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Abstract—Newly announced IP addresses (from previously  Our findings suggest that the underlying approach is sound,
unused IP blocks) are often unreachable. It is common for given enough measurements, and a sparse set of incorrect
network operators to filter out address space which is known filters. Without enough measurements, we cannot see the

to be unallocated (“bogon” addresses). However, as allocad hole Int ¢ d t infer the locati f allfilt
address space changes over time, these bogons might becom@/NOl€ INte€rnet, and so cannot infer the locatons of a e

legitimately announced prefixes. Unfortunately, some ISPstill  |f too many locations have filters, then there are unavoglabl
do not configure their bogon filters via lists published by the ambiguities. However, for many reasonable scenarios, we
Regional Internet Registries (RIRs). Instead, they choosdo should be able to detect and localise a substantial praporti
manually conﬂ_gure filters. Tht_arefore it would be desirable D of incorrect filters, with a low false positive rate.

test whether filters block legitimate address space beforet iis

allocated to ISPs and/or end users. Previous work has prestd

a methodology that aims at detecting such wrongly configured II. METHODOLOGY

filters, so that ISPs can be contacted and asked to update . .

their filters. This paper extends the methodology by providig The Internet is composed of a large number of inde-
a more formal algorithm for finding such filters, and the paper pendently administered networks (Autonomous Systems or

quantitatively assesses the performance of this methoday. ASs), coupled by the Border Gateway Protocol (BGP) into
a single globe spanning entity. BGP [7]-[9] provides theeglu
|. INTRODUCTION that brings the Internet’s diverse ASs together. Each AS is

It is common for Internet Service Providers (ISPs) to use @yspally connected to oth_er ASs at one or more chauons.
GP is used across these links to exchange information about

called bogon filters to eliminate traffic that is impossibte ( hable 1P p Rout distributed bet ¢
bogus). A common example of such traffic is traffic origingtin.reaC aple I prefixes. outes are distributed betweenrsoute
t]ernal to an AS using iBGP. However, the distribution of

from unallocated address space. Such traffic may arise &s t d the choice of “best” route is infl db .

of a (source address spoofing) DoS, Worm, or other attack [i ’u_es, andhe choice of “best' route IS influenced by peshp_|

or as a result of address hijacking (as used by spammers imple example of which involves filtering selected romitin
houncements to remove them from consideration. We pri-

[3]) so such filters make a great deal of sense. However, . . . . .
address space allocations changes over time, as new ad(%%%rély consider detecting this type of filtering here (thbug

space becomes allocated and announced [4]. Bogon filteds n %go_n f||te_rs may take other forms). Typ|cal_poI|C|es dietdte

to be kept up to date, but recent measurements [5] show tﬁ%gnonsmp between_connected ASS, Wh'c.h commonly falls

they are not. In a significant number of cases, new addrddlo one of the following two broad categories:

space will be unreachable because of incorrectly configuredl) Customer-ProviderOne AS (the customer) financially

filters. compensates the other AS (the provider) for connectivity
Previous work [5] presented a methodology for detecting  to the remainder of the Internet.

incorrectly configured filters. However, the approach has no 2) Peer-Peer:A mutually beneficial relationship between

been tested against complete ground truth data, nor has two ASs to provide connectivity to each others’ cus-

its quality with respect to the scale of measurements been tomers. No remuneration is required for traffic ex-

measured. Furthermore, the approach relies on a rather ad changed between the two peer ASs. An AS generally

hoc heuristic, and it is very likely this can be improved. In ~ does not transit traffic between two of its peers, and BGP

this paper, we propose an Optimization approach to de@ctin pOIiCieS are used to enforce this condition, for instance,

incorrectly configured bogon filters. In order to solve the  an AS would not advertise a route learnt from one peer

optimization problem we implement a genetic algorithm (GA) to another peer.

specifically that of [6]. We test this formulation using simuAlthough these categories do not apply to all relationships

lated BGP data and demonstrate its effectiveness in lagatBGP policies, they are highly illustrative. A peer-peerippl

filters within the simulated BGP network. would be implemented, e.g., by not passing route informatio



----- » anchor

from provider rs. This simple filtering preven n
om providers, to peers s simple filtering prevents one . /T - target

peer from using the other for transit.

A. Detecting Incorrect Filters

The methodology for detecting incorrect filters proposed in (8) case 1: anchor and target reached by the same path
[5] involves the following. First, the portion of addressasp
that is intended to be allocated in the near future is temjipra
assigned to the testing service. A settest-boxeghat are
strategically scattered throughout the Internet annouese
prefixes In addition each test-box announcesaathor-prefix
The anchor-prefixis a well established prefix, part of an
address block that has been used for some time and is known
to be reachable [10]. As the test-prefix and the anchor-prefix

are announced from the same router, the paths through the ~ (P) case 2: anchor and target reached by a different path
1. Example outcomes of traceroute measurements. dattd dashed

Internet should typically be_the same for_ both prefixes. Eaﬁﬁ%s show traceroute paths to the target and anchor resgegctSolid lines
of the test- and anchor-prefixes have a pingable IP addressdetivte “paths” through potentially multiple ASs (not albsm).

a computer belonging to the testing service, catkst-IPand
anchor-IPrespectively. solutions may be possible. In mathematical parlance, tble-pr
Traceroutes are then run from various locations agairém is underconstrained. Hence, we need to select one of the
the test-IP as well as the anchor-IP. We call this probirgpssible solutions from the feasible region. In other nekwo
techniquein-probes By comparing the two paths we caninference (tomography) problems, the method for dealirth wi
derive candidates that might potentially filter the tes#fix. this issue is to use prior model of the expected structure of
There are a number of cases that might result from a p#e solution (for instance the gravity model in traffic matri
of traceroutes from traceroute source to the target andecorinference [12]). We then seek the feasible solution thattmos
sponding anchor. We exclude pathological cases such agwh#psely matches the prior. The statistical term for thisetyp
the anchor is unreachable (indicating some type of broad#rprocess igegularization Often, the resultant problem can
routing pathology). Below we list illustrative cases alomigh then be formulated as an optimization problem.
some commentary on the inference available from each. In this problem, we will use a prior such that our solution
1) anchor and target reached by the same pathsee has maximal sparseness. That is, we seek the solution &t us
Figure 1(a). In this case there is no filtering along thihe smallest number of filters to explain the observations. |
path. reality the solution may not be the sparsest possible, lieth
2) anchor and target reached by a different path:see are reasons to seek a sparse solution. Foremost, the lnterne
Figure 1(b). In this case some type of differential poncyvorks. It would not if problematic filters were endemic. The
applies between test and anchor prefixes. The |ikeq§efacto status of the Internet as a working network suggests

cause is a filter somewhere on the path of the test-prefiRat problem filters are rare.
though there are other possibilities: So our approach will be to seek a solution which satisfies

. traffic engineering [11]. the observational constraints while maximizing the spagse
« BGP allows some non-locality in routing that couldminimizing the number of filters) needed in the solution. We
can write this mathematically as follows.

----- » anchor
--------- » target

cause route changes due to filtering off of the mai
path.
3) target not reachable:In some cases filters may prevenB. Formalization
an AS from even learning of a prefix, and in this case it We have a grapl& = (N,E) with nodesN and edge<E.
will have no route to the destination at all. In this cas@vithin this graph, we have a set of nod&s; N, representing
we can clearly infer that a filter must exist somewheri@-probe source nodes from which we may initiate traceesut
on the test-prefix route. Also, we have a set of nodeB, C N, representing the test-
We will use the simplest implications of each of these tyfes boxes where we announce the test and anchor prefixes.
measurements to construct a set of constraints for thesfilter Considers € S and d; € D. In all graphs we will be

The constraints list arise from considering, a path found using a trace-route figio d; for
1) ASs where filtering cannot occur, the anchor prefix announced from the test-box should exist.
2) paths along which filtering is likely. Let aj € N be the set of nodes representing this path fspm

Our aim is to find a set of filters which match this possible s& dj- Similarly, lettij C N be the set of nodes representing
of constraints. Note that due to the possible sources ofserréh_e corresponding path _for the test p_reflx, Whe_re we note th_at
listed above, this list of constraints may not be consistent this set may be empty if no path exists, that is, the target is
practice, so it is desirable to have an approach that is erf§tt reachable from our in-probe source.
tolerant. Define

More importantly, it is likely that the feasible region spec I { 1, if node n may be filtering the test pre(f'ﬁ,
fied by the constraints allows multiple solutions. In facemp " — 0, otherwise.



Using the above definition and the path node-sets defingagramming, and monotonic convergence), the GA approach
for pairs (s, dj) we may write down some constraints for thenherently generatesgopulationof solutions. This population
location of filters in our node-séd. All nodes that are irijj may have multiple different, but equally good (or close to as
must not be implementing any filtering for the test prefix angood) solutions. This population of good solutions can give
so, for alls € Sanddj € D, us a clear idea of the potential for multiple different swuos

f - 0  net. @ for some measurements (multiple potential solutions are an
n 1 inevitable result of partial measurements).
If the path node-sets differ, then those nodes on the path tdVe begin by initializing the population with random so-
the anchor prefix that are not on the path to the test-prefix dudions for the problem at hand. We then score and rank the
candidates for filtering the test prefix. As such, we have thatewly generated population. To score a specific elementeof th
population, we have two contributing components. The fgst i
v fn 2 1, whenaij 7 tj () simply the number of filters in the solution. The second is
! the number of measurement constraints violated, multplie
for all s € S and dj € D. Equation (3) dictates that if the by some penalty multiplier), determined by our perceived
paths differ, there must be at least one filter on the patBquirement that all constraints of the optimization peobl
for the anchor prefix. Note that some of these nodes will kg satisfied. The score of the solution is thus the sum of these
automatically excluded by equation (2) if present;jn components, and we rank the entire population from the lowes

Given a sparsity criteria for determining the location ofpest) score to the highest. Note that a low score indicates a

filters, we attempt to solve the binary optimization problemsparse solution that satisfies a large number of the optiiniza

minimize F = f 4 constraints.
ngN " @ Once a population has been scored and ranked, we check

subject to the definitions and constraints given in equatio 0 see if we wish to continue with the generation process of

(1), (2) and (3). The objective function given in equatioj (4 e GA. If so, we generate a new population using 3 distinct

is aimed at minimizing the number of nodes in the netwoﬁ?ﬁ.h?]'ques' TTe first is totclqne the tpghb of thef [iﬁpug:o?,
that filter the test prefix(es), due to the practical assumnptiW Ich guarantees monotonic convergence ot the 0 an

) X 0 ,
that filtering is relatively rare. gventual optimal solution. Them,;% of the new population

The above formalization is somewhat of a simplification ar randomly generated, a process akin to.m|g_rat|on_anq thus

the real problem, although it can be extended to allow f versity c_)f_the ”eW.'y gener:_:lted population is mam_tamed.

more complex filtering rules and hence additional constsain he remaining SO'”F'OnS required for_the new populatlc_)n are
generated as offspring from the previous population. Fr th

We aim, however, to learn if solving this type of optimizatio h h terized (biased i
problem is a viable approach for locating filters. The priynalpurpose, we have chosen a parameterized (biased) uniform

goal of the investigation contained in this report is to sral crossover of parents from the previous generation, which

the accuracy of inferred filter locations while varying thgenerates two offspring, and then the offspring with thet bes

. is added to the new population.
frequency of in-probe sources and test-boxes throughaut o' 'S 84 . C
d y b g When this population generation is complete, the new

network. Given a set of in-probe sourc&and a set of test- S .
boxes,D, we may solve this optimization problem for thispOp.UIatlon IS sgorgd anq “?‘”‘?ed and the process continues
particular set of measurements to find a minimal set of filtgri u_ntll some termination t_:rlterla Is met. This criteria |_senfta
nodes that can explain the observed paths. This simplifi;fi)éied number of generations, althoughfc_;rour_an;_alysm wehay
problem will provide the appropriate intuition without uso: Implemented a common early termination criteria whereby_ i
essary complications. These complications, howeverdcbel the b.est solution of some number of successive generations
added to a real system without major difficulty. remains constant, then it is likely that the optlmal solnti@s
been found, and the process may be terminated.
) In preliminary analysis, the GA performs well, providing

C. Solution solutions in seconds on problems wher@MaB’s optimiza-

We use the optimization problem defined above to fingbn toolbox hits its iteration limit and returns no solutio
the filter locations. There are various approaches for sglvi
this optimization problem, but it is an integer programming 1
problem and NP-hard. Hence, any viable solution must be ob-
tained using heuristics, and will therefore be an approsiona A Tést Methodology
Note, however, that our optimization criteria (sparsity)ain Prior work on this problem has used real data obtained
approximation in the first place, and so finding thetimal from measurement experiments on the Internet [5]. However,
solution is not as important as finding a good solution withithis does not (i) give us a complete set of ground truth data,
a reasonable amount of time. (i) the ability to perform multiple realizations in ordeo t

The approach we use to solving the optimization probleobtain statistics with which to measure the performanceuof o
is the Genetic Algorithm (GA) outlined in Hadj-Alouaneapproach. So, our approach to testing the algorithm is to use
and Bean [6]. This approach has several advantages in tiimulation. Of course, simulating the Internet is nonialiv
context. Apart from the standard features of a GA (flexibiMe use C-BGP [13], [14], to perform simulations because it
ity with respect to optimization objective function, ease callows us to simulate interdomain routing at the granujarit

. RESULTS



needed for this problem. Policies are realized using BG#@unded by the number of routers in the ASs incident to the
communities and filters (as they might be in a real networlgdge. For each edge we then pick a random router within each
and we can simulate routing decisions including diversitgt a incident AS.
connectivity within each AS, without the unnecessary detai To capture the diversity of routes we originate one prefix for
of individual protocol packets. This allows us to run muclkach destination AS and then compute the BGP routing tables
larger simulations than other tools. for each router. Paths are computed by taking the standard

We simulate a tiered model of the Internet. That is, ASsoncatenation of a series of such routing tables providisgta
fall into tiers, with tier-1 providers representing the pgto of AS paths between the 150 ASs. These represent the paths
level providers who provide transit services to the nextdew for the anchor prefixes and we denote this AS pathAeand
layer, and so on down through the tiers. Lower-level tieiis forms the base against which we compare other path sets
represent stubs, i.e., networks that connect users to tbnbt, where filtering is implemented. In the simulations, a bogon
but don't provide transit services to other ASs. The modélter is assumed to be consistent across an AS so no (newly
is implemented through BGP policies that dictate that linkedvertised) routes can use this AS. We denote a set of AS paths
between ASs fall into one of the previously defined categorighat have been constructed in this mannef amdicating that
customer-provider and peer-peer with matching BGP pdliciet relates to test-prefixes.
The real Internet has an approximate tiered structure which
reflects these AS business relationships, but the exactsteu
of these relationships is still a research question. Aparnf
the top and bottom levels there is considerable argumenttabo We perform a set of simulations varying the number of
the best model for tiering, so the intermediate layers atesao filters (from 2-10), test-boxes (frofD| = 1-10 though results
clearly delineated. In our model we therefore use only thré&®m 9-10 are omitted due to space constraints and because
tiers: tier-1, tier-2 and tier-3/stub ASs. It is also im@mt to they continue the obvious trend), and in-probe sourcesn(fro
realize that ASs are not single points — they consist of mlelti |S|=5-90). In each case we perform 100 simulations choosing
routers, and may have complex interconnections, and tist tihe set of test boxes and in-probe sources randomly. We do not
doeschange the behaviour of the system [15]. allow ASs with filters to be used as observations points €eith

In the real Internet there are more than 26,000 ASs, of whitést boxes or in-probe sources) because this might make the
a few dozen might be considered tier 1, down to maybe 500@0blem too easy, and to further simplify the problem we do
stub ASs. However, we will not use topologies of the samwot allow a test-box site to also be the location of an in-prob
size as the Internet so that the causality within the sirariat  In each simulation we construct the network, and thence
is clear, and we can quickly simulate all routing tables. We set of measurements. We then use the GA to solve the
use AS topologies that consist of "only” 150 ASs but 578ptimization problem described earlier. We experimentéd w
routers. These topologies are large enough to accommodhteparameters of the GA, and found that the following worked
a tiered structure and complex interconnections between A8s well as any others: the population size was 100, and we
Altogether, we have 5 tier-1s, 20 tier-2s and 125 stub ASs. We&rminate the algorithm if 40 successive generations hiage t
interconnect the ASs in the following manner: Tier-1 ASs argame ‘best’ solution. In the population generation provess
connected by a full mesh of peer-peer links. Each tier-2 AS¢one the top 10 solutions, randomly generate 1 solution at
connected to tier-1 providers where is a random number each new population generation stage, and the ‘bias’ paesame
between 1 and 5 (the number of tier-1 ASs). For at least oiethe offspring generation is set to 0.8. Finally, the coaist
of these AS-level links we assign a customer-provider gplicoenalty multiplierA = 3. With these parameters, the average
and we randomly choose the policy for the other links. As @mputation time for all runs performed in this section istju
result tier-2 ASs are connected with up to 10 other tier-2 ASwer half a second.
by peer-peer links. For stub ASs, we toss a coin to decideResults for 2 filters are shown in Tables I-1I. The table shows
whether it is to be dual- or single-homed. If it is single-hein  that with few observations it can be hard to find all of the
we randomly choose a tier2-ASs to connect it via a customdifters, but that as the number of observation points in@gas
provider link. For multi-homed stubs we randomly choose twee can find all of the filters in all but a few cases. The result
tier-2 ASs and configure one link as peer-peer and the othigra direct reflection of the fact that if none of the paths we
as either peer-peer or customer-provider. observe pass through a filtering AS, then we cannot know that

ASs cannot be seen as atomic entities that consist of a sintjiis AS is filtering. However, the false detection rate shown
router [15]. Rather, multiple routers per AS are needed to Table Il is very low. We do not find filters where there
allow for path diversity. Yet, not all ASs have equally compl are none. As the number of filters increases from 2-6 (false
internal topologies. Tier-1s often have more complex nétwo detection rate results omitted), we observe the same fiading
than tier-2s and tier-3s. Therefore, in our simulationydielr- The proportion of filters identified depends on the number of
1s and tier-2s have multiple routers: tier-1 have 30 routefsSs observed (see Tables Il and V).
and tier-2 ASs have 15 routers. All routers within an AS are When we increase the number of filters to 8 (or more) we
connected by IBGP sessions. Since in reality peer-peer Afartto see new phenomena. Tables V-VI show the results. The
edges rarely consist of a single link between two ASs, walse detection rate, while still small, is no longer neiflig.
configure multiple peering links for each AS-level edge byhis results from a small number of locations in the topology
choosing a random number between 2 and 5 which is uppenere the combination of filters results in an ambiguity. fTha

B. Performance Results



TABLE | TABLE Il

2 FILTERS: MEAN NUMBER OF CORRECTLY IDENTIFIED FILTERS 4 FILTERS: MEAN NUMBER OF CORRECTLY IDENTIFIED FILTERS

ID] — ID] —

s |t 2 3 4 5 6 7 8 s | ! 2 3 4 5 6 7 8
5 | 028 036 068 082 | 0.87 | 1.03 | 1.01 | 1.28 5 | 043 | 063 | 095 | 1.11 | 1.11 | 1.30 | 1.38 | 1.61
10 | 038 | 068 | 0.84 | 1.25 | 1.26 | 1.35 | 1.39 | 157 10 | 061 | 1.01 | 1.09 | 1.64 | 1.63 | 1.83 | 1.96 | 2.17
15 | 052 | 082 | 1.14 | 132 | 149 | 151 | 162 | 1.72 15 | 0.86 | 1.28 | 1.72 | 1.98 | 2.10 | 2.01 | 2.35 | 2.38
20 | 051 | 095 | 1.26 | 1.36 | 1.63 | 1.72 | 1.67 | 1.71 20 | 0.80 | 1.41 | 1.83 | 2.07 | 2.36 | 2.39 | 2.40 | 2.56
25 | 079 | 1.15 | 1.39 | 155 | 1.67 | 1.64 | 1.89 | 1.84 25 | 1.26 | 1.76 | 2.06 | 2.23 | 2.50 | 2.50 | 2.61 | 2.71
30 | 061 | 1.13 | 151 | 161 | 1.66 | 1.81 | 1.77 | 1.92 30 | 1.17 | 204 | 241 | 240 | 2.65 | 2.78 | 2.73 | 2.88
35 | 067 | 1.09 | 1.44 | 163 | 1.75 | 1.79 | 1.82 | 1.91 35 | 144 | 1.95 | 2.34 | 257 | 2.81 | 2.81 | 2.96 | 3.09
40 | 081 | 1.19 | 1.48 | 167 | 1.84 | 1.85 | 1.96 | 1.93 40 | 154 | 215 | 2.45 | 2.65 | 3.00 | 3.02 | 3.10 | 3.25
45 | 083 | 1.25 | 158 | 1.70 | 1.79 | 1.82 | 1.88 | 1.97 45 | 161 | 238 | 280 | 294 | 2.98 | 3.20 | 3.29 | 3.33
50 | 089 | 128 | 152 | 1.73 | 1.80 | 1.86 | 1.93 | 1.98 50 | 173 | 238 | 2.75 | 3.01 | 3.08 | 3.30 | 3.39 | 3.40
55 | 0.78 | 1.24 | 1.56 | 1.80 | 1.87 | 1.92 | 1.96 | 1.95 55 | 1.68 | 254 | 2.95 | 3.24 | 3.29 | 3.42 | 3.44 | 356
60 | 084 | 1.34 | 1.61 | 1.70 | 1.93 | 1.93 | 1.94 | 1.96 60 | 1.86 | 2.85 | 3.03 | 3.25 | 3.46 | 3.44 | 358 | 353
65 | 087 | 1.25 | 1.63 | 1.76 | 1.83 | 1.95 | 1.95 | 1.98 65 | 1.92 | 258 | 3.13 | 3.34 | 3.47 | 361 | 3.69 | 3.61
70 | 089 | 1.41 | 1.62 | 1.85 | 1.83 | 1.93 | 1.96 | 1.97 70 | 208 | 293 | 330 | 351 | 3.61 | 356 | 3.69 | 3.71
75 | 1.00 | 1.41 | 1.58 | 1.72 | 1.83 | 1.96 | 1.95 | 2.00 75 | 221 | 297 | 326 | 353 | 357 | 3.76 | 3.73 | 3.82
80 | 0.96 | 148 | 153 | 1.79 | 1.89 | 1.94 | 1.98 | 1.99 80 | 2.14 | 3.13 | 327 | 362 | 3.68 | 3.73 | 3.82 | 3.88
85 | 0.78 | 1.50 | 1.65 | 1.82 | 1.90 | 1.96 | 1.96 | 2.00 85 | 2.08 | 3.17 | 340 | 3.64 | 3.79 | 3.85 | 3.87 | 3.92
90 | 0.89 | 140 | 1.76 | 1.85 | 1.92 | 1.98 | 2.00 | 1.99 90 | 221 | 314 | 369 | 382 | 3.83 | 3.92 | 3.94 | 3.99

TABLE II
2 FILTERS: MEAN NUMBER OF INCORRECTLY IDENTIFIED FILTERS TABLE IV
6 FILTERS: MEAN NUMBER OF CORRECTLY IDENTIFIED FILTERS

“%‘ f 1 2 3 4 5 6 7 8 5
5 | 0.20 | 0.03| 001 | 0.00 | 0.02 | 0.03 | 0.03 | 0.03 H V|t 2 3 4 5 6 7 8
10 0.18 | 0.04 | 0.00 | 0.00 | 0.07 | 0.02 | 0.00 | 0.00 5 062 | 086 | 1.26 | 1.39 | 1.48 | 1.80 | 1.79 | 2.17
15 | 012 | 000 | 001 | 000 | 003 | 0.01 | 0.01 | 0.00 10 | 095 | 155 | 159 | 201 | 221 | 2.39 | 2.68 | 2.91
20 | 014 ) 001 ] 000 | 002 | 0.00 | 0.00 | 0.01 | 0.00 15 | 1.30 | 1.80 | 2.32 | 2.60 | 2.84 | 2.65 | 3.16 | 3.19
25 | 016 | 006 | 000 | 000 ] 001 | 0.01 | 0.00 | 0.00 20 | 154 | 2.09 | 261 | 2.80 | 3.17 | 3.26 | 3.28 | 3.54
30 | 023 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 25 | 1.97 | 252 | 2.88 | 2.98 | 3.47 | 3.56 | 353 | 3.74
35 | 013 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 30 | 2.01 | 3.03 | 342 | 3.29 | 3.67 | 3.98 | 3.82 | 4.01
40 | 022 | 001 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 35 | 2.35 | 3.056 | 3.48 | 3.77 | 412 | 4.06 | 429 | 4.28
45 | 024 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 40 | 262 | 3.40 | 3.74 | 383 | 425 | 427 | 445 | 4.43
50 | 016 | 001 ] 001 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 45 | 275 | 3.63 | 407 | 431 | 4.35 | 4.64 | 4.76 | 4.69
55 | 012 | 0.05] 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 50 | 2.94 | 3.73 | 411 | 446 | 453 | 4.74 | 490 | 4.91
60 | 0.08 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 55 | 2.84 | 3.96 | 443 | 467 | 485 | 500 | 494 | 517
65 | 014 | 001 ] 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 60 | 324 | 434 | 464 | 478 | 506 | 501 | 527 | 517
70 | 013 | 000 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 65 | 3.29 | 412 | 483 | 492 | 511 | 534 | 537 | 5.27
75 | 017 000 ] 000 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 70 | 348 | 463 | 497 | 530 | 532 | 5.27 | 5.35 | 5.47
80 | 012 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 75 | 375 | 457 | 499 | 525 | 533 | 555 | 554 | 5.60
85 | 008 | 0.02 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 80 | 368 | 488 | 505 | 546 | 546 | 555 | 569 | 5.77
90 | 0.09 | 001 ] 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 85 | 3.77 | 499 | 523 | 552 | 5.71 | 5.68 | 5.79 | 5.79

90 | 393 | 5.06 | 558 | 5.74 | 572 | 5.86 | 5.92 | 597

is, given the actual set of filters, no set of measurements
could distinguish the actual set of filters from a least one
other alternative. A simple example of such an ambiguiyase as well. If filters exist in all of the series of ASs, these
could be a set of ASs which occur in series (with no othgiiters may be explained by a single filter in one AS, and so
connections). Assuming we do not have a monitor in thes@r approach, which searches for the sparsest solutioreto th
ASs, we can never tell which is causing the filtering becallse problem (the solution with the least number of filters) will
could explain a route which avoids the series of ASs. The G#turn only a subset of the total filters. Again the fact that
naturally provides a population of potential filtering sidns. the GA returns a population of solutions to the filter locatio
We can use this population to examine whether there is someblem can provide insight into the potential for multiple
ambiguity in the potential solutions. filters. However, the underlying assumption of our work is
The other phenomena that we observe occurs when th#rat incorrect filters are sparse. Our approach works when th
are 10 or more filters. In this case we can sometimes explainmber of filters is more than 5% of the total population of the
the observations (even with a nearly complete set of measunetwork. If more than 5% of networks have incorrect filters,
ments) using a smaller number of filters than actually exighis translates to over 1300 filtering ASs. This is not a peabl
The example above of a series of ASs serves to illustrate thisbe debugged, so much as an epidemic.



TABLE V

8 FILTERS: MEAN NUMBER OF CORRECTLY IDENTIFIED FILTERS AS hierarChy impac'Fs the results, and how feature_sl of the
real routing system impact on these results. In additioa, th
\‘%\r 1 2 3 4 5 6 7 8 current simulations concern only small network, and it will
: Tos T a6 T Toa 1203 231 290 285 316 be interesting to consider how the GA approach scales with

network size.
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This paper has made many simplifications — too many
to list in the space available. We have aimed to examine
the feasibility of the problem rather than the intricateailet
required in a real solution. However, most of these details
do not alter the fundamental problem, they simply increase
the size of the optimization problem that needs to be solved.
Thus we believe that the qualitative nature of our resultf wi
hold for more complex problems. Moreover, the GA has been
chosen specifically because of the ease with which its abagect
function can be enhanced. One of the key features of GAs is
their flexibility, and this will allow addition of new congtints
and parameters as needed.

There are many issues we wish to investigate in the future.
For instance, how the position of monitors in the inter-



