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Can we do IP route optimization?

Q Feldmann et al., 2000
2 Shaikh et al., 2002

0 Zhang et al., 2003 |a Fortz et al., 2002
a Zhang et al., 2003

A3: "Well, we~dgn't|know the topology| e don't
know [the traffic matrix| the routers/don't
automatically adapt the routes to the traffic, and
we don't know how toloptimize the routing]|
configuration. But, other than that, we're all set!”
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Problem

%* How well do all of these things work together?

=»If we do TE based on estimated TMs, how well do
the results perform on the real TM?

%* Question 1
= Traffic matrices can be estimated from link data
=»How important are estimation errors?
=» Simple statistics don't tell the whole story!

%* Question 2

=»Route optimization assumes good input data
= How robust are different methods to input errors?
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Methodology

%* Need realistic test
=» Simulations can produce anything we want

=» Need rea

iIstic TMs and errors

£xRandom errors quite different from systematic

=» Need rea

istic network

% Use data from AT&T's backbone

=» Topology,

and 80% TM from Cisco Netflow

%* Use existing techniques (as blackboxes)
=» TM Estimation
=» Route optimization (example of TE)

* Approach

=»apply optimizer on estimated TMs
= test performance on actual TMs
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Refresher: TM estimation

Have link traffic measurements (from SNMP)
Want to know demands from source to destination

ot
7

A /Tmffic matrix

X = At
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Methods of TM estimation
% Gravity Model

=» Demands are proportional

% Generalized Gravity Model

=» Take into account hot-potato routing asymmetry

* Tomo-gravity combines
=» Internal (tomographic) link constraints: x=At
=» Generalized gravity model

% Other methods
=>

=>
£y
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TM estimation results
Average traffic + |Error|
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Route Optimization

* Route Optimization
=» Choosing route parameters that use the network
most efficiently
= Measure efficiency by maximum utilization

* Methods

=» Shortest path IGP weight optimization
{*OSPF/IS-IS
£xChoose weights

= Multi-commodity flow optimization
{Implementation using MPLS
LxArbitrary splitting of traffic
{xExplicit set of routes for each origin/destination pair
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Methodology: details

1. Start with real TM: f
= measured using netflow

2. Simulate link measurements: X=At

3. Estimate TM:
= Use gravity/tomogravity methods f()()

4. Compute optimal routing:

= Use MPLS/OSPF methods A (f)
5. Apply routing matrix A onreal TM A
X=At
6. Compute )?

max —utilization(#;#) =ML

AT&T Labs — Research

SR



scaled maximum utilization
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Results

scaled maximum utilization
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Results

Average traffic + |Error|

mean traffic + mean error
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scaled maximum utilization
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Errors in TM: magnitude is not the key
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Other properties

% Other utility functions

% Global Optimization
=» Can optimize OSPF weights for 24 (1 hour) TMs

¥ Predictive mode
=» Works up to 7 days (at least)

* Fast convergence
=»Don't need as many iterations if speed is important

% Can design for limited no. of weight changes
=» Much of benefit from a few changes

% Can design for failure scenarios
= Weights that work well for normal + failure modes
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Conclusion

* Important to study TE and TM errors together
=» Simple statistics of errors don't indicate results
=» Best optimizer doesn't work best with input errors
=»Note: even measured TMs are used predictively

%* TM Estimation and route optimization can work
well fogether
=» IGP weight optimization
=»Robust

=» Close to optimum
= Stable (predictive performance)
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scaled maximum utilization
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