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Assignment 7: Solutions

TOTAL MARKS: 10

1. It is sufficient to show that the properties are true for an arbitrary element of the matrix.
[1 mark]
(a) Associativity: by the definition of ®
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by distributivity of ® over @, and where brackets have been removed from the internal
products because ® is associative. Then we can change the order of summation because &
commutes, so
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[2 marks]

(b) Idempotence of &:
We could approach this by finding a counter-example. The operator min is idempotent, so
consider the max-min (bottleneck) algebra.
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Another way to think about this would be that if ® were idempotent, then A?> = A, and

hence A¥ = A for all k > 1. Given that we would often choose idempotent @& (which does
imply idempotent @) we would then get that

A* = IHASA%S - = IHA,

so if we do get this case, then it is rather unusual in that the algebra is 1-stable. That isn’t
true (for instance for the Bottleneck semiring), so we have a contradiction.
[2 marks|
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[3 marks|
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(b) Each element Aj; gives the reliability of the most-reliable path between nodes i and j, in a
graph whose link-reliabilities are given by A.
For instance A}, = 0.3 means that the most reliable path from 1 to 2 is the direct link
between the two nodes.
[1 mark]

(¢) The underlying graph has asymmetric weights (the reliabilities), and so is best thought of
as a directed graphs, and the resulting most-reliable paths are therefore not all symmetric.

[1 mark]



