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Internet Loss Measurement

e Network operators continuously perform loss measurements

o SLA contracts
o We need to know that the problem exists before we can fix it

o Active probing: inject probe packets into the network

good run loss run
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Probes

® Many IETF standards (RFC3357, RFC2330) and commercial
products (Cisco IOS IP SLA, Agilent's Firehunter PRO)
o Poisson Probes — PASTA (Poisson Arrivals See Time Average)

* N samples, typical loss metrics

o loss rate = # of successes/N (RFC2330)
o lengths of loss and good runs (RFC3357)
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Accuracy of Loss Measurements
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probes.
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Errors In loss estimates
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* PASTA is an asymptotic result (N —» 0)
®* We need to compute the statistical errors of the estimations (e.g., variance)

o Lossrate: p= _El ,

L. is the indicator function of probe ith

1 N N 1 N N
o Variance:VAR(P)—N—EE 11)-p" =273 DRT,
i=1 j=1 i=1 =1

J

R( T ;) is the auto-covariance function of probes ith and jth

K ® Probes miss ON/OFF intervals




The auto-covariance function R(T;)

o Empirical computation

o R( T ;) can be computed directly from the samples

* Assume independent samples (commonly used)

VAR(p)= p(1-p)/N

* But losses are correlated, a model for the underlying loss

process that captures sample correlation

o Alternating Renewal ON/OFF model: {A;},{B,;} are
independent

o {A},{B.} are Gamma distributed with parameters (k,, © ;)and
k,0)




Inferring model parameters

® Missing intervals problem
o Many short ON (or OFF) periods are not observed
o loss run lengths and good run lengths observed by the probes

are much larger than the real values

* Hidden Semi-Markov Model (HSMM) to the rescue
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Forward and Backward Algorithm

* Estimating (k,, O and (k,, © ) is a statistical inference with
missing data problem
® Direct Maximum Likelihood Estimation is costly

o O(24Y), U is the number of un-observed intervals

e Forward and Backward algorithm to speed up
o Exploiting the renewal properties

o Expectation-Maximization algorithm
o O(2T?),T is the number of intervals

* Knowing (k,, O and (k,,0 ), compute R( T ;) using
inverse Laplace transform
o Numerical inversion

o Simulation




SAIL

® Input
o Probe sending times {t,, ..., ty}
o Probe outcomes {I, ..., I}

o The length of the discrete time interval AT

° Algorithm
o Apply the forward and backward algorithm to compute
(k0> G) O) and (kla e 1)
o Apply the inverse Laplace transform to tind R( 7)

o Compute the loss rate and its variance
L Output
o The loss rate and its confidence intervals

o The parameters (k, O ) and (k,, © ) of the loss process
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Simulation

® Alternating ON/OFF

renewal process with
Gamma intervals, 4
parameters {A.}:(k,, O )
and {B}} : (k;,0))

® Poisson probes with rate

A

SAIL works when the model

assumptions are correct
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Simulation- ON/OFF duration
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SAIL can correct

the missing
intervals problem

and is needed.




Simulation- Loss rate

Loss rate
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than other methods in
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statistical errors




Measurements - Datasets

UA-EPFL: 1 host at the University of Adelaide and 1 at
EPFL, Switzerland

PlanetLab: randomly selected source and destination pairs
Poisson probes with small packet size (40 bytes)
1 hour traces, in each trace the probing rate is a constant

Stationarity tests using heuristics (no big/sudden jump and

no gradual trend in the moving average loss rate)

Hours 100 5246

H stationary traces 10 1090




Renewal Properties

Binary Losses
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Cross validation

Cross Validation of the SAIL algorithm
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Traces are divided randomly into two sub—segments of equal length. Each sub—segments can

be viewed as Poisson samples with rate A /2.




Empirical Variances
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Empirical SAIL

kIt is important to use a correct method to compute the variance (e.g., SAIL) Y,
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Shape Parameters of the Loss Processes
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The OFF periods appear to be exponentially distributed




Errors in Estimating ON/OFF durations
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Errors can be quite large because of the missing (short) ON/OFF

K intervals problem




Prediction
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SAIL can be used to estimate future loss rate
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How Many Probes

— Empirical Data (loss rate =0.01) .
R IID Bernoulli Loss (loss rate =0.01)
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Increasing sampling rate only yields small improvements in the variance
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Summary

e SAIL: accurately computes errors in loss estimates
e Better than any existing alternative

¢ Future work:

o Faster inference algorithm
o Non-parametric models for the loss process
o On-line

o Make SAIL available to network operators/users
® Code is publicly available, please try
¢ Thanks!




