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Abstract—Modern system administrators need to monitor
disclosed software vulnerabilities and address applicable vulner-
abilities via patching, reconfiguration and other measures. In
2017, over 14,000 new vulnerabilities were disclosed, so, a key
question for administrators is which vulnerabilities to prioritise.
The Common Vulnerability Scoring System (CVSS) is often
used to decide which vulnerabilities pose the greatest risk and
hence inform patching policy. A CVSS score is indicative of a
vulnerability severity, but it doesn’t predict the time to exploit
for a vulnerability. A prediction of exploit delay would greatly
assist vendors in prioritising their patch releases and system
administrators in prioritising the installation of these patches.

In this paper, we study the effect of CVSS metrics on the time
until a proof of concept exploit is developed. We use the National
Vulnerability Database (NVD) and the Exploit Database, which
represent two of the largest listings of vulnerabilities and exploit
data, to show how CVSS metrics can provide better insight into
exploit delay. We also investigate the time lag associated with
populating CVSS metrics and find that the median delay has
increased rapidly from a single day prior to 2017 to 19 days
in 2018. This is an alarming trend, given the rapid decline in
median vulnerability exploit time from 296 days in 2005 to six
days in 2018.

I. INTRODUCTION

In 2017 there were 14,714 cyber security vulnerabilities
publicly disclosed as Common Vulnerabilities and Exposures
(CVE) entries [11]. This volume of vulnerabilities can hinder
information-security professionals from understanding the risk
they pose to their organisations. Risk scoring mechanisms such
as the Common Vulnerability Scoring System (CVSS) have
been developed to improve understanding. CVSS assigns a
severity score to each disclosed CVE entry. A CVSS score is
often used by organisations to determine which vulnerabilities
pose the greatest risk and hence inform patching policy. For
example, in the Payment Card Industry Data Security Standard
(PCI-DSS) v3.2.1 any vulnerability with a base score of higher
than 4.0 results in instant non-compliance [8].

The CVSS score is calculated by combining various vulner-
ability characteristics which are referred to as CVSS metrics
[10]. When a CVE entry (or a CVE for brevity) is publicly
disclosed, its CVSS metrics are not populated until the analysis
of the proposed vulnerability is completed by the National In-
stitute of Standards and Technology (NIST). Until this occurs,
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Fig. 1: Comparison of median Time until Exploit and CVSS
Metric Population delay.

the vulnerability details page in the National Vulnerability
Database (NVD) [17] has the status “Awaiting Analysis”.

A CVSS score is indicative of vulnerability severity but does
not help predict exploit delay. [1, 4]. Better insight into time-
to-exploit for a vulnerability could greatly assist vendors when
prioritising their patch releases and systems administrators
when prioritising their installation of these patches.

Past works have investigated how well a CVSS score
describes real world vulnerability exploits [1], and how time
to exploit can be modelled using probability models [12]. But,
these works have not investigated the delay in obtaining CVSS
metrics or whether CVSS metrics can help predict exploit
delay more usefully. We ask the question
Can we predict the time until a proof of concept exploit is
developed based on the CVSS metrics?

However, the metrics are not populated until a vulnerability is
analysed, so a second question is

Are CVSS metrics populated in time to be used meaningfully
for exploit delay prediction of CVEs?



In this paper we answer the first question in the positive
and the second in the negative. We begin by studying the
CVSS metric population delay. Our analysis finds that the
median time it takes to populate CVSS metrics for a CVE
has increased rapidly from a single day prior to 2017 to 19
days in 2018 (Figure 1(b)). This is an alarming trend, given
the rapid decline in median vulnerability exploit time from
296 days in 2005 to six days in 2018 (Figure 1(a)).

We use statistical methods to determine how Time to Exploit
is affected by conditioning on CVSS metrics, to understand the
lead time assuming CVSS metrics were available. In particular,
we show how certain combinations of CVSS metrics can
provide better insight into exploit delay. For instance, we see
that the median exploit delay for CVEs with User Interaction
(UI) = Required and Attack Complexity (AC) = Low is seven
days. This figure is more useful in predicting exploit delay
than the general figure of 47 days we obtain when delay is
not classified by CVSS metrics.

However, our research shows that, if continued, the current
trend in median CVSS metric population delay will hinder
their meaningful use in predicting the time to exploit for a
CVE. Our study of CVE disclosures over time found that there
is a noticeable increase in the number of disclosed CVEs from
2017 onwards. This increase could be leading to a significant
backlog of CVEs. Thus, perhaps more resources need to be
allocated to this task.

II. CVE HISTORY

The Common Vulnerabilities and Exposures Database
(CVEDB) is a collection of cyber security vulnerabilities.
Each vulnerability entry in this database is assigned a unique
identifier to aid communication between parties and ensure
there are no gaps in security coverage [25].

The CVE Database has been adopted as the industry stan-
dard for identifying vulnerabilities and exposures and has
achieved wide acceptance by the security industry and a
number of government organisations. Databases, such as the
NVD, rely on the CVE Database to identify vulnerabilities and
then supplement the identifier with information such as vendor
reports, products and versions affected and vulnerability type.

The CVE Database was publicly launched by MITRE in
September 1999 [25]. It was initialised with 321 entries from
historical vulnerabilities collected from multiple databases.
Over the next few years, vendors gradually became partici-
pants. This was assisted by NIST recommending the usage
of the CVE Database in 2002 [13], the requirement of CVE
Database compliance by the United States Defence Informa-
tion Systems Agency (DISA) in 2004 [25], and adoption by the
NVD in 2005 [17]. Figure 2 shows the number of CVE entries
disclosed per month. The initiation of MITRE’s CVE database
in 1999 can be seen, with low numbers of CVE entries
disclosed, as well as the increase in rate of disclosures in
the shaded region during 2005. From the establishment of the
NVD Database in August 2005 the process was approximately
stationary until 2017.

Figure 2 also shows that from the beginning of 2017,
the rate of CVE disclosures has sharply increased. Chris
Coffin from MITRE’s Common Vulnerabilities and Exposures
Team informed us that this increase was due to the following
changes:

e an increase in the number of Common Vulnerabilities
and Exposures Numbering Authorities (CNAs), which are
independent organisations who are authorised to assign
CVE identifiers;

o simplification of the request and submission procedures
for a CVE;

o changes to the counting rules of CVEs; and

« new technologies utilising the CVE Database.

Hence, we analyse the disclosure process in three distinct
eras. As shown in Figure 2, the first era represents the
establishment of the process, from the launch in 1999 until
end of July 2005. The second era covers the establishment
of NVD in August 2005 until the end of 2016. The third era
begins at the beginning of 2017, when the number of CVEs
jumped drastically. Our study focuses on the second and third
eras as the first era was prior to MITRE’s CVE database being
an industry standard. Hence, the CVE arrivals in this era are
highly variable and not indicative of the rest of the process.

Software vendors have proposed many proprietary schemes
for scoring software vulnerabilities [16, 23, 26], each with its
own merits. For instance, CERT/CC considers factors such as
whether the Internet infrastructure is at risk [26]. Microsoft
employs a scoring system which reflects the exploitation
difficulty and overall impact of a vulnerability [16]. A key
drawback with these scoring systems is that they assume that
the vulnerability impact is constant across every individual
and organisation. Moreover, these schemes do not provide
visibility into how a vulnerability score is calculated.

The Common Vulnerability Scoring System (CVSS) was
developed (and is currently maintained) by the CVSS Spe-
cial Interest Group (CVSS-SIG) to address these shortfalls.
CVSS standardises the information used by organisations to
prioritise vulnerability mitigation [14]. CVSS is the only open
specification that is also designed to be quantitative, removing
the need for qualitative evaluation of vulnerability severity.
The specification aims to allow multiple vulnerability analysts
to produce identical CVSS scores for the same vulnerability.
Most importantly, CVSS provides visibility into how a vul-
nerability score was computed.

The CVSS specification has been widely adopted by ven-
dors, service providers, vulnerability tools and bulletins. For
instance, software and hardware manufacturers such as IBM,
Cisco and HP use it as a reporting metric. CVSS is also
mandated for use in evaluating the security of payment card
systems globally. The U.S. Federal government also uses it in
the National Vulnerability Database (NVD) [17] which is the
main repository of known vulnerabilities worldwide.

There are other publicly available sources which provide in-
formation on vulnerability exploits. The Exploit Database (i.e.,
ExploitDB) is an archive of public exploits and corresponding
vulnerable software, developed for use by penetration testers



1600 e Moving Median - 10 Observations 2005

1400

= =
o [N
<] o
o o

800

[=1]
(=]
o

Number of CVEs per Month

400

200

2006

~
Date of Release

@
—
=}
~

o
—
=}
~

Fig. 2: Number of CVE Entries Disclosed per Month from 1999 to 2018. The CVE arrivals can be split into three distinct
eras: (1) from 1999 to 2005, (2) from 2005 to 2017 and (3) from 2017 to date.

and vulnerability researchers [18]. This began as a public
exploit archive in 2004 by a hacker named ‘strOke’ and was
taken over by Offensive Security in November 2009 [18].
ExploitDB contains nearly 40,000 exploits, with the earliest
exploit date being 1st August 1988. The information about an
exploit includes an assigned ExploitDB ID, a CVE identifier
(if exists), author name, exploit type, platform and publication
date.

Our study uses the NVD and ExploitDB as the primary data
sources because they represent two of the largest and most
reliable sources of vulnerability and exploit data.

III. RELATED WORK

Statistical analysis of the vulnerability life cycle has been
performed by Frei [12] and Allodi and Massacci [1, 2]. Frei
produced a comprehensive analysis of the vulnerability life
cycle, and in particular studied the dynamics of this process.
He defined a life cycle composed of six stages and empiri-
cally modelled probability distributions of exploit availability
and patch availability post vulnerability disclosure. Frei also
showed that while 94% percent of exploited vulnerabilities had
an exploit available within 30 days, only 72% of patches were
available in this time-frame. Our research extends this work
by classifying CVE exploit delay by CVSS metrics to yield
better delay predictions.

Allodi and Massacci have used descriptive statistics to
analyse how effective vulnerability databases are in estimating
the risk of real world cyber attacks [1, 2]. They also used the
NVD and the Exploit Database as a basis for their analysis.
In [1] they developed another database — EKITS — which
contains information about the exploits that are contained in
known exploit kits. Their conclusion is that CVSS scores don’t
allow one to effectively discriminate between the likelihood
of exploitation and non-exploitation. In contrast, our work
focuses on the time for an exploit to become publicly available
for a CVE, following its disclosure. Better understanding of

this delay allows vendors to prioritise the patches they release
and system admins to prioritise the installation of these patches
and we show that improved predictions are possible.

Several authors have also studied the use of CVSS metrics in
machine learning algorithms to predict whether vulnerabilities
will be exploited and the length of time until exploit [4, 5, 9,
22]. All of these works have used the CVSS scores as features
in machine learning algorithms. Bozorgi et al. [4] concluded
that the CVSS scores did not have a noticeable impact on
the prediction results. Edkrantz and Said [9] concluded that
the CVSS metrics are redundant when a large number of
text features are used. However, early exploit detectors built
using Twitter information in [22] had better performance when
supplemented with CVSS metrics.

Rajasooriya et al. [20] have also proposed an approach
using stochastic modelling to generate predictions of exploit
development which incorporate CVSS scores. Their approach
uses Markov Chains with states representing the stages of
the vulnerability life cycle. They developed three different
models for the behaviour of vulnerabilities moving through
the life cycle which are based on whether their base CVSS
score is in the High (7.0-10), Medium (4.0-6.9) or Low (0.0-
3.9) range. This revealed that different vulnerability dynamics
occur at different risk levels and that High risk vulnerabilities
have a higher probability of being exploited. Our work differs
from this approach because we study exploit delay, not exploit
probability and we also consider the effect of the various
CVSS metrics not just the CVSS score. Doing so, allows us
to identify more granular relationships between CVSS metrics
and exploit delay.

Next, we describe the data sources used in our analysis and
how we extracted the data.
IV. CVE AND EXPLOIT DATA

We extracted ExploitDB data via web scraping using the
Python library Scrapy [24]. Our web scraper iterates through



all of the exploits which are hosted on ExploitDB, then if
a CVE identifier exists, it extracts the exploit name, link to
exploit, date of release, author name and platform effected.
We collected 28,088 exploits dated between 1st August 1988
and 9th July 2018 from ExploitDB with a CVE identifier. Of
these exploits only 22,048 had unique CVE identifiers because
some exploits applied to the same CVE. These form the gold
standard records for when a vulnerability is considered to have
been exploited.

To obtain the CVE and CVSS metrics data, we used the
JSON data feed from NVD. An XML feed is also provided,
however we found that the JSON feed is more compact,
readable and easier to process. We extracted 106,764 unique
CVE identifiers from these JSON files. The date when the
CVE was analysed and the CVSS scores were added to the
records was obtained by examining the Change History of the
NVD page for the CVE.

Each CVE has information including a description of the
vulnerability, CVSS scores, references to external pages re-
lated to the issue, vulnerability type and affected products.
Using a JSON parser in Python, CVSS v2 and v3 information
and date of disclosure were extracted. The CVSS base metrics
that are contained in the JSON files and their possible values
are shown in Table I. We discuss these metrics in detail in § V.

We merged the NVD and ExploitDB data, matching on the
CVE identifiers, and then dropped all of the records for CVE
identifiers that were not unique and had an earlier exploit
released, to construct a single reference dataset.

We describe the CVSS framework in detail next, to provide
an understanding of the CVSS metrics, prior to ascertaining
their effect on the Time to Exploit for a CVE.

V. CVSS FRAMEWORK

The CVSS vulnerability score is a decimal number in the
range 0.0-10.0. This score is calculated using three metric
groups; base metrics, temporal metrics and environmental
metrics. Base metrics represent vulnerability attributes which
remain constant over time and user environments. Temporal
metrics represent vulnerability attributes which change with
time but not between user environments (e.g., due to changes
in publicly available exploit code or a remediation technique).
Environmental metrics represent vulnerability attributes which
are implementation specific; e.g., how prevalent a target is
within an organisation. The temporal score of a vulnerability is
calculated using the base score and the temporal metric values
as parameters. Likewise, the environmental score is calculated
using the temporal score and the environmental metrics values
as parameters.

We filtered the data extracted from NVD to obtain CVSS
metrics for 94,417 CVEs originating from August 2005 to
June 2018. This is a reduction from the entire set of 106,764
CVEs as we exclude those that were released prior to era two
in the data. These metrics cover CVSS v2 [15] and v3 [10].
We present a comparison, below, of the two versions.

TABLE I: CVSS v3 Base Metrics used in our analysis. The
exploitability metrics capture the difficulty in exploiting a
vulnerability. The impact metrics capture the consequence of
a vulnerability if successfully exploited.

Possible Values
Network
Adjacent

Local
Physical
Low
High
None
Low
High
None
Required
Unchanged
Changed
High
Low
None
High
Low
None
High
Low
None

Metric Type Metric

Attack Vector

Exploitability Metrics | **tack Complexity

Privileges Required

User Interaction

Scope Scope

Confidentiality Impact

Impact Metrics Integrity Impact

Availability Impact

A. Converting CVSS v2 Metrics to CVSS v3

CVSS vl - the first version of CVSS — was introduced
in February 2005. This was superseded by CVSS v2 in June
2007. We need not convert CVSS v1 metrics to v3 because all
vulnerabilities which contained v1 metrics have already been
updated to v2 [11].

The CVSS v2 and CVSS v3 metrics are not compatible.
Hence, we needed to define a mapping from CVSS v2 to
CVSS v3 to be able to compare the attributes of CVEs.
In CVSS v2 [15] there are six base metrics grouped into
exploitability and impact metrics. The exploitability metrics
consist of Access Vector (AV), Access Complexity (AC), and
Authentication (AU). These capture the difficulty in exploiting
a vulnerability. The impact metrics consist of Availability
Impact (AI), Confidentiality Impact (CI), and Integrity Impact
(II). These capture the consequence of a vulnerability if
successfully exploited.

The exploitability and impact metrics allow one to compute
subscores which in-turn can be used to compute a base CVSS
score. This base CVSS score quantifies the overall severity of
a vulnerability.

CVSS v3 [10] was introduced in June 2015 with several
key changes to the scoring system to more accurately reflect
vulnerabilities within the Web application domain. In this
version, the three metric groups, the base score, the temporal
score and the environmental score remain the same. But
several new metrics such as Scope (S) and User Interaction
(UI) have been added within the groups (see Table I). Several
older metrics such as Authentication (AU) have also been
modified to a newer metric, e.g., Privileges Required (PR).



TABLE II: Mapping of factors that changed from CVSS v2
to CVSS v3. Scope and User Interaction are new metrics
introduced in v3. Privileges Required is named Authentication
in v2.

Category CVSS v2 CVSS v3
User Interaction Access Complexity - Low None
(UI) Access Complexity - High Required
Confidentiality Impact - High
Integrity Impact - High Changed
Scope (S) Availability Impact - High
Otherwise Unchanged
Single Low
Privileges Required Multiple High
(PR) None None
Adjacent Network Adjacent
Attack Vector Network Network
(AV) Local Local
Attack Complexity Access Complexity - Low Low
(AC) Otherwise High
Partial Low
Confidentiality Impact Complete High
(CI) None None
Partial Low
Availability Impact Complete High
(AI) None None
Partial Low
Integrity Impact Complete High
(ID) None None

We use the more refined CVSS v3 metrics throughout our
analysis. CVSS v2 metrics (corresponding to CVE entries prior
to 2015) were converted to v3 metrics using Table II. We
constructed this table considering CVSS v2 and v3 specifica-
tions. Most base vectors are directly transformable (e.g., AU
= Single in v2 is PR = Low in v3) , but complexities do arise
regarding other vectors. For instance, Access Complexity in
v2 is separated into Attack Complexity and User Interaction
in v3. Also in v2, CI, II and Al collectively map to Scope in
v3 (i.e., in most cases CI = High, I = High and AI = High
indicate Scope = Changed).

B. CVSS population delay

CVSS metrics provide valuable insight into the characteris-
tics of a vulnerability and can potentially relate to the delay
associated with exploiting the vulnerability. This ability to
better understand CVE exploit delay when conditioned by
CVSS metrics, makes the CVSS population delay an important
consideration. The NVD consists of several vulnerability data
feeds, each containing the CVE disclosure date ¢4;5. but not
the CVSS metric population date £ cyss-population- CVSS metric
population is the result of analysis of CVEs by NIST by ag-
gregating data points from the description, references supplied
and any supplemental data that can be found publicly at the
time. This analysis results in the assignment of values to the
vulnerability attributes of base, temporal and environmental
metrics.

The CVSS metric population date is not part of the record
itself but it’s captured in the Change History field of each

CVE’s web page. In particular, when CVSS (v2 or v3) metric
data is populated by NIST, a record is added to the Change
History field stating the fact and the datetime it was added. We
parse such records to extract the CVSS metric population date
for each CVE. We scraped this information for CVEs from
August 2005 to June 2018 in the NVD (i.e., phase two of the
data). The CVSS metric population delay was calculated using
the two date time stamps above as

tcvss—delay = tcvss—popula,tion - tdisc- (1)

Simple analysis of the population delay data shows that it
should be modelled using a heavy-tailed probability distribu-
tion. This is due to the large number of extreme inter-event
times that have occurred over the life of the process. An
important class of heavy-tailed distributions is the power-law
distribution which has the property that the probability density
function p(x) is proportional to a power of the delay z, i.e.,

p(x) o< z™. )

Power-law distributions have emerged in a variety of fields
in recent years. They have been used extensively in internet
traffic modelling [3, 7, 21]. We used a power-law distributed
random variable with the addition of an exponential cutoff, to
model the observed truncation of the probability distribution.
At high values of x the exponential function will decay to zero
faster than the power law which results in lower probability
of extreme events occuring. The probability density function
of a power-law distributed random variable with exponential
cutoff is given by,

p(x) oc z=% P, 3)

The blue line in Figure 3(a) shows the Empirical Cumulative
Distribution Function (ECDF) plotted for the distribution of
T cvss-delay Tor data since 2005, and in Figure 3(b) shows the
ECDF for tiime-to-exp since 2005. The Powerlaw library in
Python was used to fit a power-law distribution with exponen-
tial cutoff. The red line describes the fitted distribution. The
Kolmogorov Smirnoff (KS) statistic was used to understand
the goodness of fit for the distribution. The KS statistic
measures the maximum difference between the ECDF and the
fitted Cumulative Distribution Function (CDF) for all values
of the functions. The value of the KS statistic for the fitted
distribution is 0.16. As shown in Figures 4(a) and 4(b), the
model fits reasonably throughout the body and drops off at
the end as it approaches 4000 days, which is nearly 11 years
and is at the extent of our observation period, which explains
the abrupt truncation in extreme values.

VI. EXPLOIT DELAY

In this section we analyse the historical CVE data and
determine the impact of the CVSS metrics on the distributions
of time until a proof of concept exploit is developed.

Our first step is to merge the data from ExploitDB and
NVD, matching on the CVE identifier. This provides infor-
mation of the day of CVE disclosure and the day of proof
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of concept release for all vulnerabilities that have had an
exploit developed. There were 22,048 unique disclosed CVE
vulnerabilities that had a proof of concept exploit developed.
Some exploited vulnerabilities had multiple proof of concept
exploits developed, in this case the earliest date of proof of
concept development was used.

From this data, we calculated the time until exploit from the
time of disclosure 45, and time of proof of concept release
tpoc as

texp = tpoc — tdisc- (4)

The ECDF was plotted for the distribution of ... For
this study only the data with positive time to exploit was
considered. This was to replicate the situation of a CVE
being disclosed and not having an exploit available at time
of disclosure. These are the threats that have been disclosed,
without a proposed exploit developed and hence unlikely to
have had a patch developed to mitigate the threat due to
the vulnerability. Obtaining as much information as early as
possible for these types of vulnerabilities is crucial when trying
to allocate resources to protect against these types of threats.
The exploits that were not considered represent either Zero-
Day exploits, those that were exploited before a vulnerability
disclosure occurred, or exploits that were released on the same
day as disclosure, usually through collaboration between the
security researchers that discovered the vulnerability and the
vendor, which is a positive outcome for vulnerability security.
These types of exploits accounted for 80.4% of the total
exploits.

We fit power-law distributions with exponential cutoff to
the ECDFs of the .., data, these are shown by the red lines
in Figure 3. The median and 80th percentile values from the
fitted distribution are shown in Table III. These show that there
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TABLE III: Fitted distributions of Time to PoC Exploit. The
median and the tail of the all-time distribution are larger than
those of the time restricted ranges.

Time Range Median SOthA K.S .
(Days) Percentile | Statistic

All Time 47 431 0.05

Since 2010 25 156 0.08

Since 2017 8 48 0.08

are many extreme values in the dataset, which are an order
of magnitude higher than the median. Hence, a power law
distribution is a suitable model for this process.

A. Conditioning on CVSS Metrics

We studied the effect of different CVSS metrics on the time
until exploit, given the CVSS framework is used extensively
by NVD in analysing a vulnerability. Conditional probability
distributions were calculated by filtering the data to only
include a fixed value from one CVSS metric (e.g., all entries
with Attack Complexity = High). Power-law distributions with
exponential cutoff were fitted to these subsets of data.

Fitting the probability distributions and analysing the medi-
ans of the empirical data shows that there are several CVSS
metrics which have values that reduce the expected time until
exploit by more than half. These are displayed in Table IV.

The number of CVEs disclosed by year has been increasing,
particularly with the drastic increase in the third era as shown
in Figure 2. We plotted the evolution of the medians of both the
time to exploit and CVSS population delay in Figure 1. This
shows that in general the median time to exploit is decreasing,



TABLE 1V: Summary statistics for Time to PoC Exploit Data
conditioned on CVSS Metrics. Several metric values (e.g.,
Attack Vector = Local) yield a much lower median exploit
delay than the all-time median delay of 47 days in Table III.

CVSS metrics Values Numbér of | Median
Entries (Days)
. Low 3349 45
Attack Complexity High 1489 53
Local 820 18
Attack Vector Network 3996 61
.. . None 4325 59
Privileges Required Low 484 1
User Interaction None 3061 ot
Required 1840 29
None 603 39
Confidentiality Impact Low 1474 114
High 2757 37
None 765 16
Integrity Impact Low 1462 137
High 2607 41
None 748 21
Availability Impact Low 1376 134
High 2710 40

however since the start of the third era the CVSS population
delay has increased.

We considered CVSS base metrics (which comprise of the
eight metrics shown in Table II) and studied their effect on
CVE exploit delay. We also conditioned exploit delay by
combinations of these metrics, considering two up to four
combinations. An ECDF was produced for data filtered using
each metric combination and a power law distribution with
exponential cutoff was fitted. We considered Attack Complex-
ity, User Interaction, Attack Vector and Confidentiality Impact
when conditioning exploit delay on three or four metrics.

The combinations of two CVSS metric values which reduces
the median (relative to the all time median delay in Table III),
by more than half are shown in Table V. These represent a
significant amount of entries. We also studied the effect of
conditioning on three and four CVSS metrics. The results are
shown in the Appendix in Tables VII and VI. These show
that by conditioning on more metrics the median time until
exploit can be reduced down as low as five days.

VII. DISCUSSION

CVSS metrics play a key role in informing security profes-
sionals on what vulnerabilities to prioritise. Hence, the CVSS
population date stamp should be readily included in the NVD
date feeds, to help better understand the effort required to
analyse a CVE and identify its vulnerability characteristics.

Figure 1(b) also shows how the median CVSS population
delay has spiked over the recent two years. This noticeable
increase is a cause for alarm given the rapidly decreasing time
to exploit for a vulnerability. The increasing CVSS delay not
only hinders exploit delay prediction but also gives rise to a
bigger problem: a disclosed vulnerability could be exploited
well before its CVSS metrics are populated. The trend could

TABLE V: Summary statistics for the fitted distribution of
Time to PoC Exploit conditioned on two CVSS Metrics. Several
metric combinations (e.g., Attack Vector = Low and User
Interaction = Required) yield a much lower median exploit
delay than the all-time median delay of 47 days in Table III.

CVSS metrics Values Numb?r of | Median
Entries (Days)
Attack Complexity Low 388 7
User Interaction Required
Attack Complexity High
X 100 9
User Interaction None
Attack Vector Local
24 1
User Interaction Required 6 3
Attack Vector Local 95 13
Confidentiality Impact Low
Attack Vector Local
6 1
Attack Complexity Low 669 8
Attack Vector. L(?cal 151 19
Attack Complexity High
Attack Vector Local
Confidentiality Impact High 636 20
Attack Vecthr Local 574 20
User Interaction None
Confidentiality lmpact ngh 1193 28
User Interaction Required
Confidentiality Impact Low
. . 359 31
User Interaction Required
Confidentiality Impact High
17
Attack Complexity Low 35 33
Attack Vector Network
1520 38
User Interaction Required
Confidentiality I'mpact High 1564 41
User Interaction None

render the CVSS information obsolete; vendors would not
be able to rely on the CVSS information to prioritise patch
development and systems administrators won’t be able to use
the information to prioritise their patch installations on time.

Hence, a review of the current CVE analysis process
employed by NVD is essential to understand areas of im-
provement within it and mitigate the observed trend in CVSS
delay. Incorporating the CVSS population date stamp in the
NVD data feeds can expedite this task: e.g., if CVSS delay
is relatively high for CVEs with a particular metric value,
processing of that vulnerability aspect in the analysis process
could be improved. Table III in Section VI shows how from the
beginning of the CVE process, the median and the tail of the
exploit delay distribution are larger than the time restricted
ranges. This is due to higher exploit delays in the early
years of the process. This decreasing trend in exploit delay
is to be expected; highly sophisticated vulnerability exploit
tools are increasingly becoming available to the public. For
instance, NSA’s security tools leaked in 2016 contained many
sophisticated exploits and backdoors to vendor systems [6].
At the same time fast vulnerability patching or updating is
impractical in domains such as critical infrastructure networks
due to their high availability demands. Such domains are hence
becoming easy targets for even the moderately skilled hackers



TABLE VI: Summary statistics for the fitted distribution of
Time to PoC Exploit conditioned on three CVSS Metrics.
Several metric combinations (e.g., Attack Complexity = Low,
Confidentiality Impact = Low and User Interaction = Re-
quired) yield a much lower median exploit delay than the all-
time median delay of 47 days in Table III.

CVSS metrics Values Numb?r of | Median
Entries (Days)
Attack Complexity Low
Confidentiality Impact Low 95 5
User Interaction Required
Attack Vector Local
Attack Complexity High 50 5
User Interaction None
Attack Vector Network
Attack Complexity Low 242 6
User Interaction Required
Attack Vector Local
Attack Complexity Low 76 7
Confidentiality Impact Low
Attack Vector Local
Confidentiality Impact Low 77 7
User Interaction None
Attack Vector Local
Attack Complexity Low 145 7
User Interaction Required
Attack Complexity Low
Confidentiality Impact High 264 8
User Interaction Required
User Interaction None
Attack Complexity High 93 9
Confidentiality Impact High
Attack Vector Local
Confidentiality Impact High 196 13
User Interaction Required
Attack Vector Local
Attack Complexity High 121 13
Confidentiality Impact High
Attack Vector Local
Attack Complexity Low 515 21
Confidentiality Impact High
Attack Vector Local
Confidentiality Impact High 440 22
User Interaction None
Attack Vector Local
Attack Complexity Low 524 24
User Interaction None

[19].

Table IV in Section VI shows how exploit delay is reduced
by over 50% (relative to the all time median delay in Table III),
when it is conditioned by CVSS base metrics such as AV =
Local and PR = Low. Exploit delay is also reduced to some
extent when it is conditioned by base metrics such as CI =
High and AI = High. Table V and Table VI also describe
how exploit delay is likewise reduced when its conditioned by
base metric combinations such as (AC = Low, UI = Required)
and (AC = Low, CI = High, Ul = Required). These results
agree with our expectations; the smaller the effort required to
exploit a vulnerability (e.g., PR = Low), the lower the exploit

TABLE VII: Summary statistics for the fitted distribution
of Time to PoC Exploit conditioned on four CVSS Metrics.
Several metric combinations yield a much lower median
exploit delay than the all-time median delay of 47 days in
Table II1.

CVSS metrics Values Numb?r of | Median
Entries (Days)
Attack Complexity Low
Attack Vector Network 95 5
Confidentiality Impact Low
User Interaction Required
Attack Complexity High
Attack Vector Local 48 5
Confidentiality Impact High
User Interaction None
Attack Complexity Low
Attack Vector Local 76 7
Confidentiality Impact Low
User Interaction None
Attack Complexity Low
Attack Vector Local 123 7
Confidentiality Impact High
User Interaction Required
Attack Complexity Low
Attack Vector Network 140 9
Confidentiality Impact High
User Interaction Required

delay. Although some of the metrics that were conditioned
on may have low impact for a vulnerability, these still may
have serious implications for a network. For example, the
first entry in Table VII, shows a low confidentiality impact
but the remaining metrics may contain high impact values
i.e. Availability Impact of High, which may have serious
implications for a high availability service.

As Table V through Table VI show, there are a variety of
CVSS metric value combinations which reduce the median
time until exploit. In particular, there are classes of vulnera-
bilities with very short median time to exploit (as low as three
days), when conditioned on more than two metrics. These
vulnerability classes provide significant information for priori-
tising patching and mitigating vulnerabilities. Moreover, these
classes can be leveraged to build more granular predictive
models for time to exploit. However, CVSS information must
be readily available to achieve this task; i.e., the recent upward
trend in CVSS delay needs to be addressed with priority. New
risk metrics could be developed that incorporate information
about a shorter time to exploit dependent upon vulnerability
class. This information can assist in determining the likely
time until mitigations need to be deployed.

We observed that from the beginning of 2017 onwards,
there is a noticeable increase in the number of disclosed CVEs
( Figure 2). This increase in disclosures in recent times, may be
overwhelming NVD’s CVE analysis process leaving a signif-
icant backlog of CVEs to be analysed. Such a backlog would
increase the median time until CVSS population. The NVD
program may need to increase the amount of staff analysing



disclosed CVEs to address the increase of disclosures

The validity of our approach in computing CVE exploit
delay is limited by the availability of accurate data. We assume
here, that the date and times reported in the ExploitDB and
NVD Databases are accurate. In ExploitDB, this accuracy
depends on the reporting of precise time of exploit. This time
is based on when the exploit was submitted to the database
and may differ to the actual exploit discovery time. However,
there is an incentive for a security researcher, to be the first
to produce an exploit. The accuracy of the CVE disclosure
times is another potential limitation. Some companies have
the ability to assign and disclose CVEs and that can cause
inaccuracies in the reported CVE disclosure times. An increase
in the accuracy of all these data sources and to standardise
how they are reported will allow better analysis to develop
mathematical models of this process.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we use the National Vulnerability Database
(NVD) and the Exploit Database to show how CVSS metrics
combinations can provide better insight into exploit delay. In
particular, we find that there are classes of vulnerabilities with
very short median time to exploit (as low as three days), when
conditioned on more than two metrics. These vulnerability
classes provide significant information for prioritising patching
and mitigating exploits. We hope to leverage these classes in
future, to build predictive models for time to exploit.

We also show that the median time lag associated with
populating CVSS metrics has increased rapidly from a single
day prior to 2017 to 19 days in 2018. This is an alarming
trend, given the rapid decline in median vulnerability exploit
time from 296 days in 2005 to six days in 2018.
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