check the held information before
it is passed to routers. The configurations for these systems
are based on information in an input graph. This graph
holds the CA services and uses labelled edges to express
the relationships between the servers. The graph also shows
the distribution hierarchy. The system creates a set of con-
figuration files for all the daemons and creates Linux VM
images that will put these files into place on boot. Using a
suitable hypervisor (currently KVM and libvirt are used for
VM management and Openvswitch to create a virtual layer-
2 network across multiple virtualisation hosts) we deploy the
many VMs together with their networking to a suitable set
of hosts, currently StarBed [1].

Topologies with over 800 Linux VMs have been deployed
successfully [28], with the system scalable to much larger
topologies.

4. CONFIGURATION SYSTEM DESIGN

The overall system structure is shown in Figure 2. There
are two key components: a device-configuration generator
and a network compiler.

To use the system, a user first specifies their network ex-
periment as the input topology: an annotated attribute-
graph. This graph is used by the Network Design module
to create the protocol and service topology network-level
overlay graphs. The Compiler module condenses these over-
lay graphs into a single device-specific graph, and can ap-
ply device-specific operations, such as subnet formatting, to
match the semantics of the target device.

The Configuration Generation module pushes the device-
specific graph into plain-text templates, to generate the con-

figuration syntax for the target device. The Deployment
module automates the transfer and launch of these gen-
erated configuration files, while the Measurement module
automates collection of network-related experiment data.
These can also be adapted as required by the experiment.
Finally, the plugins and visualization module allows analy-
sis and viewing of the topologies generated by the Network
Design module, and data collected from the Measurement
module. A more detailed system walkthrough is provided in
Section §6.

4.1 Device Configuration Generation

Network devices and services are configured through a set
of low-level commands, kept in a configuration file. The first
task is to generate these from a device-independent descrip-
tion of the network components. We perform this task using
the template-based approach used in several projects [4,13],
illustrated in Figure 3.

The Resource Database (generated by the compilation pro-
cess described below) stores device-vendor independent net-
work attributes such as hostnames, IP addresses, and links
between devices. A Configuration Generation module com-
bines this database with low-level templates that contain the
device-specific syntax of the targets. The templates include
simple logic, such as for loops, conditionals and variable sub-
stitution, or basic formatting, such as IP addresses, as found
in the PRESTO system [13]. Complicated transformations
are not performed in templates, but in a compiler module.

This approach provides transparency: as templates closely
mirror the target configuration language, so are familiar to
users experienced in network configuration. It also facilitates
support of a wide range of vendors, device models and OS
versions as these can added simply through addition of a
new template.

An example template is shown below (% indicates control
logic, and ${...} variable substitution):

hostname ${node.zebra.hostname}
password ${node.zebra.password}
% for interface in node.interfaces:
interface ${interface.id}
#Link to ${interface.description}
ip ospf cost ${interface.ospf_cost}
% endfor
router ospf
% for link in node.ospf.ospf_links:
network ${link.network.cidr} area ${link.area}
% endfor

© W N Uk W N e

S
= o

S
Resource Config |
Database Generation | Templates|
10S Quagga Junos C-BGP

Figure 3: A Configuration Generation System. A Resource
Database stores resources such as router names, IP ad-
dresses, and link costs. These are combined with device
syntax templates to generate low-level device configuration
files to deploy to emulated hosts.

4.2 Network Design and Compilation

GraphML —»| Loader

S
Compiler Resource
prie Database

Figure 4: The Network Design and Compilation System.
An input topology is used to create overlay graphs which
represent routing and service topologies, which the compiler
uses to create the device-independent view of the network
in the Resource Database of Figure 3.

Templates are well-suited to device-level configuration,
but not for expressing network-level abstractions. To keep
the templates light-weight, we restrict their use to the simple
logic outlined above. Adding the syntax to express network-
wide logic requires embedding a more feature-rich program-
ming language, which sacrifices both transparency and read-
ability.

Moreover, if templates try to cover too much ground, the
flexibility required results in a very large set of templates.
Each new option on a protocol may result in creating a new
set of templates; configuration can become an exercise in
maintaining a large library of templates.

Above our configuration generation process, we have a
compilation module. This isn’t quite the same as a program-
ming language compiler, but performs the logic to condense
the network-level overlay topologies to a format suitable for
input to the templates. This compiler module Python-based
which reduces complicated data transforms and target de-
vice semantics to an exercise in scripting. Decoupling these
operations from templates improves readability, as logic is
not mixed within router syntax; and allows extensibility and
re-use, as common logic is inherited between target devices.

The network design and compilation module we have de-
veloped is illustrated in Figure 4. It takes a labelled graph as
input (in GraphML, a graph interchange format), and first
uses the labels to create a set of arbitrary overlay graphs
expressing relationships for particular protocols or services
to be emulated. The figure illustrates these when used for
routing protocols, but the same abstraction is suitable, for
instance, for expressing the RPKI relationships described in
§ 3.3. The overlay graphs provide a flexible and extensible
method for implementing a large array of configurations, de-
scribed in more detail in the following section.

4.2.1 An Algebraic Approach: Attribute Graphs

The first input into our configuration model is the input
topology, represented as an undirected graph G, = (N, Ein)
with nodes n € A/ and edges e € &;,. Nodes represent net-
work devices, and edges the physical connectivity, or other
relationships, such as parent-child links in the RPKI exam-
ple.

In order to represent configuration attributes, we label the
nodes and edges. Assuming a node attribute of type X, each

(b) OSPF Topology

OO @ @
o ® oo

(d) eBGP Topology

(a) Input Topology

(c) iBGP Topology

Figure 5: Example network topologies. The OSPF, iBGP
and eBGP topologies can be constructed mathematically
from the input topology.

node n € N is associated with a unique label z,, given by a
function fx : NV — X, where X denotes the set of possible
values for attributes of type X. Edge attributes are assigned
in the same manner. Depending on the network services
to be configured on the network, there may be more than
multiple attributes for each node (or edge). For example, an
Autonomous System Number can be assigned to each node
using an attribute of type ASN with the attribute set Xasn
being the set of positive integers and defining the labelling
function fasn(n) that returns the ASN value for each node
nenN.

The above is nothing particularly new. What is novel
is the way we process it into separate overlays, which can
then be compiled and mapped separately through layer de-
pendent templates. We create separate graphs to represent
the network-wide routing and services (such as OSPF, iBGP
and eBGP) by algebraically defining graphs that overlay the
initial attribute graph. For each routing protocol or service
a rule is defined to automatically generate the routing pro-
tocol topologies from the attribute graph. For example, to
create the OSPF routing topology from an attribute graph
with a particular ASN, we define a graph with edges con-
structed by matching the ASN attribute of their incident
nodes with a simple rule such as

Eospr = {(1,7) € Ein | fasn (i) = fasn(4)}- (1)

Similarly, for an iBGP mesh, and the eBGP topology the
following rules are used

Eibgp = {(i,7) € N X N) | fasn(i) = fasn()}, (2)
Eebgp = {(%J) € &in | fasn(i) # fasn(j)}~ (3)

The rules are expressed in the compiler step, making ad-
dition of a new type of protocol or service as simple as spec-
ifying a single additional rule.

Consider the example in Figure 5. In this example, we
define the input topology as a graph, G, = (N, &) with
nodes and edges

N = {1"1, r2,r3,T4, 7‘5},

Ein ={(r1,72), (r1,73), (r2,74), (r3,74), (r3,75), (ra,75)}
and the ASN allocations X = {1,1,1,1,2} as shown in Fig-
ure da.

Applying the rules in (1), (2), and (3) we can create three
graphs Gosps, Gibgp and Gepgp to represent OSPF, iBGP
and eBGP routing topologies. Gospr retains the edges of

the physical graph, where an edge connects two nodes in
the same AS, Gepgp retains the edges of the physical graph
where an edge connects two nodes in different ASes, and
Gingp constructs new edges, between each pair of nodes in
the same AS. Applying these rules yields the following sets
of edges:

gOSPf = {(T17T2)> (7’1, T3)7 (7'2’ 7"4), (T37T4)}7
Eivgp = {(r1,72), (11, 73), (r1,74), (12,73), (T2, 74) },
)

gﬁbgp = {(T3ar5 ,(T4,7'5)}.

Finally, to complete configuration information for each
device, we condense the overlay graphs to a per-device state
graph by applying a set of rules, where the nodes, edges, and
associated attributes of each overlay graph are combined into
single attribute vectors for each node. Again the rules can
be expressed per layer, simplifying the addition of additional
protocols or services. The final state graph Gsiate has the
same structure as the input graph G;, but each node of this
graph is now labelled by an attribute vector to represent the
per-device state. These vectors can be pushed into the low-
level syntax templates. This state graph Gsiate can form the
Resource Database component of the Device-Configuration
Generator.

It’s important to note that in separating layers, we do not
assert that these are truly independent protocols. When
implemented they can still interact, and they still need con-
sistent configuration for details such as IP addresses. Such
consistency is achieved by cross-topology access in the com-
pilation stage, such as mapping the appropriate IP address
from an IPv4 topology onto the configuration for the eBGP
routing protocol.

5. SYSTEM IMPLEMENTATION

The system is implemented in Python, using existing toolk-
its where possible and extending if needed. This section de-
scribes our implementation of the modules in Figure 2 with
focus on components in Figure 4 where the system converts
high-level user input data into low-level per-device configu-
ration information.

5.1 Input Topology

The input graph is provided to the Loader module, where
it is converted into a NetworkX [21] representation. Net-
workX provides efficient data structures for graph represen-
tation and analysis, and can import and export from a num-
ber of graph interchange formats (GML, GraphML, ...), and
we provide an extension to read the Rocketfuel [35] data for-
mat.

Custom pre-processing such as applying default attributes
can also be applied in the Loader. This flexibility is impor-
tant because configurations are often derived from a number
of heterogeneous information sources [13].

5.2 Abstract Network Model

NetworkX provides a solid foundation to represent graphs,
but was not designed to work with multi-layer overlay topolo-
gies. To present an easy-to-use abstraction, we have devel-
oped a high-level API to meet the requirements for graph-
based network design. Our Abstract Network Model (ANM)
is a Python object containing a set of NetworkX graphs, and
provides a high-level API access to these graphs by wrapping

each of the graphs, nodes, and edges with a lightweight ac-
cessor object. The individual elements can then be treated
as objects, presenting a clean network design syntax.

5.2.1 Adding Overlays

By default the ANM includes two overlay graphs: an input
graph and a physical connectivity graph, which can be ac-
cessed as follows: G_in = anm[’in’] and G_phy = anm[’phy’].
New overlay graphs can be added, such as for OSPF: G_ospf
= anm.add_overlay("ospf").

Attributes can also be set at the overlay graph level, and
is used to record data relating to node groups, such as the
IP address allocations per AS on the IP graph. By stor-
ing the allocations on the overlay graph, we avoid duplicat-
ing this information on each node, and allow easy query-
ing by the ASN attribute value: G_ip.data.infra_blocks =
infra_blocks

We allow the user to copy across node and edge attributes
as they are added to an overlay graph. The attributes to
be copied can be specified by the retain parameter to the
add_nodes_from and add_edges_from functions. An example
is shown in Listing 6.1, and the attributes and their val-
ues are copied across to the nodes or edges in the destina-
tion graph. Attributes can also be copied to a different at-
tribute name: copy_attr_from(G_in, G_ospf, "ospf_area",
dst_attr = "area").

5.2.2 Working With Nodes and Edges

Nodes and edges can be accessed from an overlay graph :
G_in.nodes() and G_in.edges(). Attributes can be used as se-
lectors, e.g., G_in.edges (type = "physical"), Such attributes
can be easily added in graph editors such as yEd, and enable
edges to be selected programatically, such as those leaving
a particular AS.

The Python set operators, such as union and intersection
can be used on such sequences.

The device_type attribute marks a node as a router, switch,
server, or user-definable device type allowing extensibility to
non-router network devices. Shortcuts such as G_in.routers()

to access G_in.nodes (device_type = router) allow succint node

access.
Nodes and edges can then be added to the overlay:

1 G_ospf.add_nodes_from(G_in.routers())
2 G_ospf.add_edges_from(G_in.edges())

By using the device_type selector, our system allows con-
figuration of arbitrary devices, with only the appropriate
nodes being selected. For instance, in constructing the rout-
ing overlays, we only select routers; if a user wishes to add
servers or a new device type, they will not be selected in the
query to construct the routing overlay.

To reduce the syntax to access node and edge properties
and simplify cross-layer access, nodes and edges are accessed
as objects. These refer back to the underlying NetworkX
data structure, but provide a simple API access to the end
user. The node and edge wrappers allow simple program-
matic access to and assignment of user-defined attributes
using node.attr and edge.attr.

Python’s list comprehensions are well-suited to filtering
edges based on node properties. A common design pattern
is to select nodes to operate on by some attribute using these
wrappers, e.g.,

1 [n for n in G_in if n.asn == 200]

Once an overlay graph has been created, and nodes and
edges added as appropriate, then attributes can e modified,
or edges added. These added edges can represent OSPF
adjacencies, BGP sessions, or service tasks such as client-
server relationships.

Finally, we can nest iteration, first looking at a node, and
then at the edges originating from it. For example, to mark
a node as being a backbone router if it has an edge in area
Z€ro:

1 for node in G_ospf:

2 if any(e.area == 0 for e in node.edges()):
3 node.backbone = True

This could then be used to configure different parameters,
or assign routing policies in the templates. With the API,
such network-level reasoning becomes not only simple to
construct and read, but also easy to extend, to support more
advanced topology design.

5.2.3 Using the API for Network Design

The API features allow overlay graphs to be constructed
by selectively adding or removing nodes or edges. For in-
stance, an IGP graph can be constructed by copying the
input graph, and then removing the links that cross ASN
boundaries.

1 G_ospf.remove_edges_from(e for e in G_ospf.edges()
if e.src.asn != e.dst.asn)

Another use is selecting a corresponding node in another
overlay graph. The add_nodes_from function copies node_id
values automatically, providing an easy method to reference
nodes across these graphs. Additional attributes can be
specified to be copied across graphs for use when properties
in one graph, such as physical connectivity, may be used to
set attributes in another graph, for instance to mark a node
as a route reflector or a server. This cross-layer selection
is used extensively in the compiler, where multiple overlay
graphs are condensed into a single device-level representa-
tion for configuration generation. For instance, when con-
figuring iBGP, we require the loopback attribute assigned
to the node in an IP addressing graph. We access the IP
addressing graph, and subsequently the loopback attribute
from the iBGP node as follows:

1 for ibgp_node in G_ibgp:

2 loopback = G_ip.node(ibgp_node) .loopback

5.2.4 Attribute-Based Functions

Functions also exist to represent common network design
tasks. These include split (), which splits an edge by creat-
ing a new intermediate node; aggregate () which collapses the
selected nodes into a single node; and explode() which re-
moves a node, forming a clique of its neighbours. These func-
tions are useful to create the IP addressing overlay, which
places a collision domain on all links, to which the appropri-
ate subnet block is allocated. Point-to-point links are split
to add a collision domain, whilst switches are aggregated
together to form a single collision domain. The explode()
function can be used to determine adjacency of nodes con-
nected via a switch.

The groupby () function takes a set of nodes and a grouping
attribute and returns a series of (attribute, node) tuples.
This can be used to perform operations on a per-ASN basis,
and applied to multiple attributes, such as an iBGP cluster
attribute.

5.3 Resource Allocation and IP Addressing

An important, but time consuming and tedious task in
creating a network is allocating resources. The canonical
example is IP addresses. The allocation must follow certain
rules (primarily uniqueness and consistency), but in most
emulated networks the actual values allocated are inconse-
quential. These types of resource allocations are analogous
to allocating memory in traditional programming—we want
to leave that to the compiler and operating system where-
ever possible.

Therefore, IP addresses are automatically allocated. The
allocation is implemented as a plugin, allowing users to ex-
tend the module and use a custom scheme or methods from
literature, e.g. [12]. The Python netaddr library, which sim-
plifies handling of TP addresses, is used to construct an IP
overlay graph with the router and server nodes from the in-
put graph. We allocate IP addresses in two distinct blocks:
one for loopback addresses on routers, and another block
for infrastructure links. These allocations are recorded, and
indexed by ASN for use in other protocols such as eBGP or
DNS.

5.4 Compiling Overlay Graphs

The compiler combines both the inbuilt and user-defined
overlay topology graphs into a single device-level topology,
to push into the text-based templates. This is performed by
first creating the Resource Database (sometimes referred to
as a Network Information DB or NIDB), which is a device-
level graph, based on the nodes and edges in the physical
graph, G_phy.

The next step of the compiler is implemented as two base
objects: platform configuration, such as Netkit or Dynagen;
and device syntax configuration, such as Quagga or Cisco
IOS. This allows a combination of device types using differ-
ent emulation platforms.

The platform compiler module constructs information needed

by a particular emulation platform, allocates platform spec-
ified information, such as interface names (interface name
formats are dependent on the platform), and management
IP addresses, and performs platform based formatting, such
as removing any invalid characters from hostnames. It also
establishes communications: for instance, Netkit provides
management interfaces connected using the TAP interface
ability of Linux, where these TAP interface IP addresses
are allocated by the Netkit platform compiler. We provide
a separate reference implementation for Dynagen, Netkit,
Junosphere, and C-BGP.

The platform compiler module then calls the per-device

compilers. The generic router compiler consists of base compile (),

ospf (), interfaces(), and bgp() functions. These can be ei-
ther overwritten in the inherited device compilers, or ex-
tended by calling the super() module, or added to for new
overlays.

An example subset of the resulting Resource DB output
for as100r1 of the Small-Internet Case Study is shown be-
low: An example subset of the resulting Resource DB output
is shown below:

1 "render":

2 {"base": "templates/quagga"

3 "base_dst_folder": "localhost/netkit/as100ri"},

4 "zebra": {"password": "1234", "hostname":
"as100ri"},

5 "ospf": "process_id": 1,

6 {"ospf_links": [

7 {"network": "192.168.1.4/30", "area": 0},

8 {"network": "192.168.1.0/30", "area": 0},

9 {"network": "192.168.1.68/30", "area": 0},
10 {"network": "192.168.1.8/30", "area": 0} 1},
11 "interfaces": [

12 {"description": "as100rl to as100r3",

13 "ospf_cost": 1, "id": "ethi"},

14 {"description": "as100rl to as100r2",

15 "ospf_cost": 1, "id": "eth2"}]}

Finally, cross-emulation platform connections can be re-
alised using our querying language, by selecting links which
traverse two target hosts, or target emulation platforms on
the same host, much in the same way as we select inter-
ASN links to construct eBGP sessions. The appropriate
cross-machine connections, such as GRE tunnels between
distributed Open vSwitches, can be created from the re-
sulting edge sets. The result is that emulations written on
different platforms or, in principle, real hardware can be
connected.

5.5 Resource Database Rendering Attributes

Along with the device configuration attributes, the Re-
source Database contains a set of render attributes. These
contain references to the correct templates to use, as speci-
fied by the user, and the output files to which we will write
the configuration files, as determined by the platform re-
quirements.

Some devices require more than one configuration file,
such as the /etc/zebra/ directory for Quagga. In these cases
we also allow an input and output folder to be specified. In
this case, the input folder is a user-specified directory con-
taining both static files and template files, which is copied to
the output folder. This allows simple specification of nested
folders to configure services, without requiring code to be
written.

5.6 Visualization and Real-Time Feedback

Our system enables the design and configuration of com-
plex, large-scale topologies. However, the very problem that
creates the need for autoconfiguration makes these hard to
debug. In particular, it is difficult to determine that the
programmed network design rules are indeed what the user
intended.

We address this with a real-time feedback system that
automatically renders the overlays, which allows immediate
visualization of network topologies, allowing the user to see
the created nodes and edges of each overlay topology, la-
belled by user-selected attributes. Nodes can be grouped by
attributes, such as an ASN or OSPF area, with full attribute
information available by hovering over a node. This allows
the effect of a change, such as modifying the rule to connect
edges in an OSPF graph, to be instantly visible to the user.

The visualization system is implemented using D3.js [7],
allowing viewing in a modern web-browser, which allows
cross-platform visualization, without adding installation de-
pendencies to the system. Our system includes a webserver,
written using the Tornado Python package. Browser clients
connect to the webserver, which provides the HTML and
Javascript pages, and opens a WebSocket connection for
real-time information transfer. As our visualization system
is built on open standards and libraries, including D3.js, Tor-
nado, WebSockets, and uses the JSON interchange format, it
could be decoupled from our main configuration generation

tool, and developed as a standalone open-source network
visualization system.

The Small-Internet plots shown in Figure 1 and Figure 6
were automatically generated using the visualization system.

as200r1 as30r1 as4\

as100r2 as100r1 as300r1 as300r2

as100r3
as300r3 as300r4

Figure 6: The Netkit Small Internet Lab [11], showing eBGP
overlay topology constructed using network design rules.
BGP sessions are established in each direction, indicated
in the visualisation by dual lines between each appropriate
node pair.

5.7 Deployment and Measurement

The principal focus of the system is generating large-scale
network configurations with a high degree of flexibility. How-
ever, to run these configurations as an emulated network
requires copying the configurations to the emulation server
or virtualization platform, executing start commands, and
monitoring launch progress.

The system automates the steps of deployment, launching
and measurement. These components use expect scripts as
these are available on most systems, including both routers
and servers.

The measurement system consists of a small client that
sits on the emulation hosts. A remote measurement client
simplifies the parallel collection of data: a single measure-
ment client on the emulation server can connect to multiple
virtual machines on the same physical host, speeding up
data collection. TextFSM [16] is used to parse the results
back in a structured manner, and provides a reference tem-
plate for Linux traceroute. As we know the IP allocations,
we map the IP addresses back into the hosts they represent.
By applying our selection function from our overlay graphs,
we can build and deploy a network, run a series of tracer-
outes, parse the results, and present the paths back to the
user as a list of overlay nodes suitable for processing. These
results can be analysed as Python data structures, stored as
data files, or visualized.

6. SYSTEM USE

Our approach requires up-front coding to write the net-
work design rules, but by separating the design rules and
the input topology, the same rules can be applied to differ-
ent input topologies. Hence, the same pieces of code can be
used immediately on much larger topologies, without the re-
quirement to rewrite the code. That encourages reusability,
and means that many projects may not need to write any

code for their experiments: just provide an annotated input
topology.

Decoupling the network topology and design rules also
allows network configuration tasks to be divided. Input
topologies could be created or maintained by students or
operations staff, with the protocol or service design rules
(and design sanity-checks) written by lecturers or Domain
Experts — on a per-protocol basis if necessary. The com-
piler and templates can be written by those with expertise
in the specific target syntax.

The system can scale to networks with thousands of de-
vices: the European NREN model took 2 minutes from input
topology to generated configuration files. The main perfor-
mance limitation is in file system operations to write the
configuration files to disk. While the NetworkX graph li-
brary [21] is efficient for large networks, configuration re-
quires iterating over edges (such as physical links or BGP
sessions), which can become time-consuming for dense topolo-
gies, such as full-mesh iBGP. This computational complex-
ity is also a problem in the running network, not just at
configuration-time: iBGP provides route-reflectors to reduce
the number of sessions between router pairs, which we dis-
cuss this further in § 7. Finally, the performance of any
task-specific functions should be considered. These tasks,
such as server encryption key computation, are inherent to
the underlying configuration — they would also need to be
performed for manual configuration — and are not due to
our framework.

6.1 System Walkthrough

This section shows the system by summarising the steps to
recreate the Netkit Small Internet Lab § 3.1, and simplicity
compared to manual deployment.

We first create the base object anm (line 1 below), and
import the topology description from a GraphML file us-
ing the load_graphml module, which checks the topology
for validity and applies defaults including setting the nodes
device_type attribute to router, platform to netkit, and
syntax to quagga.

1 anm = AbstractNetworkModel()

2 data = load_graphml("small_internet.graphml")

3 G_in = anm.add_overlay("input", graph = data)

4 G_phy = anm[’phy’]

5 G_phy.add_nodes_from(G_in, retain=[’device_type’,
’asn’, ’platform’, ’host’, ’syntax’])

6 G_phy.add_edges_from(G_in.edges(type="physical"))

While some network information is derived from the topol-
ogy, additional assignment of attributes may be required to
complete the specification. These attributes, such as de-
vice type or platform, are then used in the design of overlay
graphs for protocols and services.

The routing overlay graphs can be added using the overlay
API shown below. In this example OSPF, eBGP and iBGP
are configured with two lines of code each using the ability to
select subsets of existing graph sets through the use of logical
operators. For default use of these protocols these lines could
be used directly, but the syntax allows more complicated
configurations.

1 rtrs = list(G_in.routers())

2

3 G_ospf = anm.add_overlay("ospf", rtrs)
4

G_ospf.add_edges_from(e for e in G_in.edges() if
e.src.asn == e.dst.asn)

6 G_ebgp = anm.add_overlay("ebgp", rtrs, directed = 1)

7 G_ebgp.add_edges_from((e for e in G_in.edges() if
e.src.asn != e.dst.asn), bidirected = 1)

8

9 G_ibgp = anm.add_overlay("ibgp", rtrs, directed = 1)

10 G_ibgp.add_edges_from(((s, t) for s in rtrs for t in
rtrs if s.asn == t.asn), bidirected = 1)

With overlay graphs defined, the system compiles the net-
work representation to produce the Resource Database, which
the renderer applies templates to, producing device configu-
rations. An example router configuration is provided below,
rendered using the template in Listing 4.1 and the Resource
DB subset in Listing 5.4.

1 hostname as100ril

2 password 1234

3 interface ethl

4 #Link to as100rl to as100r3

5 ip ospf cost 1

6 interface eth2

7 #Link to as100rl to as100r2

8 ip ospf cost 1

o router ospf

10 network 192.168.1.0/30 area 0O
11 network 192.168.1.4/30 area 0
12 network 192.168.1.68/30 area 0
13 network 192.168.1.8/30 area 0O

We now have a set of configurations that are ready to be
deployed and activated. Automatic deployment of a com-
piled set of configurations requires three parameters: the
emulation host, username on the host, and the source direc-
tory containing the configuration file. These parameters are
obtained from the Resource DB.

The Netkit deployment script archives the generated con-
figuration files, transfers them to the emulation host, ex-
tracts them, and runs the Netkit 1start command. The
progress is monitored with updates provided to the user
through logs and the visualisation. The module to trans-
fer, extract and monitor the lab is less than one hundred
lines of high-level Python code, and can be extended with
basic scripting experience.

Measurements may also be auto-configured, either to ver-
ify that the topology is correct, or as part of the experiment
itself. This task can be automated. The code required to
configure a set of traceroute measurements and the resulting
output is shown below.

1 dst = choice(list(nidb.routers())).interfaces[0]
2 cmd = "traceroute -naU %s" % dst.ip_address

3 hosts = [n.tap.ip for n in nidb.routers()]

4 measure.send(nidb, cmd, hosts)

We now have a fully deployed virtual router network, run-
ning in emulation and available for experimentation.

The output snippet below shows the result of actual tracer-
oute code, from the standard Linux IPv4 traceroute com-
mand. We use the TP Allocation mapping to translate each
hop back into router names, as shown in line 5. This can
then be easily and accurately translated into an AS path.

1 192.168.1.34 0 ms 2 192.168.1.25 0 ms

3 192.168.1.82 0 ms 4 192.168.1.73 0 ms
5 192.168.1.69 0 ms 6 192.168.1.2 0 ms

[

[as300r2, as40rl, asirl, as20r3, as20r2, as100ri,
as100r2]

o

=N

7 import autonetkit.ank_messaging as msg
8 nodes = [path[0], path[-1]]

9 msg.highlight(nodes, [], [pathl)

An example of plotting this traceroute data as a path is
shown in Figure 7. The code to do so is shown in lines 7,
8 and 9, where the highlight function is used to show both
the path, and the source and destination nodes. Using a
visualization to view collected data makes incorrect paths
quickly apparent, and allows large datasets to be viewed.

as30r1

as300r1

(==}
-
as300r3 as300r4

Figure 7: The Netkit Small Internet Lab [11], with exam-
ple traceroute output visualized as a path, and source and
destination nodes highlighted.

7. EXTENDING THE SYSTEM

The attribute graphs we use as our underlying abstraction
allow easy extension, either to add protocols, or to program-
matically define network attributes.

An example is adding a new routing protocol such as IS-
IS, which requires three steps: adding an isis overlay graph
using the high-level API; extending the device compiler to
condense the overlay attributes into the Resource Database;
and creating the text template for the resulting configura-
tion. Each step is modular: the attribute graph approach
reduces the often-complex task of supporting a new proto-
col or service to the complexity inherent to the task. Basic
IS-IS support requires 2 lines of design code, and 15 lines in
the compiler.

7.1 Hierarchical iBGP

The simplest iBGP design, a full-mesh, requires O(n?)
connections. One way to solve this scalability problem is to
use route-reflectors [3]. Here we discuss two ways of imple-
menting route-reflector hierarchies.

Nodes can be labelled as route-reflectors by adding an
boolean attribute, rr, set to true (or false if a client). The
iBGP overlay topology is then constructed based on these
attributes, by adding a session between all (rr, rr) and (rr,
client) pairs. This constructs an iBGP hierarchy congruent
with the physical network (recommended to avoid oscillation
problems§ 7.2).

Since the designation of a router to be a route-reflector
is attribute-based, it can be automated to allow algorithmic
design.

The unwrap_graph function is used to access the underly-
ing NetworkX graph, to which a centrality algorithm such
as degree_centrality is applied, and the results filtered to
select the most central routers.

As the underlying graph is indexed by node ids, the query-
ing syntax is used access the API for the node: for instance,
G_ip.node (’UK’) will return an overlay node for the UK node
id. The API is the used to mark these routers are being
route-reflectors, and apply the same edge connection logic
as for the manual case.

Combining the attribute-based configuration approach with
NetworkX graph algorithms enables powerful and succinct
extensions for network design and analysis.

7.2 Validating Theory: Bad Gadget

The system can also be extended to validate networking
theory, such as the subtle problems in protocols, particularly
those resulting from protocol interactions.

One such interaction is that of routing oscillations, such
as in Bad-Gadget [19], whereby a routing protocol never
converges to a fixed, consistent set of forwarding decisions.
Bad-Gadget is an abstraction of the action of the BGP, but
such oscillation has been observed in conjunction with the
Multi-Exit Discriminator (MED) [20] Even if MED use is
disabled, oscillation can occur at interaction between the
IGP and BGP routing protocols. This type of interaction
can be hard to simulate.

While this is an old problem, to illustrate the experimen-
tal approach in the spirit of [22], we have re-created it in
emulation. Edge and nodes attributes were assigned graphi-
cally, and setup took less than five minutes. This allows the
researcher to concentrate on their experiment, rather than
setting up the laboratory. It allows us to simply demon-
strate the potential to oscillate using repeated, automated
traceroutes, without concerning ourselves with inconsequen-
tial details.

The system made it easy to implement the same network
model on different types of router. We did so on Quagga,
I0S, Junos, and C-BGP. Oscillations were observed in the
last three, but not in Quagga. Detailed investigation re-
vealed this was due to the Quagga implementation of BGP,
where the IGP tie-break wasn’t used by default. This illus-
trates the importance of emulation: we would not have seen
this issue if we just simulated an idealised model of the BGP
process.

The result highlights a requirement of emulation toolkits:
the importance of using multiple platforms to verify results
and to allow such comparisons.

7.3 Other Extensions

The approach of attribute graphs can be extended beyond
the basic Python primitives of lists, integers and strings. By
using Python and NetworkX, the extensions can leverage
both the Python package library and the rich set of Net-
workX algorithms. This allows custom plugins to be cre-
ated for tasks such as resource allocation (such as a new IP
addressing scheme) or network analysis.

One especially complex network configuration task is ex-
pressing routing policy, used to influence the routing decision
process to meet business and engineering goals. There exist
both tools to assist this process [33] and studies into routing
policy [6,14].

Due to both the complexities of routing policy [14] and the
number of existing tools in the area, we do not specifically
attempt to automate routing policy. Instead, our approach
of attribute graphs allows existing tools to be integrated.
The routing policy can be stored as a string attribute on

the edge in the iBGP topology graph (similar to the configlet
approach of [6]), or use attributes that are transformed in
the compiler. The string policy could be generated using
an existing tool by passing the topology (as a graph) to
the external tool, and then storing the returned policy onto
the edges, which are stored in the Resource Database and
written in the templates.

Another extension is integration with external network de-
vices, either emulated or physical hardware. An advantage
of emulation over simulation is that real packets — not sim-
ulations representing packets as internal data structures —
are passed between devices. This allows integration with ex-
ternal networks, including services running on the emulation
host (such as for scripting or a BGP feed), or connection to
a set of lab hardware. In Netkit this external connectivity
can be implemented using the vde_switch package.

Finally, supporting a new target platform is a matter of
inheriting the base device compiler (due to inheritance this
could even build on one of our example compilers), and
building the test-based render template. Multi-file configu-
rations can be rendered using our template folder structure.

This ease of adding platform support is enabled through
the use of the compiler to condense the overlay design graphs
into the device-oriented format, and our use of text-based
templates.

8. CONCLUSION

Large-scale network configuration is complex and error-
prone, whether configuring a set of real devices, or the soft-
ware systems emulating them. This configuration burden
may be justifiable in a commercial setting, in response to
customer or technical demand. However, research experi-
mentation require a repeatable set of configuration opera-
tions, which only differ slightly.

Emulation provides a way to support experimentation,
testing, and “what-if” analysis, but this only reduces the ex-
pense and inconvenience of real hardware: it does not reduce
the configuration burden. In this paper we have described
a system that reduces configuration burden and, by the use
of abstraction, graphs, and templates provides a more man-
ageable approach to network configuration at scale.

This system is open-source, available on GitHub, and in-
stalled through the Python Package index.

It is used by network operators, in Cisco’s Virtual Internet
Routing Lab framework [10], in University teaching, and a
base for published research. Our system offers an emulated
experimentation platform which we hope can be extended
by the networking community in future projects.

The system can be enhanced in many ways: by creating
tools to emulate workflow, or incidents, or adding formal
verification. The measurement framework allows the cap-
ture and parsing of router and server status. These could be
compared to the created overlay graphs to assert deployment
success and validate experimental results. Offline verifica-
tion systems could be applied prior to deployment, applying
static checking [36] or stability detection [15]. Integrating
pre- and post-deployment verification systems allows test-
driven network development [30].

Finally, the system has been designed to enable experi-
mentation on emulated networks. However, since emulation
runs the same software as hardware devices, many of the
configuration complications remain the same. While aspects
such as deployment are different, our work in abstraction

and configuration offers insight into broader network config-
uration challenges.

Acknowledgements

The authors wish to acknowledge support from the Aus-
tralian Research Council through ARC Linkage Grant
LP100200493, and an Australian Postgraduate Award.

We would like to thank the suggestions, discussions, and
coding contributions from Niklas Semmler, Askar Jaboldinov,
Benjamin Hesmans, Olivier Tilmans; and members of the
VIRL team at Cisco: Joel Obstfeld, Ed Kern, Tom Bryan,
Dan Bourque, Miroslav Los, Qiang Sheng Wang, Scott An-
derson, and Tan Wells.

We are grateful to our anonymous reviewers, and to our
shepherd Xenofontas Dimitropoulos, for their valuable feed-
back and comments. These improved the final version of
this paper.

9. REFERENCES

[1] Starbed. http://www.starbed.org/.

[2] G. Anuzelli. Dynagen. http://www.dynagen.org.

[3] T. Bates, E. Chen, and R. Chandra. BGP route reflection:
An alternative to full mesh internal BGP (IBGP). RFC
4456, April 2006.

[4] S. Bellovin and R. Bush. Configuration management and
security. IEEE JSAC, 27(3):268-274, 2009.

[5] BGP++ Configuration Utility. . http://www.ece.gatech.edu/
research/labs/MANIACS/BGP++/bgppp_conf.html.

[6] H. Boehm, A. Feldmann, O. Maennel, C. Reiser, and
R. Volk. Design and Realization of an AS-Wide
Inter-Domain Routing Policy. pages 1-27, Mar. 2009.

[7] M. Bostock, V. Ogievetsky, and J. Heer. D3: Data-Driven
Documents . IEEE Transactions on Visualization and
Computer Graphics, 17(12), Dec. 2011.

[8] X. Chen, Z. M. Mao, and J. Van der Merwe. PACMAN: a
platform for automated and controlled network operations
and configuration management. In CoNEXT ’09, Dec. 2009.

[9] Cisco Systems. Cisco Cloud Service Router 1000V Series.
http://www.cisco.com/en/US/products/ps1256569/index.html.

[10] Cisco Systems. Virtual Internet Routing Lab. http://www.
cisco.com/web/solutions/netsys/CiscolLive/virl/index.html.

[11] G. Di Battista, M. Patrignani, M. Pizzonia, F. Ricci, and
M. Rimondini. NetKit-lab BGP: small-internet. In
wiki.netkit.org. Roma Tre University, May 2007.

[12] J. Duerig, R. Ricci, J. Byers, and J. Lepreau. Automatic IP
address assignment on network topologies. Technical
Report Flux Technical Note FTN-2006-02, Feb. 2006.

[13] W. Enck, P. McDaniel, S. Sen, and P. Sebos. Configuration
management at massive scale: System design and
experience. USENIX ’07, June 2007.

[14] N. Feamster. Detecting BGP configuration faults with
static analysis. In NSDI ’05, 2005.

[15] A. Flavel and M. Roughan. Stable and flexible iBGP. ACM
SIGCOMM Computer Communication Review,
39(4):183-194, 2009.

[16] Google Inc. textfsm. http://code.google.com/p/textfsm/.

[17] T. Griffin. The Stratified Shortest-Paths Problem (Invited
Paper). COMSNETS, Jan. 2010.

[18] T. Griffin and G. Huston. BGP Wedgies. Technical report,
IETF RFC 4264, Nov. 2005.

[19] T. G. Griffin, F. B. Shepherd, and G. Wilfong. The stable
paths problem and interdomain routing. IEEE/ACM
Transactions on Networking (TON), 10(2), Apr. 2002.

[20] T. G. Griffin and G. Wilfong. An analysis of the MED
oscillation problem in BGP. In ICNP, 2002.

[21] A. Hagberg, D. Schult, and P. Swart. Exploring network
structure, dynamics, and function using networkx. In 7th
Python in Science Conference, Pasadena, CA USA, 2008.

[22] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and
N. McKeown. Reproducible network experiments using
container-based emulation. In CoNEXT ’12, Dec. 2012.

[23] Juniper Networks, Inc. Junosphere User Guide. Aug. 2011.

[24] S. Knight, H. Nguyen, N. Falkner, R. Bowden, and
M. Roughan. The Internet Topology Zoo. Selected Areas in
Communications, IEEE Journal on, 29(9):1765-1775, 2011.

[25] B. Lantz, B. Heller, and N. McKeown. A network in a
laptop: rapid prototyping for software-defined networks. In
Hotnets 10, Oct. 2010.

[26] H. Nguyen, M. Roughan, S. Knight, N. Falkner,

O. Maennel, and R. Bush. How to Build Complex,
Large-Scale Emulated Networks. TridentCom, 46:3, 2011.

[27] D. Oppenheimer, A. Ganapathi, and D. A. Patterson. Why
do Internet services fail, and what can be done about it? In
(USITS “03), 2003.

[28] I. Phillips, O. Maennel, D. Perouli, R. Austein, C. Pelsser,
K. Shima, and R. Bush. RPKI propagation emulation
measurement: an early report. IETF Talk, July 2012.

[29] M. Pizzonia and M. Rimondini. Netkit: easy emulation of
complex networks on inexpensive hardware. In Tridentcom
2008, page 7. ICST, Mar. 2008.

[30] M. Pizzonia and S. Vissicchio. Test Driven Network
Deployment. Technical report, Dipartimento di Informatica
e Automazione, Universita di Roma Tre., Mar. 2009.

[31] L. Poese, B. Frank, S. Knight, N. Semmler, and
G. Smaragdakis. PaDIS emulator: An emulator to evaluate
CDN-ISP collaboration. ACM Sigcomm Demonstration,
2012.

[32] B. Quoitin and S. Uhlig. Modeling the routing of an
autonomous system with C-BGP. Network, IEEE,
19(6):12-19, 2005.

[33] RtConfig. . http://irrtoolset.isc.org/wiki/RtConfig.

[34] Scalable Simulation Framework (SSF). .
http://wwu.ssfnet.org/homePage.html.

[35] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson.
Measuring ISP topologies with rocketfuel. Networking,
IEEE/ACM Transactions on, 12(1):2-16, Feb. 2004.

[36] L. Vanbever, G. Pardoen, and O. Bonaventure. Towards
validated network configurations with NCGuard. IEEE
Internet Network Management Workshop, 2008.

http://www.starbed.org/
http://www.dynagen.org
http://www.ece.gatech.edu/research/labs/MANIACS/BGP++/bgppp_conf.html
http://www.ece.gatech.edu/research/labs/MANIACS/BGP++/bgppp_conf.html
http://www.cisco.com/en/US/products/ps12559/index.html
http://www.cisco.com/web/solutions/netsys/CiscoLive/virl/index.html
http://www.cisco.com/web/solutions/netsys/CiscoLive/virl/index.html
http://code.google.com/p/textfsm/
http://irrtoolset.isc.org/wiki/RtConfig
http://www.ssfnet.org/homePage.html

	Introduction
	Background
	Motivating Case Studies
	Netkit Small-Internet BGP Lab
	Large-Scale Model: European NRENs
	Services

	Configuration System Design
	Device Configuration Generation
	Network Design and Compilation
	An Algebraic Approach: Attribute Graphs

	System Implementation
	Input Topology
	Abstract Network Model
	Adding Overlays
	Working With Nodes and Edges
	Using the API for Network Design
	Attribute-Based Functions

	Resource Allocation and IP Addressing
	Compiling Overlay Graphs
	Resource Database Rendering Attributes
	Visualization and Real-Time Feedback
	Deployment and Measurement

	System Use
	System Walkthrough

	Extending The System
	Hierarchical iBGP
	Validating Theory: Bad Gadget
	Other Extensions

	Conclusion
	References

