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ABSTRACT many countries making it illegal to share this data with othe
parties. However, it has been recently shown that multiypar
secure distributed computation can overcome this problem.
Th particular, recent work has shown how HMMs [4, 5] can
be estimated, in particular for the Internet attack problém

the information that providers are willing to share. Multi- from multiple observers, without private data being shared

party secure distributed computation provides a means for Pre\{lou_sly,.only the case where the observers all see the
combining observations without compromising privacy same distributions of observations was addressed. However

In this paper, we show the benefits of this approach, th hat case is unrealistic [6]. ISPs each have a differenpgers

most notable of which is that combinations of observation%g/i'eltgrtgézﬁggﬁ;ggsﬁs\;gOW the approach can be adapted

solve identifiability problems in existing approaches fer d N ' . -

tecting network aga?:ks gapp We also show in this paper that in a realistic HMM for
o _ these network attacks the model parameters are not identifi-

Index Terms— Hidden Markov Models, Multiple Ob- able from observations of a single ISP. Without identifiabil

Most large attacks on the Internet are distributed. As altresu
such attacks are only partially observed by any one Intern
service provider (ISP). Detection would be significantlg-ea
ier with pooled observations, but privacy concerns oftanitli

servers, |dentifiability, Security, Networks ity, the estimated parameters of a HMM will be inaccurate no
matter how much data is collected. However, observations
1. INTRODUCTION from different ISPs with different perspectives can malke th

problem identifiable, and thus lead to accurate detecti@t-of
The Internet allows communication between any two computi@cks. This provides a strong incentive for ISPs to paritsp
ers with network connections. This openness unfortunatelif) Such a collaborative detection algorithm.
has created many security problems. Even services such as

SSH that are designed to be secure are vulnerable to brute 2. HIDDEN MARKOV MODELS
force attacks. There are methods to defend against brute-fo

Hidden Markov Models (HMMs) have been used as ary, ... 4, with the Markov property: given the present state,
effective detector [1-3]. The actions of an attacker are-modkhe future and past states are independent. Consider a Marko
elled as a Markov process where each state of the proceggain with V possible state§ = {s,...,sy}. If the states
represents a step in the attack. Observations of netwdrk tréof the Markov process are not directly observed, but rather
fic are used to infer parameters of the hidden Markov proceSge see some outputs drawn from the ¥et {v, ..., v},
that generates the traffic. An anomaly/attack is detectéfif \yhich are probabilistically associated with the state @& th
model parameters match those of a typical SSH attack.  Markov chain, the process is referred to as a Hidden Markov

However, most large attacks are distributed. Hackers usgiodel (HMM) [7]. A HMM is formally defined by the triplet:
botnetd to launch brute force SSH attacks from multiple

sources. This allows hackers to hide their activities beeau

each observer can only see a part of the attack. Pooled ob- Plar = s1),

servations from multiple ISPs are essential to detect these A = (aij)nxn, Wherea;; = P(gi+1 = sj[q: = si), the

distributed attacks. time-independent state transition probability; and
Unfortunately, most current detection systems use datae B = (b;x)nxar, Whereb, = P(O; = vi|qr = s;), the

from only one Internet service provider (ISP) due to privacy time-independent observation probability .

concerns. ISPs that share data run the risk that their cempet

tors will gain some advantage through the use of this dat

Moreover, traffic data is protected by privacy legislation i

e the initial probabilityr = (m,...,7n), Wherer; =

Most of the results discussed in this paper can be extended
o the non-stationary case, but for brevity we restricte
Foth tat but for brevit trict elvess
to the stationary case where the initial distributiois also the
LA botnet is a set of computers that are compromised and witvio ~ Stationary distribution, so the HMM is completely deteretn
instructions from the hacker. by A = {4, B}, and the parameters define a probability




measureé?, on V*, the set of finite words fronw, including
the empty wordp by

Px(O1 = &y, ..., O = Vp;) =

ceey

The standard definition of statistidalentifiabilityis that
P/\(Ol,.. ,OT)

forall T € N, and all possible observationy, ..., Or.
However, HMMs are not identifiable in the strict sense
given above. The state labels in the Markov process are akemma 2. [10] The parametetk of a HMM is identifiable if
bitrary, and so we can permute the states without changing 1. the HMM is regular;
the observation probabilitie®y (O, ..., Or). Also, we can 2. M (k) isinvertible, Vv, € V; and
always construct a HMM with additional states that is equiv- 3. Ju;, € V such that, (i = 1,2,...
alent toX [8]. Hence, a HMM is only ever identifiable with
respect to a fixed number of states, and modulo permutations;  g|NGLE OBSERVER HMM FOR SSH ATTACKS
The joint probabilityP(O;+1 = vk, g+1 = Sjlqe = 8i)
plays an important role in the identifiability of a HMM. For Typical SSH brute-force attacks often go through three ghas

scanning phase

. OT) = PS\ (Ol, . = A= ;\, brute-force phase die-off phase

Fig. 1. The Markov chain for a typical SSH attack.

,N), are distinct.

an observation symbe}, € V, let
M (k) = AB(k),

whereB(k) = diag{bi, ..., by }. Thatis,M (k) isanN x
N matrix where each entmy;; (k) = P(Oy41 = vk, gr41 =

sjlg: = s;). The observation probabilitiéBy (O, ..., Or)
can be expressed in termsf(-) as
Pyx(Os,...,0r) =M (O1)...M(Or)e, (2)

wheree is the vector of lengthiV with all 1 entries.

Two HMMs are said to bequivalentf they have the same
observation probabilities. The following lemma from [9ppr
vides sufficient conditions for two HMMs to be equivalent.

Lemma 1. [9] Let A and be the parameters of two HMMs
with N and N states respectively. X andY are N x N and
N x N matrices respectively such that:

M(k)=YM(k)X, Yu,€V;and
7 =7nX;andé=Ye; andXY = Iy;

thenX and X are equivalent.
If two HMMs are equivalent, then neither is identifiable,

but we need a more practical set of conditions. The identifiab

bility of a HMM is closely related to theankof P»(-), which
is defined below.

For the set ofn wordswy, . .
define a matrixQ(ws, ..

Wy, WY, ..., w), fromV*,
Wy, WY, ..., w)) whose(s, j)th
entry isPy (w;, w}). Definerank[Py(-)] to be the maximum
of the rank ofQ (wy, . .., wy, wi, ..., w)), forall such words,
for all n.
It is well-known [9] that all HMMs with N states have
rankP»(-)] < N. If the rank isN, then we say the HMM is

[3]. Inthe first phase scanning- the attacker scans the target
network for vulnerable SSH services. In the second phase —
brute-force- the attacker initiates a brute-force user/password
dictionary based attack on the vulnerable hosts. In thelast

off phase, compromised hosts communicate with the attack-
ers and wait for new instructions. During each phase, the at-
tackers alternate between an active and inactive stateke ma
detection more difficult. For the attacks observed in [3]ewh
active, the average number of packets per flow is 1.5 in the
scanning phase, 11 in the attack phase, and 1.5 in the die-off
phase. Note that these values are only examples. A Markov
model shown in Figure 1, with seven states, is used to repre-
sent the various stages of an attack. The observationsare th
numbers of packets per flow with observation probabilities
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wheree is the probability of measurement error.

Unfortunately, this model is not uniquely identifiable as
the parameters of the HMM do not satisfy condition 3 in
Lemma 2. Indeed, as stat@and7 have the same observation
robabilities, we can use the construction in [11] to obtain
set of equivalent HMMs as follows. Take

I 0

vor[l

],XY_l,

whereP is a permutation matrixt’ € R?*2 is a nonsingular
matrix with Fe = e, and[ is a5 x 5 identity matrix. Then
define new matrices

B=Band AB(k) = YAB(k)X, Yo, € V,

regular. Finesso [8] showed that the regularity of a HMM canand we can verify that the two HMMs are equivalent by show-
be determined in a finite number of operations. Petrie [10ing that the conditions in Lemma 1 are satisfied. Where more

proved the following sufficient conditions for identifiaijl
(up to permutation of states) of discrete HMMs.

than one model fits the observations, the estimated paresnete
can be badly in error, no matter how much data we collect.



In addition, in the homogenous case [6], the identifiability
of the multi-observer HMM was the same as for the single ob-
server case. However, when the observers are heterogeneous
the multi-observer problem may be identifiable, even if the
single observer problem is not, as shown below.

Define for every wordv = vy - - - v, € V*

M(w) = M(v1)...M(v); glw) =aM(w); h(w) = M(w)e.

Fig. 2. A HMM with multiple observers.

For the set o2 N wordswn, ..., wn, w), ..., wy, letG and
H be two matrices of siz& x N where thei-th row of G is
4. MULTI-OBSERVER HMM g(w;) and thej-th column of H is h(w}). Similar notations

. ) ) are used for the multi-observer HMM where each observation
We now consider the case where multiple ISPs monitor thes 3 vector ofn individual observations. From [8],

same distributed attack and combine their data using th& , , , ,
privacy-preserving techniques described in [6]. (W, N,y wy) = G, wn) H(wy, - wy).
We model the attack as before, by a Markov process with o rnma 3. The multi-observer HMM is regular if
transition matrixA. However, there are now: ISPs that
make observations of the same underlying Markov process. e 35 < m such that HMMAY) is regular; and
Each ISP makes its own observations of the attack and these ,
observations are secret. Each ISP could treat the problem e the observation probabilities]) > 0 for all i <
as a private single-observer HMM with paramef) = N k< M,j<m.
.{A’B@}’ but when theIISPs comb|ne_the|r measurements g, ¢ \without loss of generality, assume that the single
jointly infer th(_a under-lying common hidden Markov model, observer HMMAL is reqular. Thus there exist 2N words
we have anulti-observer HMM p , 9 h flenathn: — |, h
We shall assume that the observations of the different ISP&L: - -« » WN» W1, - - Wy, €4CH OF 1€Ngth; a s, suc
are independent. That is a natural assumption, as depandedd@t@ (W1, - - -, W, wy, ..., wy) is non-singular [8]. Denote
would weaken the need for multiple observers, or privacy. Ast & symbols of t/he Worfjui _by Wi = Uki -« Ui, - As
sume also that the set of possible observatidiisthe same Qws,...,wN,wy, ..., wyy) IS non-singular, the matrix
for all ISPs. However, each ISPhas its own observation
probability given by the matriB@) = {b7}. These differ G(wi,...,wy) =
because each ISP has a different perspective on the attack.
In this new model, the observation sedi&'. Denote the

TA™ HB“)(kZ,l)] (4)
1<i<N

=1

observations is also non-singular, i.e., its rows are linearly indeperide
0 ={0,...,00}, In the multi-observer HMM, consider th2N words
Y1, YN, Y1, -- -, Yy Where each wordy; hasn; sym-
where each elemerf; is a vectorO; = {O1y,...,0Omt} bols in which thel-th symbol is a vector ofn components
of observations at time from each ISP. The sequence of with the first component being;, , and the others;, i.e.,
T observations that ISP makes is denoted a®) = y; = {vy, ,,v1,...,01}...{vx,, ,v1,...,01}. Thei-th row
{Oj1,...,04r}. An example is given in Figure 2. of the matrixG (y1, . ..,yn) is
The probability of a set of observations at tityecondi-
tional on the state of the Markov process, is given by g(yi) =M (y;) = m[[2, (AB(U(k:“) [T B(j)(l))
B(Oilgi = s:) = [] B0 = v, lac = s) = [T bl 3) = m A ([T, BO (ki) (T BOM) - (8)
j=1 j=1

Since the rows of the matrix in (4) are linearly inde-

The multi-observer HMM has transition mattikand the  pendent and)l(i) > 0 for all 4,4k, the rowsg(y;) of
observation probabilities given in (3). Its parameter set iG(y1,---,yN) given in (5) are therefore also linearly in-
thereforeX,,ii = {A,{B)}}. FromT observations of dependent. Thugj(y:, . .., yx) is non-singular.
the multi-observer HMM{O4, ..., Or}, we can infer the Similarly, we can prove thatf (y,,...,y) is non-
matrix A and the observation probabiliti®O;|q: = s;) us-  singular. HenceQ(y1,...,yn,¥},...,yy) is non-singular
ing the Baum-Welch algorithm [7]. We presented a privacy-and the multi-observer HMM is regular. O
preserving protocol for the Baum-Welch algorithm in [6], in
the homogenous case where all ISPs have the same obserf&eorem 1. The matrix A in the multi-observer HMM is
tion probabilities. We have extended this protocol to thie he identifiable if
erogeneous case (details omitted for brevity), and we atalu 1. atleast one of the HMI\/I§>\(1), o )\(m)} is regular;

the accuracy of this extension in the next section. 2. Ais a non-singular stochastic matrix;



3. bl(i) >0foralli < N,k < M,j <m;

0.05(
() ioti 5

4. Jvy, ...vy, € Vsuchthat[T", b, are distinct for £ 004l
1=12,...,N @

S 0.03f

Proof. We prove that the multi-observer HMM satisfies the fo.oz—
Petrie’s conditions in Lemma 2. From Condition 1 and 3 and §0.01—
Lemma 3, the multi-observer HMM is regular.

The second of Petrie’s conditions thdt { v, , . .., v, }) ° 2 ANumber oféISPs 8 10
is invertible for all symbols{vy,,..., v, } € V™ follows
from the fact thatM (v, , ..., vg,,) = AT[;~, BY) (k;) and Fig. 3. MSE of the transition probabilities.

that the matricest and B\ (k) are non-singular.
The last of Petrie’s conditions comes from Condition 4Work includes finding the necessary conditions for identifia
that3vy, ... vk, €V suchthat[]}, bz(iz are distinct. O  bility of multi-observer HMMs.
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