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Preface

These notes grew out of a set being used for a course calledtBici Computing. In that course,
three programming languages were taught: ExcelTIMB and C, with some emphasis on com-
parison of the advantages, disadvantages, and commesdlétween the three. This set of notes
was drawn from the MTLAB component of that course, as we often have a need to teach new
students some elements ofAWVLAB , or to refresh their memory. However, as it was only one
component of a larger course, these notes are far from coenppled while they may comprise a
suitable set for a student just startingM.AB , there are plenty of other books and on-line refer-
ence materials that are more substantial. Also, a reademetage comparisons with Excel or C
appearing at various places, due to the structure of thénatigourse. Despite, this, these notes
should contain a reasonable introduction to programmipgdiically programming for scientific
or numerical purposes) in NfLAB .

Matthew Roughan
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Chapter 1

MATLAB Fundamentals

We can characterise MLAB as follows. Itis

e Imperative: we tell the computer what to do.
e Procedural: a program is written as a series of tasks (procedures) to dgjecified order.

e High-level: MATLAB is written in a high-level programming language which rebks a
mixture of English and mathematics. The exact form has terdifom both because it needs
to be more precise than English (computer are fast but stuaidl because a typewriter
keyboard (which we will use for entering programs) has ladikeys.

e Interpreted: MATLAB uses an interpreter to translate our high-level commartdsiome-
thing the machine can do. It does the translation (almostherspot when we type a com-
mand. A MATLAB interpreter exists for most common computing environmeantduding
Windows, MacOS, and Linux, so MLAB code is very portable (if it is written carefully).

1.1 Reference books foMATLAB

This course draws from the following text which is availablehe Reserve section of the Barr
Smith library.

1. Hahn, B.DEssentiaMATLAB for Scientists and enginegfarnold, London) 1997/2002/2007.

The 1997 version relates to MLAB 4, 2002 to MATLAB 6.1 and 2007 to MTLAB 7.2. Our
Labs now use MTLAB version 7. However, most of this course is not dependent eweinsion
of MATLAB used.

Matlab has extensive built in help, either through typivep followed by a topic or func-
tion, or through the MTLAB menus. There is also extensive on-line help on the Inteweethe
Mathworks web page, or other 3rd party tutorials.

The Uni book shop can order in a student version @ffiaB for less than $200, but you do
not need this to complete the course. There is also a freegnogery similar to M\TLAB called

1



CHAPTER 1. MATLAB FUNDAMENTALS

octave , but it does have some differences particularly in the usirface, and so we do not
recommend it for this course, though you may wish to use théftiture.

1.2 Getting started

Invokingmatlab produces a MTLAB window similar to Figure 1.1.

<} MATLAB

=101 x|
File Edit Wwiew ‘Web Window Help
= | & B« o ‘ it | 2 |CurrentDirec1u:ury: Wil j J
Elﬁﬂ Command Windows
= = B - S R -
This iz a Classroom License for instruce
Name Size By Research and commercial use is prohibits
@Err 0x0 1=
i — To get started, select "MATLAE Help™ from
@Exﬂ;l’lag =0
-
H ] s

I A | Warkspace I Currant Directary |

Command History

¥-- 2/24/03 5:01 PM --%

4L5tart|

Figure 1.1: Matlab window
The>> is the MATLAB prompt. Initially you will enter commands at this prompt hater we

will see how to write and usem files using a text editor.

For an overview of the help facility typkeelp help . For a menu-driven graphical user
interface of the help facility, typéelpwin , or use the HLP menu. For help with a specific

command typenelp command _-name wherecommandname is the name of the command
with which you seek help.

To exit MATLAB typequit or use the LE menu.

1.3 How a program works

Consider the following piece of MrLAB code, which we might type at the AMfLAB prompt.
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balance = 1000;

rate = 0.09;

interest = rate * balance;
balance = balance + interest;
disp( 'New balance:’ )

disp( balance )

Typing this in the MhATLAB command window we get the following output:

New balance:
1090

The statements in our program are interpreted byMB as

. assign the value 1000 to the variablance .

. assign the value 0.09 to the variald¢e .

1
2
3. multiply the value ofate by the value obalance and assign the answeritderest
4. display (in the command window) the message given in siqgbtes.

5

. display the value dbalance .

MATLAB processes the statementsoirder from the top down. When the program finishes the
variables used will have the values

balance: 1090

interest: 90
rate: 0.09
1.4 Variables

A variable is a programming structure we define to hold a vdlue called a variable because we
can change the value it holds. A variable is created by aggjgnvalue to it. For example

a=98
Any operations that assign a value to a variable autombticadate the variable if needed, or
overwrites its current value if it already exists. If thehighand side of an assignment operation
refers to a non-existent variable you will get the error ragss

Undefined function or variable

MATLAB allows us to give a variable a value of a string, numbeagroay (a synonym for a vector
or matrix). In fact, by default all variables are arrays. |8csmare just stored dsx 1 arrays.
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1.4.1 Variable name

A variable name should follow these rules:

1. it may consist of only the lette’s-Z anda-z, the digits0—9, and the underscore’!
2. it must start with a letter.

3. it must be shorter than 63 characters long (saeelengthmax ).

4,

it must not be a reserved keyword (efg. , while , function ,orif ). We can get a list
of keywords by callingskeyword

If in any doubt, we can distinguish valid variable names gélre functiorisvarname( vari abl e) .
Examples of valid variables name&d2 andpay _day .
Examples of invalid variable namegsay-day , 2a, name$, or _2a.

It is good programming style to avoid using common functiassariables, for exampten |,
or cos . We also prefer to use variables that are meaningful, rafiaer abstract variables like

1.4.2 Case sensitivity

MATLAB is case sensitiveo it distinguishes between upper and lower-case letterBARANCE
Balance andbalance are three different variables. This is also true of functiames.

1.4.3 Class/Type

Each variable has @lass (often called a type in other programming languages). THautte
type in MATLAB is an array (a matrix or a vector) dbuble precision floating poimtumbers, but
typicallyMATLAB assigns the appropriate type to a variable when it is firshddfi The type will
also automatically change as required throughout a progsamwe don’'t need to explicitly define
the type of a variable, but we may need to know the type, orgh#n

The commandavhos shows a list of the variables we have defined, along with gieée (how
big the array is). For example, given the code above, andrdi#pg on the precise version of
MATLAB you're using you should end up with something like

Name Size Bytes Class
balance 1x1 8 double array
interest 1x1 8 double array
rate 1x1 8 double array

Each variable occupied/tesof storage (64 bits). The variables are scalars, batiMB represents
scalars as & x 1 matrix, hence the values in ti&ze column, and the terrarray at the end.
The termdouble refers to the fact these are double precision floating poraya.

The most important variable classes irlkMAB :
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e double precision floating point: numbers are the default way of representing real numbers.
Eachdouble uses 8 bytes or memory. MLAB uses the IEEE Standard 754 for its floating
point representation.

e logical: or Boolean variables represent the values TRUE and FALSEgdsand O respec-
tively. We can define a logical variable using logical operstike==. In principle a logical
variable needs only 1 bit, but MLAB stores each in 1 byte.

e char: represents a ASCII tex character, i.e., the typical typewletters. An array of these
forms a string (a piece of text). We can define a string usinglsiquotes, e.g.
the_string = ’'Hello, world!’;

Quotes may be included in a string by repeating them twice.
the_string = ’'Hello, "world"’;

There are other types in MLAB, e.g. single ,int8 , uintl6 , function_handle , etc.,
but these are less commonly used. Also, one of the pleastipgegramming in MATLAB is that
one typically doesn’t have to worry about the type of a vddads MATLAB handles these for
you, unless you have a specific requirement. There are alse attvanced data types such as
cell andstruct that are outside the scope of this courseaTMAB also allows more object
oriented classes such aslass_name> , again outside the scope of this courselp class

can provide more details.

In MATLAB we can often ignore a variable’s class and allowtaB to work out the details
for us, but there are some issues you need to be aware of.

e Double-precision floating point numbers try to represemzh number, but they do NOT do
this to arbitrary precision. This allows numerical errarsalculations, and if one does not
program carefully these can become a problem, The classiakei is to test whether two
floating points numbers are equal by writing, for instange==y . This may fail because
the two numbers are very slightly different. For instanoeMiaTLAB sin(7) # 0, because
MATLAB only stores an approximate valuerafWe will later see how to do this correctly.

e Strings are not a “scalar” variable, but rather are represkeas an array of characters. This
Is sometimes important when operating on them.

1.5 Script M-files

A M ATLAB program saved from a text editor with tlra extension is called acript file As an
example, let’s save our earlier interest program in a fil&wie namealc _interest.m

balance = 1000;

rate = 0.09;

interest = rate * palance;
balance = balance + interest;
disp( 'New balance:’ )

disp( balance )
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To run the prograncalc _interest  we simply enter the name
calc_interest

at the MaTLAB prompt, and each command in the file will be executed in oriacript file may
be listed in the command window with the commanppe , e.g.

type calc_interest
and MATLAB would output the aboven file.

MATLAB has a built in editor that we can use via theaMAB menus. Go to EE-> NEw to
create a newm file, or HLE-> OPEN to edit an existing file. The editor has many useful features,
e.g. it highlights different parts of the code in differeotaurs to help identify, e.g. comments. It
puts line numbers next to the lines of code to aid in debugging it has built in debugging tools.
Other text editors also support some or all of these featbreggor the purposes of this course we
will use MATLAB’s built in editor.

1.6 Useful features in theM ATLAB window

The MATLAB window has some useful features. On the left-hand (by dgfaide the window
has sections allowing us to display the current Worksp&eectirrent directory, and the command
history.

1.6.1 The Directory

One of the options we can display is the current directoryngtomes called a folder), showing a
list of the.m files we have created. We can also manage this directoryamgehdirectories.

1.6.2 The Workspace

A fundamental concept in WMrLAB is theworkspace If we enter the commanaho we should
see a list of variables, for instance, given the previousmptawho would return

Your variables are:

balance interest rate

We can also see the workspace in the top left frame of theuws window.

All variables you create during a session remain in the wmake until youclear them,
either individually, or ifclear is called by itself it clears the whole workspace.

The MATLAB window can also display a graphic of the workspace, showiigj af variables
their size, and a graphic representation of what type oateithey are.
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1.6.3 Command history

The history contains a list of all of the commands we types itanvenient for us to be able to
review this, but more importantly, we can repeat a commasiyed he up-arrow on the keyboard
allows us to scroll back through these past commands. Weltartifie command list by typing a
few letters at the command prompt and then using the up-aivowLAB will then scroll through
commands that match the letters we typed. This can save us&typing.

1.7 Punctuation!

By default, MATLAB has one command per line. When you hit the enter or returndksyart a
new line, MATLAB interprets the current command. Inma file, we usually have one command
per line of the file. So a single line is like a “sentence” in ksty but we don’t need to put a full
stop at the end.

In MATLAB , various symbols can alter this behaviour.

e ,  We can put more than one command on a line with a comma, e.g.

x=1, y=X
The commands are executed in order from left to right.

o ... If we have a complicated formula that won’t easily fit on orreeliwe can spread it
over two lines using three full stops, e.g.,
x=01Q+2+3+4+5 ..
+ 6+ 7)

e % The percentage sign is use to denommment Comments are text in the program
that has no effect on the program itself. ImMM.AB, everything on a line that appears after
the % sign is ignored. Comments are very useful for making@asier to understand, e.g.,

g = 9.8 % the gravitational constant in m/s™2
o ; By default, when we enter a MLAB command, the result of that command will

appear in the command window. If we wish to suppress thissdehiawe end the line with
a semi-colon “;”, and the command will execute silently. @mg the semi-colons can save

us typingdisp , so we only really usdisp for teaching purposes.

1.8 Programming style

It is extremely important for you to develop the art of wrgiprograms which are laid out well and
with all the logic described clearly. Good comments are nattb write, and are often omitted,
or done carelessly. However, good comments make a program easily maintainable, and
reusable. Failing to comment code may seem to save time gmatrglly costs companies a great
deal more than it saves.

In programming MA\TLAB we expect you to
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e Put a comment at the start of all .m files explaining what treedibes, who wrote it and
when, and some details of any inputs, outputs, or other gstsoms. It should also list how
it relates to any other programs. Often it is useful to prevadeference to the source of an
algorithm, or a set of data.

e Variable names should be meaningful. For exanipierest_rate is preferable to.
Where possible, match variable names to the reference text.

e Variable names should not overlap common functions.

e Even where variable names are chosen well, it is useful torapany a variable definition
with a comment. Sometimes this can help understand defditseovariable (for instance,
we might have two interest rates in our program and wish tp Aeeader understand which
is which). Another use for comments is to specify units, e.g.

g = 9.8 % the gravitational constant in m/s 2

e Comments can be otherwise used to highlight key steps ingamitim, or otherwise clarify
code.

e Spaces can be used in expressions to make them easily reaeapl on either side of the
equal signsasim = [1,2,3] . We can also use brackets to make complex expressions
easier to understand.

e Blank lines can be used to separate different parts of thgrano. Another convention is to
use a row of % signs to separate major segments of code.

e Don't “hardwire” values. Where-ever you have a value that yise more than once in
a program, you should assign that value to a variable, andheseariable. This makes
maintenance much easier as you will only have to change tle v one place to update
the program.

You may want to develop your own style but it is important t§ p&ention to readability. A good

approach is to imagine another person who has to read yoe;, end modify it. Then apply the

principle “Do unto others as you would have done to you.” Datthings that you would appreciate
when you are reading other peoples’ code.

Perhaps a more compelling maxim comes in the form of a quote amien Conway (Perl
Best Practices)

Always code as if the guy who ends up maintaining your codéhila violent psy-
chopath who knows where you live.



Chapter 2

Vectors and matrices

A matrix is a rectangular object (e.g. a table) consistingofs and columns. A vector is a special
type of matrix having only one row or column. Vectors are alsmmonly referred to alésts or
arrays We'll postpone a discussion of matrices until later. Fa& thoment we’ll concentrate on
vectors, starting witlow vectors.

2.1 Initialising row vectors: explicit lists

To get started with entering vectors intoAVLAB we’ll try the following. We can define a row-
vector directly using square brackets.

x =[130-15]

We have created a vector (or list) with fireéements To see how MTLAB displays a vector we
can enter the commarmisp(x) , though omitting the semicolon will have the same effect.

If we enter the commanahos we’ll see that, under the headisge , x is 1x5 which means
that it has 1 row and 5 columns. The functgime will return the size of a matrix as®5 array.
We can also directly obtain the length of our vector userggth(x) , which will be 5.

We can also put commas instead of spaces between the elent@amtsiefining a vector

a = [5,6,7]
which has exactly the same effect as leaving spaces, but emaylistantially easier to read if we,
for instance, put more complicated expressions into oayatefinition, e.g,

a = [5+1, 6-2 3, sin(2 =*pi)]
In general the definition of a vector can involve aaMAB expression perhaps even involving
other variables.

We can also define an empty array, e.g.
x =[]
The empty array can be useful in some circumstances, e.@rewhe need to have a variable

defined, but don’t want to put anything in it yet. If we enteddahen entewhos we find that the
size ofx is given as 0 by 0. This means thats defined but it has no value or size.

9



10 CHAPTER 2. VECTORS AND MATRICES
2.2 Initialising row vectors: the colon operator :

A vector can also be generated with ttw@on operator If we enter the following:

x = 1:10
we obtain a vector with elements that are the integers (4,5,8,7,8,9,10). The command

x = 1:0.54
produces a vector with the elements (1, 1.5, 2, 2.5, 3, 3&ad) of which increases in increments
of 0.5. The colons separate three values, andtigellevalue is the increment. Similarly

x = 10:-1:1
produces a vector with elements (10,9,8,7,6,5,4,3,2rnbesihe increment is negative. Another
example is

x = 1:2:6
In this case the elements are 1,3,5. Note that when the imereispositive but not equal to 1 the
last element is not allowed to exceed the value after thengecolon.

2.3 Column vectors

We can create a column vector by reusing the semi-colonifthislifferent use from when we end
a line with a semi-colon). We simple define a column vector by

x =11 2; 3]
1
r=1 2

which defines the 3x1 column vector
We can transpose between row and column vectors using thgla sjuote, oapostrophé , e.g.,
when we enter
y =14 8]
we get the column vector

2.4 Transposing vectors

with 3 rows and 1 column. Likewise,
y = 1[4 5 1]
Results in
y=(4,5,1).

[Warning: actually this operation gives the conjugate spose. Replace 1 by i in this example
and inspect the output. For simple transpose.useather than a simple apostrophe. ]
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2.5 Concatenation

Concatenation basically means sticking one array on theotadother. We can concatenate two
vectors by placing them within square brackets, e.g. if We ta

a=1[12 3]
b =1[4 5]
c = [a -b]
Thenc = (1,2, 3,4,5). Or for column vectors
a =1[1; 2]
b = [4; 5]
c = [a; -b]
Then

QU s DN~

2.6 Subscripts

We can refer to particular elements of a vector by mearssib$cripts

1. Set up the vector
r=1[2 48 16 32 64 128]

2. The command
r3)
gives the third element of the vector(the value is 8). The number 3 is teabscript

3. The command
r(2:4)
will give the secondthird andfourth elements of the vectar, i.e., the vectof4, 8, 16).

4. The command
r(1:2:7)
returns the odd termg, 8, 32, 128).

5. We can use an empty vectorreamoveelements from a vector. The command

A 72)=1]

will remove the elements 1,7 and 2, so nowvill look like
r=(8,16,32,64).

6. There is a special terend we can use to mean the last element of an array, e.g. if
r=1[2 48 16 32 64 128]
Thenr(5:end)  would be the array32, 64, 128).

Warning: MATLAB subscripts start at 1 (the integer 1 means the 1st element oli¢ array).
In C, subscripts start at 0. This is a very common source of ewrs for people who have to
write code in both.
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2.7 Matrices

A matrix may be thought of as a table consisting of rows androols. We enter a matrix just as
we did for a vector, using a semi-colon to indicate the endrofra The statement

a=[123;45 6]

results in
a =
1 2 3
4 5 6

A matrix may be transposed in the same way as for a vector. Astegphe will interchanging
rows and columns, e.g., the statemantresults in

ans
4
5
6
A matrix can also be constructed from column vectors of tieeskength by concatenation. The
statements

x = 0:30:180

table = [x' sin(x * pi/180)’]
concatenates the two column vectgrandsin(x *pi/180)’  togetherinto &x7 matrix

table =

wN R

0 0
30.0000 0.5000
60.0000 0.8860
90.0000 1.0000
120.0000 0.8660
150.0000 0.5000
180.0000 0.0000
Subscripts work as expected. The element initherow, andjth column, i.e., thg, j)th
element of matrixA can be accessed usigi,j) . As before we can use vector subscripts to
extract a portion of the matrix. For instance

table([1 2 3], 2)

ans =
0
0.5000
0.8660
We can replace the whole possible range of an index usingreitbnd , or even more simply
just: . For instance

table([1 2 3], 1)

ans =
0 0
30.0000 0.5000
60.0000 0.8660
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2.8 MATLAB and matrices

One of the most powerful features of AVILAB is its ability to operate directly on matrices. For
instance, we can multiply all of the elements of a matrix bycalar simply using the standard
multiplication operatok. In the above example the functi@mn acts on each element of the
column vector, returning a column vector whose elementssere ofx. We will discuss this
further in the following chapter, but some simple examples a

A =11, 2; 3],
b = 3;
X = b*xA;
y =b + A;
which will result in
3 4
r=16 y=1 5
9 6

There are also special operators defined ktMAB for performing matrix operators. A simple
example isx = [1, 2, 3]."2 , Where the.” operator squares each element of the vector
giving x = (1,4,9). A more sophisticated example is given below.

Example: If a stone is thrown vertically upward with an initial speedts vertical displacement
s after timet has elapsed is given by the formula

t 1t2
s =ut — =gt~
59

whereg is the acceleration due to gravity. Air resistance has bgeared. We would like to
compute the value of over a period of about3sec at intervals of..1 seconds and to plot the
distance-time graph over this period. Our plan for this peobis as follows:

1. Get the datag, v andt) into MATLAB .
2. Calculate the value afaccording to the formula.

3. Plot the graph of against.

The resulting program is
% Vertical motion under the action of gravity

g = 9.8; % acceleration due to gravity

u = 60; % initial velocity (metres/sec)
t=0:01:13; % the time in seconds
S=u~*t-g9g2 = t°2; % vertical displacement in metres
plot(t, s)

title( "Vertical motion under gravity’)
xlabel( 'Time’ ) , ylabel( 'Vertical displacement’ )

grid
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Vertical motion under gravity
200 T T
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Figure 2.1: Vertical motion under gravity

The graphical output is shown in figure 2.1.

An additional constructor that is often useful when buitggdmatrices is theneshgrid func-
tion. It works as follows: take two vectoxsandy, of lengths/N and M respectively, and

[X, Y] = meshgrid(x, Y);

will result in X andY that areN x M matrices, with the rows of the vectorx, and the columns
of Y are the vectory. Remember that MTLAB variables are case sensitive Xas a different
variable tox.

A simple example is the construction of a multiplicationleatmuch as we did in Excel. Use
the following commands

1:12;

y 1:12;

[X, Y] = meshgrid(x, Y);
Table = X . * Y,

Now the variablelable will contain the multiplication table.

X
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2.9 Solving linear equations withM ATLAB

One of the most common uses for matrices is in solving a seheat equations, e.g., we have
three variables, x5, andz; and three equations

3!13‘1 -+ 2{13‘2 +x3 = 2, (21)
T+ X9 + 3.7}3 = 2, (22)
21’1 — To + 21’3 = 1. (23)

We can represent a set of such equations by

Ax = b,
where
3 2 1 T 2
A=11 1 3|, x=/|[ x and b= 2
2 —1 2 T3 1

In MATLAB we can solve a set of equations such as this simply using
Xx=A\Db

When A is invertible, this is equivalent ta = A~'b computed using Gaussian elimination. We
can obtain the inverse of directly using

inv(A)
Note that wherA is not invertible, or non-square MLAB 's behaviour is more complex. Also,
it is possible to have unexpected results if a matrid isonditioned e.g.,
[2 eps -eps; eps 1 1; -eps 1 1];
[2; eps + 2; -eps + 2];
A\Db

MATLAB will print a warning in this case saying

A
b
X

Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND = 2.465190e-32.

We can obtain more information usihglp mldivide
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2.10 Strings

Text can be stored in variables inAVILAB , and the result is usually calleds&ring. The standard
way to create and assign a string to a variable is use singles|e.g.,

the_string = 'Hello, world!’;
Quotes may be included in a string by repeating them twice.
the_string = ’'Hello, "world”!’;

In the latter casewhos will tell us thatthe_string is alx15 array of characters taking 30
bytes.

Actually, a MATLAB string is an array of numbers, each storing the “Unicode” benfor a
character in the string. Unicode consists of a repertoirabaiut 100,000 characters from most
world languages. The most commonly used encodings (in &mgdire ASCII characters. We can
write out a table of the printable ASCII characters,

ascii = [char(32:79); char(80:127)]

ascii =

"#$%&'() *+,-./0123456789:;<=>?@ABCDEFGHIJKLMNO
PQRSTUVWXYZ[\]"_‘abcdefghijklmnopgrstuvwxyz{|}™"

For more information about ASCII see, for examiép://en.wikipedia.org/wiki/

ASCIl . MATLAB stores the a numeric code associated with each charactepesations such
asthe_string+1 will have unexpected results (it shifts us down the alphalpeine). We can
convert between a character array, and an array of doubtesfme numbers using the conversion
functionschar() anddouble()

A string is an array, and hence they may be concatenatedgushar arrays, e.g.,
the_string = ['Hello, ’ 'world!"];

Atypical string is just a row vector of characters, but we fram matrices of characters. There
can be problems, however, with such matrices. For instanisegften appealing to interpret them
as a series of lines of text. In contrast to typical text, ¢hase held in an array, and so each row
must be the same length. Also operations on these arrayst(@xgpose) often have unexpected
results, so care must be taken. What is often needed is aal actay of strings, which can be
formed in MATLAB using acell array, but such arrays fall outside the scope of this course.
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2.11 Multi-dimensional arrays

MATLAB allows one to construct multi-dimensional arrays. Often ik simplest using standard
constructors of matrices, such ases, zeros , andrand , which allow for more than 2 input
parameters with a resulting multi-dimensional matrix, e.g

A = ones(3,2,4);

will return a3 x 2 x 4 array. We can access its elements using, for instafn@g,k) , and
size(A) will return the vectof3 2 4] . DisplayingA with thedisp function will return

1)

e

:,:2)

=

:,:,3)

P

:,:,4)

-

PRrRrIIRPRRITREPRIRERI
= =

where each group specifieg a 2 subarray, or which there are four.
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Chapter 3

MATLAB as a big calculator

One of the key features of MLAB is the ability to do complicated calculations. In some ways i
resembles a great big calculator, but its capabilities,emeth the rules for how calculations work
are rather different from your standard calculator.

3.1 Numbers

3.1.1 Writing numbers

Numbers can be represented imMAB in the usual decimal form, e.g.
1.2345 , -123 , .00001

A number may also be representedsiientific notatione.g.1.2345 x 10° = 1,234, 500 may be
represented in MTLAB as

1.2345e6

3.1.2 Numerical errors

As noted above, numbers are stored as double precisiomfijoadiint variables, but this means
there will be small errors in some numbers. For instancatiomal numbers such as &s3, 7, or
/2 are not possible to represent exactly, but you may find esees in numbers that are exact,
e.9.1.1010101010101010101 will be stored as approximately1010101010101009944. Note that
when you use thdisp()  function, you only see the value output to a fixed precision.

The function/variableps tells us something about the spacing between floating paimt-n
bers. Used as a variable in the current version afMAB, eps = 2.220446049250313e-16
which gives us difference betwednand the next largest number that can be represented in
MATLAB, but used as a function it can tells us a great deal more. hdige eps to find out
more information.

19
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3.1.3 Special cases

There are two special cases of number infaB : NaNandInf , standing foNot a Numbeand
Infinity, respectively. MTLAB returns these when certain arithmetic rules (such as nevieled
by zero) are ignored. For instance

1/0 = Inf
-1/0 = -Inf
0/0 = NaN

We should check if a number falls into these cases using tiaitinsisinf  andisnan because,
by definitionNaN # NaN.

3.1.4 Complex numbers

It is very easy to handle complex numbers imMAB . The special values of andj stand for
v/—1. We must be careful, however, because often programmessigeathese values. They can
be set back tq/—1 using, e.g.clear i . We can define a complex number by

z =2 + 3%
The imaginary part of a complex number may also be enterdwwithe asterisk, e.§i . All the
arithmetic operators (and most functions) work with complember. For instance,adds the real
and imaginary components, respectively, whilperforms standard complex multiplication. The
functionsreal(z) ,imag(z) ,conj(z) andabs(z) all have the obvious meanings. There
are also functiorisreal to testif a number is real, or if its imaginary part is nonezer

Note that imaginary numbers require storage of two doul#eipion floating points numbers,
and hence require 16 bytes of storage. Also complex ariticrimeolves more computation than
real arithmetic, so it is best not to use complex numbersssnieeded.

3.2 Operators, expressions and statements

Let us start with some definitions. Aaxpressioris a formula consisting of variables, numbers, op-
erators and function names. An expression is evaluated wieenter it at the MTLAB prompt,
e.g., to evaluatér we enter

2 * pi
MATLAB'’S response is
ans =
6.2832

A statementloes something. For instance, it might write somethingécttmmand window, plot
a figure, or assign a value to a variable, e.g.,

s=u=*t-g/l2 =+t 2
This is an example of amssignment statemerithe value of thexpressioron the right isassigned
to the variable on the left.

Statements and expressions use operators as short hatahidarsl mathematical operations.
For instance= is used to assign a value to a variableAIMAB has a large number of operators,
you can see a list by typingelp ops . We will discuss some here.
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| Operation Algebraic form MTLAB |
Addition a+b a+b
Subtraction a—2>b a-b
Multiplication a x b axb
Right division  a/b a/b
Exponentiation a® ab

Table 3.1: Arithmetic operations between two scalars

Operation MATLAB  result

comparison X ==y returns TRUE ifx andy are equal, and FALSE otherwisg
comparison x >y returns TRUE ifx > y, and FALSE otherwise
comparison x >=y  returns TRUE ifr > y, and FALSE otherwise
comparison X <y returns TRUE ifz < y, and FALSE otherwise
comparison X <=y returns TRUE ifr < y, and FALSE otherwise
comparison X "=y returns TRUE ifz is not equal tg;, and FALSE otherwise
logical AND X & y returns TRUE ifz AND y are true, and FALSE otherwisg
logical OR x| vy returns TRUE ifz OR y are true, and FALSE otherwise
logical NOT "X returns TRUE ifz is FALSE, and FALSE otherwise

Table 3.2: Common logical operators.

3.2.1 Arithmetic operators

The evaluation of expressions is often achieved by meaastbmetic operatorsvhich are similar
to those we are familiar with in algebra. The arithmetic atiens on twaoscalar constants or
variables are shown in Table 3.1.

3.2.2 Logical operators

It is common that we wish to assign a logical, or Boolean vatua variable, or otherwise use it
in an expression. The most used logical operators are showakile 3.2. There is also awr
function where this is needed. There are a number of othadbgperators (for instance bitwise
operators) that we will not consider here.

A common operation is comparing two numbers to see if theyegreal. This is a common
source of confusion as there are two similar operatoesd==. The former is arassignment
operator — it assigns the value of the expression on its-higind side to the variable on the left-
hand side. The latter (the double equals sign) is the cosgranperator, which tests whether two
values are equal. In preference to the comparisor= y, we often use an operation such as
abs(x-y) < epsilon , Whereepsilon is a small number. This allows for some errors in
the floating point representation of the numbers.

Finally, MATLAB also includes a number @ést functionghat return TRUE if their inputs
satisfy certain conditions. A more complete table of sucictions appears in Section 6.5, but note
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that we need to use such a function (in particular the funditocmp ) if we wish to compare
strings. The== comparison operator only works for numbers, not stringsabse a string is really
an array not a single value.

3.2.3 Array operators

MATLAB has a large set of array (or matrix) operators. The standd#ttreetic operators are

translated into their matrix equivalent, e.g., the matridtiplication A B would be writterA * B

in MATLAB, and addition, subtraction, and logical operators all wonkmatrices by adding,

subtracting, or comparing their individual elements, es$pely. Obviously, these operations
require matrices of the same size, or an error is returned.

An exception to the same size rule is thabMAB also combines scalars and matrices in an
intuitive fashion. For instance takéto be a matrix, and a scalar (al x 1 matrix in MATLAB),
and then

e A + b means add to each element ofl.
e A * b means multiplyp by each element ofl.

e A'b means take the matrig times itselfb times, i.e.,A x« A % --- x A. Obviously this can
only be done for a square matrix.

MATLAB also introduces a number of operators specific to matricewvectors. These are based
on standard arithmetic operators, but preceded by a dot, e.g

e C = A .» Bmeans form a matrix’ whose(i, j) element;; is given byc;; = a;; * b;;.
e C = A ./ B means form a matriK’ whose(i, j) element;; is given byc;; = a;;/b;;.

e C = AB means form a matrix’ whose(i, j) element;; is given byc;; = a?;ij.

The “dot” operators, e.ga. * b are calledelement-by-elememiperations because they are per-
formed element by element. Fof¥ and./ to work, we need andB to be the same size.

Consider the following simple example. Given,

a=1[2 48]

b =1[32 2]
then operator tharray productdenoted bya . = b is

[a(1) =b(1) a(2) +*b(2) a3) +b(3)] = [6 8 16]
In a similar waya./b gives element-by-element division. The exponential is

[2 3 4] " [4 3 1] = [16 27 4]
we find that theth element of the first vector is raised to the power ofitheelement of the second
vector. Note that if we replace one of the matrices with asséathen MATLAB effectively creates
a new matrixB whose elements; = b, e.g.

2.7 [4321] =116 8 4 2]

Other matrix operators we have already seen include thenmeahstruction operators [ and
] , the transpose operator and; (for constructing column vectors). There is also a leftislon
operator) , mentioned earlier.



3.3. PRECEDENCE OF OPERATORS 23
3.3 Precedence of operators

MATLAB has strict rules about which operations are performed fir@niaseveral operations are
combined in an expression. These are called the precedeleseand are shown in Table 3.3.
When operators in an expression have the same precedengpetfations are carried out left to
right. Soa/b *c is evaluated aga/b) *c and notas/(b *c) .

| Precedencg Operator |

Parentheses (brackets)
Transpose and Exponentiation
Unary plus and minus, logical negation
Multiplication and division
Addition and subtraction
colon:

AND &

OR|

O~NOoO T WwWN PR

Table 3.3: Precedence of standard operators. Operatorguaf precedence are evaluated from
left to right.

The precedence rules are similar to those you are familidr fom standard algebra (paren-
theses, exponentiation, multiplication and division, &meh addition). However, in MrLAB |,
these rules apply to a range of operators, for instancey andtiplication has precedence
just as scalar multiplication; element-wise exponerdrati has the same precedence as the
scalar, and matrix exponentiation operatomote that if part-way through evaluating an expres-
sion we would end up multiplying two incorrectly sized me&s when following the precedence
rules,MATLAB will return an error. No effort is made to interpret the seakan expression.

In many programming languages there are two types @fymbols. The standard operator
combines (adds or subtracts) two operands, e.g.p. Theunaryoperator acts on one operand,
e.g.,—a. The two types have different precedence. The other impodiéierence in MATLAB’S
precedence operators is thatAMAB has some unusual operators related to matrices. For in-
stance, consider the colon operator. The colon operatoa @ser precedence than addition as
the following shows. In

X = 1+1:5

the addition is carried out first, and then a vector with eletsie = 2, . . ., 5 isinitialised. Compare
this with

x = 1+(1:5)
which results int = 2, .. ., 6, because the brackets reorder the operations.

3.3.1 Parentheses and programming style

Parentheses, or brackets are always first in the precedetiee dlence, we can use brackets to
group operators into the order we desire. This is not justierin cases where the order needs to
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be changed. Using brackets can often be useful even wheoedbeis already correct, because it
can make an expression much easier to read, and debug. Asisuahbrackets sensibly to make
complex expressions more readable is a part of good codauiipe.

3.4 Vectorisation of formulae

Array operations can be used to evaluate a formula repgaf@da large amount of data. Let’s
consider the following formula for calculating compountkirest.

Example: An amount of monew is invested over a period of years with an annual interest
rater. After n years we have an amourt(1 + r)". Suppose we want to calculate the final
balances for investments §750, $1000, $3000, $5000 and$11, 999 over ten years, with an annual
interest rate 00%. The following sequence of commands does the calculatiamsbyg an array
operations on a vector which contains the initial investtsen

format bank
A = [750 1000 3000 5000 11999,

r = 0.09;

n = 10;

B =A=x (1+r)'n;
disp (JA* BY)

The output is

750.00 1775.52
1000.00 2367.36
3000.00 7102.09
5000.00 11836.82

11999.00 28406.00

Notes:

1. format bank provides a two-decimal-place fixed format for currency.

2. Inthe statemerB=A+ (1+r)"n , the expressiofil+r)"n is evaluated first because expo-
nentiation has a higher precedence than multiplicatioms iBha scalar operation.

3. After that the array operation between the veétand the scalafl+r)"n is formed.

4. A+ may be used instead of.& because the array multiplication is between a scalar and a
non-scalar (although* would not be wrong).

5. Atable is displayed, with columns given by the transpade&sandB.

The process of writing out a formula such that we can caleutgor a vector of inputs is called
vectorisationof a formula. Vectorization of MTLAB code is very important. MrLAB has been
carefully optimized for vector and matrix operations, ant do these very quickly (almost as
quickly as purpose written C-code). Other types of openatere not as fast, as we shall see later.
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Example: Often we want to compute much more complicated formulaea f@nge of inputs.
For instance, let us compute the following formulae for akdting the value of a European call
option (using the Black-Scholes model). A European calioopbn a share gives us the right to
buy a share of the stock at pri¢eé afterT years. The Black-Scholes formula gives its predicted
value at

C = S(I)(dl) - KG_TT(I)(dQ),

where®(-) is the standard normal cumulative distribution function.

In(S/K) + (r +02/2)T
ovT

In(S/K) + (r —o%/2)T
oVT

current price of the stock

time till option is exercised

exercise price

= interest rate

volatility

d =

9 = A8 W;

Obviously this is rather complicated if we wanted to compugtehand, but we can calculate the
value of the option for a variety of exercise prid€susing the simple MTLAB code

% set the problem parameters

S=1,r =007 sigma =1, T = 3;
K = 0:0.1:2;
dl = (log(S./K) + (r-sigma2)/2)/(sigma *sqrt(T));
d2 = (log(S./K) + (r-sigma2)/2)/(sigma *sqri(T));
C = S * normal_cdf(dl) -exp(-r *T) = K .* normal_cdf(d2)
plot(K, C);
where we will describe how to define the functioarmal_cdf(x) in Section 8.2.3. Notice

that we put = and./ operators in the places where we could be operating on \&eclbe result
is a graph (shown in Figure 3.1) showing us the behaviour @foition values, from which we
can assess what we would be willing to pay for such an option.

1.2

1
0.8
0.6
0.4
0.2
0

0% 0.5 1 15 2

Figure 3.1: Option prices
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Chapter 4

Input/Output

Often we need to either obtain input to our program from ther,usr from a file, or output in-
formation to the user or a file. We have already seen two appesato sending output to the
MATLAB window.

1. With thedisp function, e.gdisp(x)

2. By entering a variable name, assignment or expressiom@®mrdmmand line, without a
semi-colon;

In this chapter we will provide more details of these apphesc but also we will introduce other
approaches to 1/0 (Input/Output).

4.1 disp

The general form odflisp for a numeric variable is
disp( variable )
To display a message and a numeric value on the same line wieeu®lowing technique:

X=2;
disp( [The answer is ’, num2str(x)] )

The output should be
The answer is 2

We want to display @haracter stringand a number but the elements of aMAB vector must
be either all numbers or all strings. To overcome this we ednthe numbe to its string
representatiorusing the functiomum2str , and the square brackefs | ) concatenate the two
strings to form one string which is displayed.

27
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4.2 Thef or nat statement

MATLAB has the following two basic rules:

1. It always attempts to display integers (whole number#yalf the integer is too large it is
displayed in scientific notation with five significant digiesg 1 234 567 890 is displayed as
1.2346e+09 (i.e 1.2346 x 10°).

2. Numbers with decimal parts are displayed with four sigaifi decimal digits. If the value
of x isin the rang®.001 < = < 1000 it is displayed in fixed point form, otherwise scientific
(floating point) notation is used e.g. 1000.1 is displayet.8601e+003 .

Note that numbers are not displayed to the precision thegarguted to.

This is MATLAB’s default format. It is possible to change to format for autpTo output
numbers displaying more significant digits isemat long , orformat bank can be usedto
output currency to two decimal places. There are many otbigorts, sedelp format for details.
However, complete control over the output format requiretowse théprintf function.

4.3 fprintf

Thefprintf statement is much more flexible thdisp . Consider the example

balance = 12345;

rate = 0.09;
interest = balance *  rate;
balance = balance + interest;

fprintf( ...
‘Interest rate: %6.3f New balance: %8.2f\n’, ...
rate, balance )

If we run this our output should look like
Interest rate: 0.090 New balance: 13456.05

The fprintf function has allowed us to control the format of the outpetcsely. More gener-
ally, we might callfprintf using

fprintf ( format string, list of variableg

Theformat stringcontrols how the output appears. It may contain a simplegiitg, in which
case this is printed out. It may also contain one of a series@és (mixed into the text), and these
special codes are replaced (in the output) with either aigpdtaracter, or the value of one of the
variables in the list of input arguments. Table 4.1 givestdf common codes.

Note the following:

1. Inthe case dveand%f thefield widthand number of decimal places or significant figures
may be specified immediately after theFor instance we might write
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| Code| Action |

%f write a numerical variable in decimal notation
%e | write a numerical variable in scientific notation
%g | write a numerical variable (MrLAB 's choice)
%s | write a string variable

%% | the % sign

\n new line

\t horizontal tab
\b backspace

\\ \

Table 4.1: Special codes usedfipyintf

e %38f which means the width of the output will be 8 characters (atithespace will be
padded at the left to fill in gaps).

e %.3f which means write the number out showing three decimal plaBy defaultof
means).6f .

e %6.1f which means write the number with width 6, and one decimalegla

e %12.3e means scientific notation over 12 columns altogether (tholythe decimal
point, a possible minus sign and four for the exponent) withdsts in the mantissa
after the decimal point.

Note that numbers are rounded off when outputting with Eahiprecision.
2. The%gspecifier is mixed and leaves it up toAvLAB to decide exactly what format to use.

3. The%s specifier also allows you to specify the width of the outpuingt (padded with
spaces if the string is not wide enough), €46s.

4. Thelist of variablescontains values that we wish to output.

5. Note that fprintf can take a vector as an input variablel aill recycle the format string
until the the elements of the input are all used (they are asktnnwise).

6. We often end a format string with in order to start the next output on a new line.

Table 4.2 shows a series of example$ppintf functions illustrating some of these options.

There are a number of otheonversion character&haracters following a % sign), aedcape
codes(characters following a backslash, but we will not consider them in detail here. It is
noteworthy that the syntax dprintf in MATLAB is similar to that used irC, and the two
duplicate many escape codes and conversion characters.

4.3.1 Outputto afile withf print f

Output may be sent to a file witprintf . To do so we need topenthe file for writing with the
fopen function. This will create dile identifier, or FID variable. For example:
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| function call | output \
fprintf(Hello, world\n’) Hello, world!
fprintf(pi = %f\n’, pi) pi = 3.141593
fprintfCpi = %.12A\n’, pi) pi = 3.141592653590
fprintf(Cpi = %10.6A\n’, pi) pi = 3.141593
fprintf(pi = %e\n’, 100 * i) pi = 3.141593e+02
fprintf(pi = %g\n’, 100 * i) pi = 314.159
fprintf((x = %.0f\n’, 1:3) x =1

X =2

X =3
fprintf((x = %3.0f, y = %.3f\n’, -1, sqrt(2)) x = -1,y = 1414
fprintfCmessage = %s\n’, ’hello’) message = hello
Table 4.2: Examples diprintf . The first is just printing a string, the second group show

different number formats, and the third shows the recyctihthe format string when the input
variable is a vector.

fid = fopen(’exp.txt’,w’);
The first input argument ttopen is the name of the file we wish to write to. The second input

argumentw’ specifies that it is to be opened feriting. Thefopen function has lots of other
options. Uséhelp fopen to find out more.

Thefprintf command takes an extra input argument, which is the FID bkjan this case
fid , which tellsfprintf to output the results to the file. For example,

X 0:.1:1;

y = [X; exp(X)];

fid = fopen(’exp.txt’,w’);
fprintf(fid,'%6.2f %12.8f\n’,y);
fclose(fid);

After writing the output to the file we need tbosethe file with thefclose  function. Note that
we can give the FID variable any (allowed) variable name, lzange more than one open file at a
time. We can even have an array of FID variables.

Note thatfopen can also be used to open a file for reading (or several othexns)t When
reading a file, we might use tliscanf function but there is often a better approach.

4.3.2 sprintf

Sometimes it is desirable to create a string, includingades. We can use tisprintf  function
to do this. The function is called just §wintf  , but it has one output argument, which is the
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result of the combination of formatted string output. F@tance
the_string = sprintfCpi = %f\n’, pi)
Will result in the_string holding the valuépi = 3.141593’ . This type of construction

can often be useful for creating title plots, for instanamsider the following code that creates a
plot, with a title that depends on the valuefof

f=3;

x = 1:0.01:10;
y = sin(f *Xx);
plot(x, y);

title_str = sprintf('f = %f\n’, 1),
title(title_str);

4.3.3 Thei nput command

Let’s rewrite the script filealc _interest.m so that it looks like

balance = input( 'Enter bank balance: ’ );
rate = input( 'Enter interest rate: ' );
interest = rate * balance;

balance = balance + interest;

format bank

disp( 'New Balance:’ )

disp( balance )

If we now enter the script file name, which I've calledlc _interestl.m at the prompt we are
interrogated by the computer for the initial values of thiabae and interest rate. The command
window will contain the following lines:

>> calc_interestl
Enter bank balance: 1000
Enter interest rate: 0.15
New Balance:

1150.00

The input statement provides a more flexible way of getting dao a program. It allows us to
enter datavhile a script is running

The general form of theaput  statement is

variable= input( ° prompt’ )

1. promptis a message which prompts the user for the values(s) to leeeeint It must be
enclosed in apostrophes (single quotes).

2. A semi-colon at the end of theput  statement will prevent the value entered from being
immediately echoed on the screen.
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3. Vectors and matrices may also be entered wiput , as long as you remember to enclose
the elements in square brackets.

4. Strings may be input if they are enclosed in quotes, e.g.,

name = input( 'Enter your name: ’ );
fprintfCHello %s\n’, name);

we would see a prompt and enter our name as follows:

Enter your name: 'John’
Hello John!

4.4 Advanced I/O

MATLAB has many commands for more advanced Input/Output. A commguirement is to
read data from a file. Simple text files are the easiest to riebxdLAB supports this in a variety
of ways the most general being tfseanf function, which is similar to the function of the same
name inC.

However, we can use an simple approach when a data file iy eetdble, i.e., it consists of
a series of lines, each of which is in a fixed format. More djdly, row i of the file looks
something like
data;y, datags, datas, ..., data;y

where for a given columpi, each of the termgata;; is the same type of data (number or string).
In this case we can use thextread function. We call this function as follows:

[datal, data2, ..., dataN] = textread( file, format _str);

The file is the file from which we wish to read, and the formaingtispecifies whether the data
is a string, number, of some other type of data. Each of thpubwariables would contain one
column of the data from the file, i.e., for a file with rowsdatal = (datayy,...,data,;)’ .

The functiontextread  has many optional arguments to, for instance, change tlhmitksi
between data in each row, or to allow for header lines, or centmin the file. For instance,
assume we have a fildresses.dat as follows:

% format:

% last name, first name, address, age
Potter,Harry,Hogworts,17

The Grey,Gandalf,Middle Earth,1023
Christmas,Father,North Pole, 2008

We could read this file using the commands
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file = 'addresses.dat’;
format_str = '%s %s %s %f’;
[last_name, first name, address, age] = ...
textread(file, format_str, ...
‘commentstyle’, 'matlab’, ...
‘delimiter’, ,");
The optioncommentstyle  allows us to specify that strings beginning with % are comisien
(just as they are in a MrLAB program), and theelimiter option specifies that the file is in
CSV format. The data itself would be read into the variabléh tihe corresponding names. For
instance, the variablege would be a column vector containifig7; 1023; 2008]

Many files can be read usingxtread and various related functions. However, these are all
textfiles that basically consist of a series of characterdirfary file, consists of a series of 1's
and O’s in a format that is (i) often optimized to reduce spacpiirements, and (ii) depends on
the type of data being held. Common examples include Exfild’'éormat, along with common
media files such as music and video filesa™MAB has many functions for reading, writing and
displaying such data. We will not examine these at lengtlejixio note some of the possibilities:

e Audio: MATLAB can read several file formats, but the easiest and most corareonav
files, which can be read/written and played usingwlaeread , wavwrite andwavplay
functions.

e Images:Image in many formats (e.gpng , .jpg ,.tiff  ,etc.) can be readinto NfLAB
usingimread , written usingmwrite  and displayed using thenage functions.

e Excel: Excel files can be read and written usixigread andxIswrite

e Video: .avi video files can be read and written usiagread andmovie2avi , re-
spectively.

Thehelp command can provide further information about all of thagefions, and additional
I/O functions can be found usirgelp iofun
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Chapter 5

Program flow control

We have seen earlier thatAVILAB statements are usually executed in the order we type them,
either in the command window, or in.m script file. However, sometimes we want the order or
execution of statements to change, perhaps depending malteof a variable. We might want
certain statements to only run under some circumstances,ran multiple times. Prograrilow
controlrefers to the programming constructions used to achiegdype of reordering.

MATLAB is a high-level language, which means that it is intendeda kb little like a natural
human language — in particular English — combined with staddnathematical formulas. Until
now we have mainly concentrated on the mathematical conmpbet we will now examine
some of the “English-like” syntax used in MLAB that are used to control program flow, in
particular thekeyworddsf , else ,end, for andwhile . More information can be found using
thehelp lang command.

5.1 Making decisions withi f

A standard requirement @nditional executioni.e., we only want to execute some piece of code
if a condition is true. The condition could depend on previalsutations, and so we don’t know
the result when we are writing the program. We only learn Wwaiethe condition holds when the
program executes. We typically achieve this type of coaddl execution using thé statement.

For example, the MTLAB functionrand generates a random number in the rafige 1.
What would we expect if we were to enter the following comnsthd

r = rand;
if r > 0.5

disp('greater indeed’)
end

In the second statement we have udedand a relational operator. MATLAB will only display
the messagegreater indeed if r is greater than 0.5.

35
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5.1.1 Thei f statement

The simplest form of théd statement is

if  condition
statements
end

We note the following points:

1. conditionis usually dogical expressioni.e. an expression containing logical operators such
as are found in Table 3.2. Typically it might involve one ormaoelational (comparison)
operators, combined with logical operations like AND and.OR

2. If conditionis true,statements executed but i€onditionis false, nothing happens.

3. The condition should typically be a scalar. If it is a veato matrix, it is considered true
only if all elements of the matrix are true. A single zero edgrin a vector or matrix renders
it false.

Simple examples of condition are

MATLAB condition | meaning
b"2<4 xaxc b < 4ac
x>=0 x>0
a=0 a#0
b"2==4 xax*c b = 4ac
X>0&X<5|0<z<5

5.1.2 Thei f - el se statement

Consider the following example:

X = 2;
if x <0

disp( ’'negative’ )
else

disp( 'non-negative’ )
end

This tests to see if is negative. If it is it will return the messagegative |, if it is positive or
zero it will return the messagen-negative

Most banks offer differential interests rates. Suppostttierate is 9% if the amount of your
savings is less than $5000 but 12% otherwise. Given a gjdvafance, we can calculate our new
balance using the following program:

% test whether balance is less than 5000
if balance < 5000
% if it is set the interest rate to be 0.09
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rate = 0.09
else
% balance is greater than or equal to 5000
% set the interest rate to be 0.12
rate = 0.12
end

% calculate and display the new balance

new balance = balance + rate * balance;
disp(New balance after interest paid is:’)
format bank

disp( new_balance )

The basic form off-else  for use in a program file is

if  condition
statementsl
else
statements2
end

Note the following:

1. BothstatementsandstatementsBepresent one or more statements.

2. If the condition is truestatementsare executed, but if the condition is falstatements2
are executed. This is how we forceAVLAB to choose between two alternatives, and in
programming it is often calbranching

3. Theelse partis optional. Thé statement is a special case of thelse statement.

513 elseif

Suppose our bank now offers 9% interest on balances of less$6000, 12% on balances of
$5000 or more but less than $10000 and 15% for balances 008081 We can calculate the new
balance after one year by using the following:

% test whether balance is less than 5000
if balance < 5000
% if it is set the interest rate to be 0.09
rate = 0.09
% test whether balance is less than 10000
elseif balance < 10000
% if it is set the interest rate to be 0.12
rate = 0.12
else % balance is greater than or equal to 10000
% set the interest rate to be 0.15
rate = 0.15
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end

% calculate and display the new balance
new_balance = balance + rate * balance;
disp(New balance after interest paid is:’)
format bank

disp( new_balance )

In general theelseif  clause is used as follows:

if

conditionl
statementsl

elseif condition2

statements?

elseif condition3

statements3

else

statementsN

end

We sometimes call this aglseif ladder. It works as follows:

1.

N o o A

conditionlis tested. If it is truestatementsare executed; MTLAB then moves to the next
statement afteend .

If conditionlis false, MaTLAB checkscondition2 If it is true, statementsare executed,
followed by the statements aftend.

In this way, all the conditions are tested until a true ¢boid is found. As soon as a true
condition is found no furtheglseif  statements are examined andMAB jumps off the
ladder.

If none of the conditions are trustatementshifterelse are executed.
There can be any number@geif ’s but at most onelse .
elseif  must be written as one word.

if andif-else  statements are special cases ofitkaseif-else statement.

5.1.4 Logical operators

Logical expressions can be constructed usinghinee logical operators (and),| (or),” (not),
that we examined earlier. For example the quadratic equatio

ar’ + b+ ¢ =0,

has equal roots, given byb/(2a), provided thab? — 4ac = 0 anda # 0. This can be translated
to the following MATLAB statements:
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if (b2 -4 =+axc == 0) & (a "= 0)
Xx=-b/ (2 =a)
end

5.1.5 Nestedf statements

It is possible, and not uncommon fdr statements to beested This means we have orie
statement inside another, for example

if (isreal(x))
if (x < 0)
disp(’x is real, and negative’);
elseif (x > 0)
disp(’x is real, and positive’);
else
disp(’x is zero’);
end
else
disp(’x is complex’);
end
The firstif results in printing out the messageis complex unlessx is real, in which case
the secondf statement is used to discriminate between three cases.

We could have implemented the above negitedtatements using a sindfefelse-else
statement, e.g.,

if (isreal(x) & x < 0)
disp(’x is real, and negative’);
elseif (isreal(x) & x > 0)
disp(’x is real, and positive’);
elseif (isreal(x))
disp(’x is zero’);
else
disp(’x is complex’);
end
Complex conditionals can often be expressed in multiplesyagd the best choice often depends
simply on making code as readable as possible. However, portemt factor in design of condi-
tional statements is minimizing the number of operationsifistance comparisons) that we need
to perform. If we test for common cases first, then we can @dteninate many subsequent com-
parisons. Likewise, we can sometimes use careful congiruct nestedf statements to reduce
the number of comparisons that we need to perform on avevagethe worst case. By doing so
we can improve the performance of our code.

For example, imagine that we need to classify a series ofténjpto three categoriesd, B
andC, based on the output of three logical functias& , isB andisC , and output the results.
Imagine also that in our dataset, 1000 cases are in gio®0 in groupB, and only 1 in group
C.

We might do this classification in any order, two examplesei
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if (iISA(X))

disp(’x is in group A);
elseif (isB(x))

disp(’x is in group B);
elseif (isC(x))

disp(’x is in group C’);

if (isC(x))

disp(’x is in group C);
elseif (isB(x))

disp(’x is in group B");
elseif (isA(x))

disp(’x is in group A’);

else else
disp(Error’); disp(Error’);
end end

In the example on the left-hand side, we would perform thé dmsnparison for every data point,
the second for those in groupsandC, and the third for only those in group, because the other
groups would already have been eliminated by the first twopaoisons.

In the example on the right-hand side, we again perform teedamparison for all data points,
but the second is performed for all groépand A points, and the third for all of groug. So the
total number of comparisons performed for the two approache

comparison left approach| right approach
first 1501 1501
second 501 1500
third 1 1000

total 2002 4001

We can immediately see that the left-hand approach perfogady half as many comparisons as
the right-hand approach, and so would run roughly twice sts fa

5.1.6 Theswitch statement

Where we wish to compare a complex series of conditions,aften simpler to use awitch
statement, rather than a long serieglskif  statements. A switch statement looks like

switch  switchexpr

case caseexpr,
statementsl

case caseexpr,
statements2

case caseexpr,
statements3

otherwise,
statementsN
end

Theswitch statement looks for the firsaseexprwhich matches thewitch.expr, and executes
the statements following this case. If none of the caserstés match, the statements following
theotherwise are executed. For example, consider the following code:
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grade = input(Enter your grade (F,P,C,D,HD):);
switch grade
case 'F’
fprintf(Your mark was < 50\n");
case 'P’
fprintf(Your mark was between 50 and 65\n’);
case 'C’
fprintf(Your mark was between 65 and 75\n’);
case D’
fprintf(Your mark was between 65 and 75\n’);
case 'HD’
fprintf(Your mark was > 85\n’);
otherwise,
fprintfCError: %s was not a valid grade\n’, grade);
end

The response of the program to an input liRe would beYour mark was between 65 and 75
and it outputs an error if an invalid grade is input. Note dlsat the comparison works between
strings (we have to input a string in quotes), whereas theeaoison operator, e.grade == 'HD’
would treatHD’ as a vector and would therefore failgfade was a vector with only one ele-
ment. You can test multiple conditions in a switch/casesgtaint by putting them in curly brackets,
e.g.{D’/’HD’}

5.2 Repetition withf or

Computers are stupid (we have to be quite careful about whaelvthem to do) but very fast.
Furthermore, many numerical techniques are built arouaddba of performing a simple opera-
tion many times. As a result, a common requirement in prograng is the ability to repeat code
more than once (often many times). Obviously we could typestime commands more than once,
but this is annoying, and more importantly it is harder towdefyou have to make sure each copy
of the commands is exactly the same). There is an easier vepediing the same code is called
iteration.

The most common type of iteration (inMMLAB ) is count controlledteration where we create
a counter, and iterate over certain values of the counteMAmLAB we do this using théor
statement. The following code

for i = 1:3
disp(i)
end

creates theounteri and then iterates thaisp statement for each value of the counter in the
specifierl:3 . That is, we execute the loop three times, once for each vatug, 2, 3. The output
would be

1
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2
3

This type of high-level iteration construct was first usedF@RTRANN 1956, though it was
called aDOloop in FORTRANFor many yearsFORTRANvas the most important language
for scientific computation applications, primarily becausd these types of high-level constructs
which it pioneered.

5.2.1 Anexample: square roots via Newton’s Method

The square roat of any positive numbet may be found using only the arithmetic operations of
addition, subtraction and division videwton’s methad This is an iterative process that refines

an initial guess. The followingseudo-codéescribes Newton’s method for calculating the square
root of a.

1. Initialisex toa/2

2. Repeat the following steps a number of timesdy)
e Replacer by (z + a/z)/2

3. Stop

The MATLAB program to do this (for the case= 2) follows. Note that we print out the value of
X at each iteration.

disp( 'Square roots via Newtons method’ )
a = 2;

format long;

format compact;

X = alz;

end
disp( 'Matlab”s value for sgrt(2) is: ’)

disp( sqrt(2) )
The output (after making the format long and compact) is

X =
1.500000000000000
X =
1.416666666666667
X =
1.414215686274510
X =

1.414213562374690
X =
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1.414213562373095

X =
1.414213562373095

Matlab’s value for sqrt(2) is:
1.414213562373095

The value ofr converges to a limit, which i§/a. Note that this is identical to the value returned
by the MATLAB functionsqrt .

5.2.2 The basid or statement

The simple form of théor loop is
for index = jik
statements
end
The loop will be performed exactly once for each valuenofex fromj,j+1,7+2,...,k,in
order. On completion, the variabiledex contains the last value used.

The termindexcan be any valid variable, e.g., a_variable , or counter , but cannot
take the formx , or any other invalid variable name.

5.2.3 More generalf or statements

More generally, we can performfar loop over any vector, i.e.,

for index =  vector
statements
end
In this case, the loop is run once for index taking each elémfkthe vector as a value (in order
through the vector). Typically the vector is constructedtfefor loop, e.g.,

for index = 1:10:51

disp( ['index = ' num2str(index)] )
end
which would construct the vect¢t 11 21 31 41 51] , and then apply the loop, outputting

index = 1
index = 11
index = 21
index = 31
index = 41
index = 51

We can explicitly construct the vector before calling thedpe.g.,
index_values = 10.7[1:3];
for index = index_values
disp( ['index = ' numz2str(index)] )
end
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which would run the loop once each with the valuegoiex being10, 100 and1000 and output

index = 10
index = 100
index = 1000

If the vector is emptystatementgare not executed and control passes to the statement fotjowi
theend statement. For instance,

for i = 5:0
disp(i)
end
will not do anything, because the veci@:0] is empty. The correct form of this would be

to use[5:-1:0] . It is sometimes worth explicitly testing for an empty indesctor using the
isempty function before entering a loop, and output an error if thetmewould be empty.

Example: We can combing andfor statements. Consider a bottle of wine at temperature
25°C, which is placed in a refrigerator where the ambient tentpesd” is 10°C'. We want to find
out how the temperature of the wine changes over a periodnef. tifo do this we first need one
‘fact’, namelyNewton’s Law of Coolingwhich states:

The rate of change of temperatufewithin a body placed in an environment whose
ambient temperature i8' is proportional to the difference between the temperattire o
the body and the ambient temperattife;- F.

Mathematically this translates to (remembering tlaée-of-changevith respect to time is simply
the derivative of the function)
T
c;_t =—-K(T-F). (5.1)

We note

1. K is a constant of proportionality which depends upon thelatgwg properties of the ma-
terial, in our case the glass bottle, and also the thermglgrties of the wine.

2. The constanf is positive, since ifl’ > F, so that the wine is hotter than the ambient
temperature, we expect it to cool and hence the rate of chainpe temperature must be
negative.

A standard way of approaching problems of this type is tolbtka time period up into a number
of small steps, each of length. If 7; is the temperature at theeginningof stepi, we can use a
simpleEuler method to get fromT; to T; ;.

This method relies on approximating the differential egurat
dy

A

by the approximation

Yi+1 — Yi
—_— = i;ti .
A7 f(yisti)
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For our cooling problem we have

45

Ti1 =T, — KAY(T, — F).

The following MATLAB script implements this scheme:

% Variable initialisations.
K = 0.05;
ambient_temperature = 10;
temperature = 25;
start_time = O;

end_time 100;

% Request input values.

delta_t = input(Input the computational interval, delta

output_interval = input(’Please input the output interval R

if rem(output_interval,delta_t) "= 0

error('The output interval must be a multiple of delta t!)

end

time = start_time;
disp( 'Time Temperature’ )
disp( [time temperature] )

for time = start_time+delta_t :
temperature = temperature - K

(temperature-ambient_temperature);

if rem( time, output_interval ) ==
disp( [time temperature] )
end
end

The functionrem computes a remainder. It is used to check thatput _interval
integer multiple oflelta _t , and to display the results evesytput _interval

time is an integer multiple obutput _interval

5.2.4 Nested or statements

As withif statements, it is common in programmingiestfor

delta_t :

end_time
* delta t =

is an
minutes (when
the remainder will be zero).

loops. This means placing one

for loop inside another. For instance, when we work withh\ax M array of datad, we might

use a construction such as

N = 12;
M = 12;
for i=1:N

for j=1:M
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A(,j) =i *
end
end

The inner loop is executed once for each outer loop, so weewdhtually iterate through all
allowed values of andj.

5.2.5 Avoidingf or loops by vectorising

Suppose we want to evaluate
1000000

1

—-
n
n=1

There are two way to do this. Firstly using tfog loop

partial_sum = O;
for term = 1:1000000
partial_sum = partial_ sum + 1 / term2;
end
disp( partial_sum )

We canvectorisethis command by using threum command

terms = 1:1000000;
partial_sum = sum(l ./ terms."2)

In general, MATLAB is highly optimized for vectorized calculation. A vectodtrix computation
such as the second approach will be much faster than theQingtny computer, the first approach
took 1.03 seconds, and the second approach tool only 0.@®d& The second approach was
more than 20 times faster!

This type of speedup is most clear in large, nested loopsnBtance, if we wished to compute
a large multiplication table, we could use the nested logp@gch immediately above, or we could
use the matrix approach described in Section 2.8. The pigroach will be much faster.

This a key feature/problem with MLAB. The fact that it can do matrix operations quickly
is of great value. However, it is not always easy to vectaisemplex program. Also, there is a
cost in memory — the vectorized approach requires us to attame vector in memory, whereas
the nested loop approach can sometimes avoid this.

5.2.6 Preallocating arrays

An additional issue, when we use a loop, is preallocation@alys. MATLAB s ability to allocate
memory for arrays on the fly makes it convenient to simply terean array as we go through a
loop, e.g., consider the following code to compute the Famonsequence:

X(1) 1;
X(2) 1;
N = 10000;



5.2. REPETITION WITHFOR a7

for i=3:N
x(@) = x(i-1) + x(i-2);
end

Here the vectok is extended in each iteration of the loop. However, when wankit size, it is
often more efficient to preallocate the array. For instance:

N = 10000;

x(i)

end

x(i-1) + x(i-2);

This creates the array before we use it in the loop, and avoel®mory management overhead
inside the loop. In my version of MrLAB , the second approach is roughly ten times as fast. Note
that the above code could also be vectorized, given evearbetprovements in speed, but there
are some times when vectorization is not an option.

5.2.7 Non-deterministic repetition

The key feature of dor loop is that the loop repetition is deterministic in the setisat it is
predetermined at the start of the loop. The number of itematmay depend on earlier defined
variables. For example, we may set a varidlehich is then used in creating ther loop, e.g.,

for i = 1:N
disp(i)
end
but care must be taken withfar loop to avoid tampering with the index variable inside thepo
If we explicitly change the value of the counter variabladesthe loop the behaviour of the loop

becomes unspecified, and we won’t know what will happen irmade. So once the loop is started
we (apparently) can’t stop it early. Certainly we shouldrytto stop it by changing thimdex .

However, there are two statements that allow us the varyiagstandard looping behaviour.
The first allows early breakout from the loop: theeak statement will drop us out of a loop
early. It is usually used in conjunction with a conditiontatement to cause early breakout from a
loop in special circumstances, e.g.,

for i=1:1000000
X = some_complex_function(x, i);
if (isnan(x))
break;
end
end

This loop repeatedly changes the valuexobased on its previous value, and the value of the
counter variable . However, if there is a problem and the function retuN@N then we break
out of the loop prematurely in order to avoid many needlegstitons of the loop.
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Thebreak statement should be used with considerable caution as recute readability of
code significantly.

The other related statement is tbentinue  statement, which passes the loop onto its next
value, skipping any remaining statements, e.g.

for i=1:6
if (mod(i,2) == 0)
continue;
end

disp(i);
end

would output

1
3
5

Even terms are omitted from the output, even though we loepaiVterms, because tieentinue
statement is executed in these cases, and hence subsdqtemests (e.g. thdisp statement)
are avoided for even values bf Once againcontinue statements should be used with care
because of readability concerns. Frequent uderedk andcontinue can result inspaghetti
code.

And there is a better approach, using non-deterministietrégn via awhile loop.

5.3 Non-deterministic repetition withwhi | e

Suppose we want to use a loop but we don’t know how long it willlvsefore we starthe loop. It
is common that we want to run a numerical algorithm until & banvergedvhere we won’t know
how long this will take until we run the algorithm. We call sracondition controlledoop. The
number of executions of the loop will be controlled some ¢towl calculated within the loop,
rather than by a simple counter defined as part of the loop.

A simple example of this type of loop is the following gameANMAB ‘thinks’ of a number
betweenl and10 and we have to guess it. If our guess is too high or too low therstript must
say so, and then give us another go. If our guess is corratthieescript should congratulate us.

Here’s the pseudo-code for the problem
1. Generate a random number.

2. Prompt the user for a guess.

3. While the guess is wrong:

e If the guess is too low
— Tell the user it is too low
e Otherwise
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— Tell the user it is too high
e Ask user for a new guess.

4. Congratulations.

5. Stop.

Here is a script to carry out our program

matlabs_number = floor( 10 * rand +1);
guess = input( 'Your guess please: ' );

while (guess "= matlabs_number)
if guess > matlabs_number
disp( 'Too high’ )

else
disp( "Too low’ )
end
guess = input( 'Your next guess please: ' );
end

disp(’At last you have guessed it! My value was:’)
disp( matlabs_number )

5.3.1 Thewhi | e statement

In general thevhile statement looks like this:

while  condition
statements
end

The while statement repeatstatementdVHILE its conditionremains true. The condition is
tested each time BEFOR&atementare executed. Recall thatactorcondition is considered to
be true only ifall its elements are non-zero.

We can replicate &or loop using awhile loop by explicitly constructing the counter vari-
able, e.qg., if we wanted to construct the following

for counter = 1:M:N
statements
end

we would use

counter = 1;
while counter <= N
statements
counter = counter + M;
end
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In this example we explicitly create thmounter variable, and increment it by the required
amount)M at each loop. Théor loop construction is more concise, and so often preferret, b
thewhile loop form allows more flexibility in combining both count doolled, and condition
controlled looping.

5.3.2 Infinite loops

One of the dangers of a condition controlled loop is that tveddion will remain true forever.
In this case the loop will continue indefinitely. We call tas infinite loop and it will result
in a program that doesn't terminate naturally. For instatioe following program will execute
indefinitely,

while (1)
disp('Hello, world!);
end

The program will repeatedly output “Hello, world!” because conditionl is always true (re-
member that in MTLAB 1 stands for the logical TRUE). In MF'LAB we can stop a program by
exiting MATLAB , or by typingCtrl-C , which sends an interrupt signal toAviLAB. When
MATLAB receives such a signal it should stop what it is doing. It iiflp normal execution of a
program, or even the infinite loop above.

Occasionally an infinite loop can be useful. Sometimes wet @agrogram to perform some
action until the program is halted (by some outside intdjruphis type of programming falls
outside the scope of this course.

5.4 Programming style

Whenever we have a conditional, or loop, it is wise to indkeatdode inside the loops (much as we
have done above). This greatly enhances the readabilityeofade by showing which parts will
be executed (conditionally, or iteratively). Where there multiply nest loops or conditionals,
then use multiple levels of indentation. AVLAB’s editor will do this for you, but other editors
may not do it automatically (for instance when you are codirigere is no built in editor).

Sometimes, if the code inside a conditional or loop is loray (enger than one page roughly)
then we might also add a comment to #ed statement, to help indicate which conditional or
loop it is associated with. This can make debugging some eadeer. For instance, we might
write

if (A > B)
statementl
statement2

statementN
end % if (A > B)
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The commen® if (A > B) indicates which conditional thend statement is finishing.

On another point, | prefer to place conditionals inside bets (forif andwhile statements).
This is not generally necessary, but | find that it separdieddgic of the condition from the
syntactical components and makes the result more readable.

5.5 Other MATLAB statements

MATLAB has a number of additional programming statements for flowtrof mirroring many
modern programming languages. For instance

e try andcatch
e error
e assert

e return

These will not be covered in this course, but it is perhapsulise know they exist. More infor-
mation can be found usirfielp lang orhelp command
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Chapter 6

Commonly used functions and variables

MATLAB has a large number of useful constants and functions rarigingmathematical func-
tions to those for manipulating strings. Here we will prassequick summary of a number of the
most commonly used. Much more detail on a function can beddayrtypinghelp , followed by

the function’s name. If you are trying to find a function, bwintt know its name théookfor
command can often find it by searching foaM.AB commands that either match the search string
(given as an input), or whose first line of description masctihe search string.

6.1 Constants

MATLAB has a number of pre-defined constants.

Constant name Value

pi s

[ V-1

j V=1

eps the distance from 1.0 to the next larger double precisionbemn
realmax largest positive floating point number

realmin smallest positive floating point number

false 0 (logical)

true 1 (logical)

Note that “constants” are really just variables (il\MAB ) and so can be easily redefined. Also
note that irrational numbers can only be approximatelyesgnted, so constants suchraare
only accurate to machine precision. Some standard cosstanh as are not defined, but are
easily calculated, for instanee= exp(1). Some of the above constants are actually functions,
e.g..eps(x) gives the the positive distance frgmj to the next larger in magnitude floating point
number. There are also equivalent functiomgalmax andrealmin for integers.
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6.2 Elementary Mathematical Functions

Here we present some of MLAB 's elementary mathematical functions. Note that if the argnt
of a function is a vector (or array), the function is appliéeheent by element to the values of the
vector, e.g.

sqrt( [1 4 9 16] )

returns
1.0000 2.0000 3.0000 4.0000
Function list
Function Effect
abs(x) absolute value of.
acos(x) arc cosine (inverse cosine) »f(returns a value betwedénandr).
acosh(x) inverse hyperbolic cosine of, i.e.In(z + vz2? — 1).
asin(x) arc sine (inverse sine) af (returns a value betweenr /2 andr/2).
asinh(x) inverse hyperbolic sine of.
atan(x) arc tangent ok (returns a value betweenr/2 andr/2).
atanh(x) inverse hyperbolic tangent &t
ceil(x) the smallest integer which is greater than or equal to
conj(x) complex conjugate of.
cos(x) cosine ofx.
cosh(x) hyperbolic cosine ok.
exp(x) value of the exponential functia:.
factorial(n) nl.
floor(x) the largest integer less than or equakto
imag(x) returns themaginarypart ofx.
log(x) natural logarithm ok .
log2(x) base 2 logarithm aof.
log10(x) base 10 logarithm of.
mod(x,k) x modk.
nchoosek(n,k) the number of combination$) = n!/k!(n — k)!.
rand random number in the intervl, 1).
real(x) thereal part ofx
rem(x,y) remainder whem is divided byy i.erem(19,5) returnss.
round(x) rounds to the nearest integer
sign(x) the value—1, 0 or 1 depending upon whetheris -ve, zero or +ve.
sin(x) sine ofXx.
sinh(x) hyperbolic sine ok.
sqrt(x) square root ok. This also handles negative or complex values.
tan(x) tangent oix.
tanh(x) hyperbolic tangent of .

Note for trigonometric functions that angles are usualpresented in radians, not degrees. There
are versions of some trigonometric functions that act ineleg, e.gcosd , however, itis generally
better to convert to radians by multiplying By /360.

Seehelp elfun  andhelp specfun for more mathematical functions, ahdlp polyfun
for functions related to polynomials.
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6.3 Simple Vector/Matrix functions

There are also a number of simple functions designed to biellus@ecifically with vectors or
matrices:

Function Effect

det(A) the determinant oA.

diag(A) get the diagonal entries of a mattik

diag(x) construct a diagonal matrix with along its main diagonal.
diff(x) returns a vector containing differences of the input, ig.; — z;.
eig(A) eigenvalues and vectors Af

eye(N) construct theN x Nidentity matrix.

find(x) find the indices where the logical vector TRUE
isempty(X) returns TRUE if the matrix/vector is empty.

length(x) number of elements of vectar

max(X) maximum element contained in the vecxor

mean(x) mean value of the elements in veckor

min(x) minimum value contained in the vector

norm(A) the matrix norm ofA.

ones(n,m) constructam x mmatrix of 1s.

prod(x) product of the elements of vecter

rand(n,m) constructam x mmatrix ofrand .

repmat(A,n,m) creates a new array with x m blocks formed from matrix.
size(A) the number of rows and columns of a mathix

std(x) the standard deviation of the elementxof

sort(x) sorts elements of vectarinto ascending order.

sum(x) sum of the elements of vectar

trace(A) the trace ofA.

zeros(n,m) constructam x mmatrix of 0s.

Many of the functions above have been described in termsofibctor version (e.gsum, mean,
max) but have a matrix version. Some lideag do something completely different with a matrix
or a vector, whereas other just generalize the same oper&eae the help for these functions for
more details.

Additional functions can be found using the above help comasan addition tdhelp matfun
andhelp datafun . MATLAB also has a series of functions to deal with sparse matricese m
detail can be seen withelp sparfun
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6.4 Set functions

In MATLAB, we can choose to ignore order in a vector, and treat the vilotoa set. There are
special functions for operating on sets. A list of commonfgattions: (assuming andb are
vectors representing sets) follows.

Function Effect

intersect(a,b) returns intersections of sedsandb.

ismember(a,b) returns 0-1 array of the same sizesawhich indicates which values of
a are members db.

setdiff(a,b) returns elements & that are not irb.

setxor(a,b) returns elements @ andb that are not in the intersection.

union(a,b) returns union of seta andb.

unique(a) returns a list of the unique elementsanf

6.5 Test functions

MATLAB has a number of functions designed to test certain conditibhe are commonly used
in conditionals.

Function Effect

exist(name) test if a variable, function or fleaame exists.
isempty(x) returns TRUE if the matrix/vectot is empty.
isnan(x) returns true ix=NaN

isinf(x) returns true ix=Inf  or x=-Inf

isfinite(x) returns true for any case except the above three
isreal(x) returns true i is real (not complex)
strcmp(sl,s2) returns true if stringsl ands2 are identical
isa(x, 'class_name’) tests if variablex is of classclass_name’
isnumeric(x) tests if variablex is a numeric array
islogical(x) tests if variablex is a logical array

ischar(x) tests if variablex is a character array (a string)
ismember(a, s) tests if variablea is a member of set

Typically these functions can operate on an array inputrahdn a logical array as output.

6.6 String functions

MATLAB has a number of functions specifically for dealing with gjgifof characters). A list of
common string functions: (assumisgsl ands2 are strings) follows.
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Function Effect

char(x) convert an array of integessinto a string of characters.
double(s) convert a string to an array of integers.

findstr(s1,s2) find the shorter of the two strings in the longer.
lower(s) converts to lower case.

strcat(s1,s2) concatenate two stringd ands2.

strcmp(sl,s2) returns true if strings1l ands2 are identical.

strtrim(s) remove insignificant whitespace frosn

sprintf(...) similar tofprintf but returns a string.

upper(s) converts to upper case.

The commandhelp strfun will list more possibilities, whilehelp strings reveals basic
information about strings.

6.7 Dates and times

It is often useful to be able to work with times and dates, ardMB has a number of functions
for doing so. Some simple time and date related functions are

Function Effect

clock returns a six element date vector of the form
[year month day hour minute seconds]
datenum(d) converts a date vectorinto MATLAB 's numerical representation of dates.

datevec(x) converts an internal dateinto a date vector.

datestr(x) converts an internal dateinto a human readable string.
tic sets a “stopwatch” going.

toc outputs the value of the stopwatch (in seconds).

Commands such @& andtoc are useful for comparing computation times of alternative a
gorithms. Commands such datenum anddatestr have many alternative input and output
formats, and can be used quite flexibly to work with dates. Miie wish to plot, for instance a
timeseries, with dates along one axis, we useddietick command in conjunction with the
above.

6.8 Utility functions

We often need to interact with the file system/workspace®tttmputer we are operating on, and
MATLAB has functions for doing so. Simple file system/workspaceel functions
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Function Effect

clear remove variables from the workspace.

cd(’'d) change working directory td.

dir(’d’) list the files in directonyd.

load filename load variables from amat file.

path('p’) change the search pathAvLAB uses to look form files.
pause(n) pause a program far seconds.

pwd display the current working directory.

save filename save all the workspace’s variables tawat file.
what('d’) list MATLAB specific files in a directory.

who lists variables in the current workspace.

whos lists variables in the current workspace in long form.

6.9 More information

One of the strengths of MLAB is its many useful functions, we have listed only a fractieneh
Use the appropriateelp andlookfor commands to find more, as well asAWLAB 's online
documentation. The goal of this chapter has been to give yadea of what is possible using
MATLAB’s functions, rather than a complete list, or the detailse Bhef descriptions provided
here omit many important details, and you should examiné&utietion in more detail before using
it (again using thénelp command, or the online documentation).

In addition, MATLAB has many “Toolboxes”, which can be purchased (or sometiroesd
loaded) to add features to MLAB , primarily by adding functions. Typing the commamner
will provide information on what version of MrLAB you have, and what toolboxes have been
installed. Additional help about these toolboxes is alsulable.

Finally, MATLAB also has many functions for displaying data, but we shalirexa these in
more detail in the following section.



Chapter 7

Graphics

One of the most powerful features ofAvILAB is its ability to visualize data using plots. The basic
approach is to use one of a set of functions to create a plote Oreated, features (such as axis
labels) can be added to the plot either by function calls yanteracting with the GUI of the plot
window. We start this chapter by considering a basic 2D plat get of data.

7.1 Basic two-dimensional plots

The most common command to draw a single graghlos , In its simplest form the command
takes a single vector argument agiot(y) . In this case the elements pfare plotted against
their indices, e.g.

y=rand(1,20);

plot(y);
plots20 random numbers against the integer80 joining successive points with straight lines as
in figure 7.1(a).

Axes are automatically drawn, and the range of these isd¢alenclude the minimum and

maximum data points, but “nice” values of the extremes aoseh so that the plot will (hopefully)
look good.

The most common form gplot is plot(x,y) wherex andy are vectors of the same
length. The plot function uses the first argument asithecations of data points, and the second
as they locations, and (by default) draws lines between the sefigwimts. For example see
Figure 7.1(b), which shows the following example:

x =0 : pi/d0 : 4  =*pi

y = sin(x);

plot(x, y);

7.2 Decorating the figure

The figures above are not satisfactory. For instance, they haaxis labels, the text is small, and
the graphs are rather bland. In this section we discuss hawotbfy and improve our graphs.
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(a) plot(y) (b) plot(x,y)
Figure 7.1: Examples of th@lot command.

7.2.1 The GUI

When a plot window is created (in recent versions oAmJAB ), it has a number of menus, and
icons at the top. For instance, see Figure 7.2, which showseasshot of a plot window. These
allow many features you would expect, for instance, thatgtid save the figure into a file (many
different formats are supported), or print the figure. Thel @llbws us to add labels, legends,
change colours and so on. Individual curves can be selentktheir properties (such as colour,
line thickness, or line type) can be changed. The plot carhbaged to a bar plot, a stair plot, or
a filled area plot. More importantly, the GUI allows us to vidve plot interactively. We can use
the magnifying glass icons to zoom in or out of the plot. We akso rotate the plot, though that
is only really interesting for 3D plots.

The GUI allows us to create careful, well designed plotsasliét for inclusion in any high-
quality report or paper. The one problem with the GUI is thaéquires manual intervention. It
is common for us to want to produce a set of plots using juspoogram, for instance, if we are
analysing a hundred data files, we would not want to manuéby &ach of the resulting plots.
So we also need a programatic interface to these featuredisdiess a large part of this below.

7.2.2 Labels

The following functions add various labels to graphs. Inheaase, the input argumestis a
string, andx andy are(x,y) co-ordinates on the plot.

Function Effect

title(s) adds the titles above the plot.

xlabel(s) adds the tes as a label for the-axis.

ylabel(s) adds the tes as a label for theg-axis.

text(x, y, s) adds the texs at co-ordinatesz, y).

gtext(s) puts texts where you want it. It puts a cross-hair on the graph window and
waits for a mouse button or keyboard key to be pressed.




7.2. DECORATING THE FIGURE 61

L - L=lloix]

File Edit ¥iew Insert Tools Desktop  Window  Help k]

W& haRae|(E 08 50

1

06

06|

04+

02

ok

-0.2

04}

-0.6

-08F

Figure 7.2: Example of a plot window.

The size of the “font” used in labels can be controlled byisgtbptions. For examplext
titte , xlabel ,ylabel , andlegend allow optional arguments of the forffontsize’
followed by an integer. The color can be changed usingabler’ option just as for a plot
command (see below). Labels can also include a limited $ubdeaaTeX commands for mathe-
matical symbols. LaTeX can be used to create greek symhgigrscripts and subscripts and a
small set of other mathematical constructions useful inestabels. For instance, the following
commands, produce the graph shown in Figure 7.3.

x =0 : pi/d0 : 4  *pi;

y = sin(x);

plot(x, y);

title( 'Titles appear above the graph’, 'fontsize’, 20)
xlabel( ’instead of writing phi we write \phi’ )
ylabel( 'ylabels are presented vertically’ )

text(9.3, 0.2, 'a sin curve’)
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7.2.3 Other graph features
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Titles appear above the graph

0.8

0.6
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ylabels are presented vertically
o

a sin curve

instead of writing phi we write @

Figure 7.3: Examples of various labelling command.

There are many other ways we can control the general apeaodiour plot, for instance:

Function

Effect

axis([xmin xmax ymin ymax])

axis
axis
axis
axis
axis
axis
axis
axis
grid

auto
tight

]

Xy
square
normal
off

on

xlim([xmin xmax])
ylim(J[ymin ymax])

changes the andy range of the axes

returns axes to autoscaling

makes the axes scaling fit the data tightly

puts the axis in “matrix” mode where the y values are reve
puts the axis in the default Cartesian mode
makes the current axes square

makes the current axes fit the plot window

turns off all axis labelling

turn axis labelling back on

adds/removes grid lines to/from the current graph.
change the range of theaxis

change the range of theaxis

7.2.4 Line types, plot symbols and colour

Line types, and plot symbols, and the line colour may all hevten we create a plot. There are
two approaches, firstly, there is an optional input argunh@theplot function that can contain

sed
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a series of “flags” which each indicate something about theltieg plot.

Colour Marker Line Type
Flag | Colour | Flag| Marker Flag | Line Type
b | blue . | point - | solid
g | green o | circle . | dotted
r|red X | X-mark -. | dashdot
C | cyan + | plus -- | dashed

m | magenta * | star

y | yellow S | square

k | black d | diamond

w | white v | triangle (down)
~ | triangle (up)
< | triangle (left)
> | triangle (right)
p | pentagram
h | hexagram

By combining three (or fewer) of these flags, we constructréiqudar plot, e.g.,

plot(x,y, =)
plotsy againsix and joins the points with a dashed line whereas

plot(x,y, '0")

draws circles at the data points with no lines joining themm®inations are valid, e.g.,
plot(x,y, '--mo’)

plots a magenta dashed line, with circles at the data points.

The second approach to setting plot characteristics isdode a series of pairs of optional
arguments to the plot command, for instance,

plot(x,y, 'color, 'm’, ’linestyle’, ’--’, 'marker’, '0’)
which would draw a plot in the colour magenta, with dasheedibetween each point, and the data

points themselves shown by 'o0’. A brief list of such argunsastshown in the following table:

Option name | Valid values Default | Effect

color b,g,r,m,c,y,k,w or &r, g, b]-color | b sets line and marker colour
linestyle = sets the line style

marker see table above none | setsthe marker at data points
linewidth positive integers 1 sets the width of lines
markersize positive integers 6 sets the size of markers

Note the American spelling of color. There are many otheiomtfor plots (for instance we can
change the colour of the inside and edge of a marker indepégyieSeehelp plot  for more
details.



64 CHAPTER 7. GRAPHICS

7.2.5 Fonts

The font refers to the style of writing used. Typically, th@imthing we might change about
a font would be the size. As noted earlier, several commaads {ext , title , xlabel
ylabel ,legend ) allow optional arguments of the foriffontsize’ followed by an integer.
For instance we might write:

title('This is the BIG title’, 'fontsize’, 24);

which would place a title on the plot in a large font. The cotan also be change using the
‘color’ option just as for a plot command (see above). A list of commjations for fonts is
included below

Option name | Valid values Default | Effect

color b,g,r,m,c,y,k,w or ar, g, b|-color | k sets font colour

fontsize positive integer 10 text size in “points”
fontangle normal, italic or oblique normal | style of font

fontweight light, normal, demi or bold normal | style of font

rotation an angle in degrees 0 rotate the text by the angle

More options can be found in the MLAB documentation.

However, this will not change the size of text used for nuralzer axes. To do so, we need to
change the properties of the current set of axes, which welcarsing the command:

set(gca, 'fontsize’, 24);

For instance see the results shown in Figure 7.6 where thisnand has been used to make the
log axes more readable. The input argunged is a variable that MTLAB uses to refer to the
current set of axes. In fadet(gca, ...) can be used to change many properties of the axes,
including where labels appear, and what labels are usedth&neommon use is to change the
thickness of the lines used, e.g. by typing

set(gca, ’linewidth’, 3);

but general use dfet is beyond the scope of this course, and we will not cover it arerdetalil
here.

One final note: although MrLAB is usually case sensitive, the options used above arentt, i.
'FontSize’ is the same as 'fontsize’.

7.3 Multiple plots

7.3.1 More than one figure

It is common for us to want to see more than one plot at a timeTUMB allows this through the
figure function. By itself,figure  will create a new window, ready for a new plot. If we use
figure(n) , where it has an integer argument, it will either switch taéown, or create a new
windown if one doesn't exist. For example, we might type somethikeg li
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x = 0: pi/100: pi;
y = cos(x);
z = sin(x);

figure(1); % create figure window 1
plot(x,y); % plot (x,y) in window 1
figure(2); % create figure window 2
plot(x,z); % plot (x,z) in window 2

figure(1); % swap back to window 1
ylabel(’y’); % set the y-axis label on window 1
figure(2); % swap back to window 2
ylabel('z’); % set the y-axis label on window 2

This series of commands will result in two figure windows,tpieg x versus y and z, with the
appropriate y-axis labels.

7.3.2 Multiple subplots

Sometimes we want to do multiple plots, but we wish them toeapas subplots on a single
window. We can do this using tisaibplot  function. The command takes three input arguments,
the first two specify how many rows and columns of subplotaikhappear. The third specifies
which plot to use. For instance, we could take the two plaisifthe previous example, and place
them in the same window using the following statements.

x = 0: pi/100: pi;

y = cos(x);

z = sin(x);

figure(1); % create figure window 1

subplot(2,1,1) % create two subplots, one above the other, a nd
% use the first one for the next plot

plot(x,y);

subplot(2,1,2) % use the second subplot for the next plot

plot(x,z);

Figure 7.4(a) shows the result.

7.3.3 Multiple plots on the same graph

It is sometimes preferable to put two plots onto the samelgsapthat they can be directly com-
pared. We can do this using theld command. By default, if we call plot twice, the old plot
will be removed and replaced by the new one. However, if we cal

hold on

the new plot will be overlaid on the old plot. The commdradd off reverts back to the default
behaviour. For instance, repeating the above example:

x = 0: pi/100: pi;
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(a) Two subplots. (b) Two plots on the same graph.
Figure 7.4: Examples plotting multiple curves.

y = cos(x);

z = sin(x);

figure(); % create figure window 1

hold off % remove any old plots on the figure

plot(x,y, -'); % do the first plot

hold on % allow us to add an extra plot

plot(x,z, --');% add a second plot, with a different line st yle

legend(’cos’, ’sin’);
The final command above is for creating a legend for the plotés simple form, as illustrated

above, we simply calegend with a a list of string inputs, and these are assigned to tiferent
plots. Figure 7.4(b) shows the result. Note however, lggend has many options.

7.3.4 Plotting a matrix

A faster approach to putting multiple plots onto a singlepyrés to plot a matrix (rather than a
vector). MATLAB will then produce (by default) one curve for each column @& thatrix using
different colours for each line. For instance if we used th#ing code

X = [0: pi/40 : 2 *pil’;

Y = [cos(x) sin(x)];

plot(Y);

we would plot both the sine and cosine curves on the same gnapfierent colours. We can use
the correctr axis using a command like

X = [0: pi/40 : 2 *pi]’;

Y = [cos(x) sin(X)];

plot(x, Y);

and we will get a graph such as shown in Figure 7.5(a) (thongtolour). We can make this
more general by turning bothandy co-ordinates in the plot into matrices. A simple example of
the practicality of this approach is in plotting confidenotervals around data points, e.g., for the
purpose of demonstration use random values as follows:
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Figure 7.5: Examples plotting matrices.

N = 20;

y = rand(1,N); % generate some random data

hold off

plot(1:N, y, '0"); % plot the data points

ci = rand(1,N)/4; % generate random confidence intervals
Z = [y-ci; y+ci]; % create the matrix

hold on

plot([1:N; 1:N], Z, 'b’) % plot vertical bars showing Cls
which generates the plot shown in Figure 7.5(b).

7.4 Printing graphs

As noted above, we can save or print a graph directly usingtbeof a plot window. However,
we sometimes wish to output a graph from a program. This caiobe using therint  function.
Theprint  function has a variable list of input arguments which specif

e The outputevicewhich is typically the format for the output when saving asea fCommon
example are as an encapsulated postscript filega file) suitable for inclusion in some
reports, or an image such as a JPEG or PNG file.

e The outpufile when saving.

e Other options (not covered here).

Examples appear in the following table:

Print command result
print(-deps’, ’‘file.eps’) print current figure to an EPS file calléte.eps
print(-dpng’, ’file.png’) print current figure to an PNG file calldile.png
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There are many other options, file formats, and ways of @gapnt . Usehelp print for
more details

The size of the output graph can be controlled by settingrpaters of the current figure
window, which MATLAB refers to agicf . For example

set(gcf,’PaperUnits’,’centimeters’,’PaperPosition’, [0 0 10 12));

would make the figur@0 x 12 centimeters in size. There are other properties of a figuaecin
be changed to in turn change the output fromghat function.

7.5 Colours

MATLAB allows use of colours in plots. There are several ways to dd'se simplest is to use
the one character codes given above, with their direct &ssmt to a colour. However, some
commands do not take such codes, and at other times we wisle @ifterent colours.

There are several approaches, but the most general is tifyspeolour as a RGB triple. That
is, we give thered, green andblue component of the colour in a 3 element vector. Many colours
can be expressed in this way, for instance, the commanuB colours are shown below:

Color code| Color Red| Green| Blue
b | blue 0 0 1
g | green 0 1 0
r|red 1 0 0
C | cyan 0 1 1
m | magenta 1 0 1
y | yellow |1 1 0
k | black 0 0 0
w | white 1 1 1

A value of 1 (say for the red component) would mean that corapbis as strong as possible,
whereas a value of zero means it is not present at all.

More about RGB colours can be found, for instancehtgt://en.wikipedia.org/
wiki/RGB . Example colours can be foundtgtp://www.pitt.edu/ ~ nisg/cis/web/
cgi/rgb.html , though note that commonly the RGB values are specified fram255. To
convert to MATLAB values, divide by 255.

An alternative approach to colors sometimes used ATIMB is to create &olormap . The
colormap maps a set of integers to a RGB triple. It is repitesely aN x 3 matrix, where each
row is a RGB triple. An integer is then mapped to the colour of th¢h row of the table. Some
plotting commands, such aurf andimage (which we will see later) automatically use the
current colormap. MTLAB has a set of predefined color maps that can be used viatbenap
function. For instanceolormap(’default’) uses the standard MLAB colormap, and
colormap('gray’) uses a grayscale (B&W) colormap. AVLAB has a number of built in
examples that demonstrate the power of these color mapstre.g

load spine
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Figure 7.6: Examples of log axes graphs.

image(X)
colormap bone

or

load flujet
image(X)
colormap(jet)

7.6 Advanced two-dimensional plots

MATLAB has many advanced graphing features, and we look at only Adesv For more infor-
mation and examples use

help graphics
help graph2d
help specgraph

7.6.1 Base-10 logarithmic plots

It is sometimes beneficial to use plots where one or both agipeesented logarithmically. For
logarithmic data of the forny = klog,,(x), the plot ofy versuslog,,(z) yields a straight line

of slopek. It follows that for logarithmic data of the form = klog(z), the plot ofy ver-
suslog,,(x) yields a straight line of slopg/log,,e. These can be achieved with the command
semilogx(x,y) , Which is almost the same as thlwt command, but using a lag axis. For
example the plot

x = [1:1000];
y = logl10(x);
semilogx(x,y)
set(gca,’fontsize’,18)

is shown in Figure 7.6(a).
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For exponential data of the formm= 10*2, the plot oflog,,(y) versuse yields a straight line of
slopek. (This is sincdog,,(y) = kz and a plot ofkx versusz is a straight line of slopé.) It
follows that for exponential data of the forgn= ¢**, the plot oflog,,() versusr yields a straight

line of slopek log,, e. These can be achieved with the commaadhilogy(x,y) ,e.g.,
x = [0:10];
y =10 . x;

semilogy(x,y)
set(gca,’fontsize’,18)

(results shown in Figure 7.6(b)) and
x = [0:10];
y = exp(x);

semilogy(x,y)
set(gca,’fontsize’,18)

For data of the formy = z*, a plot oflog,,(y) versuslog,,(z) yields a straight line of slopg.
(This is sincelog,,(y) = klog,,(z) and a plot ofk log,,(z) versuslog,,(x) is a straight line of
slopek.) This can be achieved with the commandlog(x,y) . For example Figure 7.6(c)
shows the results of

x = [0:100];

y = X.2.7;
loglog(x,y)
set(gca,’fontsize’,18)

It is useful to note that if we use tHeld on command to put more than one plot onto a
graph, the first plot determines the type of axes. So if wei§pédaglog first, then even if
subsequent commands ydet , all graphs will appear on with the same log-log axes.

7.6.2 Histograms

There is a simple approach to producing a histogram ATIMB . In is simplest form, we simply
call hist(data) , however, we often want to specify the exact bins being usedt least their
number and we can do so through an optional second argunwrndtance:

data = randn(1000,3); % generate random "Normal" data
hist(data, 30); % do a histogram with 30 bins
set(gca,’fontsize’,18)

Following these commands, AMLAB will automatically scale the bins to include all of the data,
and then generate a figure, as shown in Figure 7.7(a).

When the input data is a matrix (rather than a vector) thegraim will show multiple bars
for each column of the data.

MATLAB also allows us to put the result of the histogram command amt@utput vector,
rather than a figure, which we can then plot using the varidnitipg commands we have already
seen. If we want to do a histogram plot, though, we can so ubgigar command, which draws
a bar plot of a set of data. For instance,
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Figure 7.7: Examples of histograms and bar charts.
data = randn(1000,3); % generate a matrix of data
[y,x] = hist(data, 20); % do a histogram with 30 bins, but don’ t plot
bar(x, y);
set(gca,’fontsize’,18)
the results of which are shown in Figure 7.7(b).
7.6.3 Thefill  function
Thefill  function allows us to fill in a polygonal area with a partiaut@lour. The command is

executed as follows:
fill(x, y, colour)

wherex andy vectors specify the andy co-ordinates of the vertexes of the polygon, and colour
specifies the fill colour in one of the formats above (eithesteel code or a RGB triple).

An example of the fill command appears below. The code belawslia rainbow. The code
constructs an (approximate) elliptical arc for the outsidd inside of each “bow” of the rainbow
(i.e. for each colour). The code then puts the outer and iaresiogether to approximate a circular
arc which it then fills with the correct color (specified in tungaycolors ).

% draw a rainbow

N = 50;

step = 0.07;

r = 1:-step:1-7 * step;

theta = O:pi/N:pi;

alpha = 1.4,

colors = [[1 0 O % red
[L 05 0]; % orange
[1 1 0]; % vyellow
[0 1 0l; % green
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[0 0 1]; % blue
[0.3 0 0.4]; % indigo
[0.2 0 0.3]; % violet
I;
figure(1)
hold off
plot(0,0)
hold on
for i=1:length(r)-1

x1 = alpha =r(i) =*cos(theta);

yl = r(i) =*sin(theta);

x2 = alpha =r(i+1) =*cos(fliplr(theta));
y2 = r(i+1) =*sin(fliplr(theta));

X = [x1 x2];

y = [yl y2];

% plot(x, y, .");

fill(x, y, colors(i,:));
end
axis equal % make the scales on the two axes equal
axis tight % fit the axes tightly around the plot

The output of which is shown in Figure 7.8.

1

0.8

0.6

0.4}

0.2

Figure 7.8: Output of rainbow.m.

7.6.4 Images

Displaying images is simple, but there are several detaitget right. Firstly, there are two main
representations of an image. We can represent it as an dmaynbers that are mapped to colors
via a colormap, or as an 3D array where two dimensions repréise 2 spatial dimensions of an
image, and the third allows us to store the components ofdloeics (for instance the RGB triple).
When creating or reading an image, it is important to undedstvhat format it will be in. See
documentation formread to learn more.
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The main command for displaying an image is the creativetggimage(C) function. IfCis
a M x N matrix, the values will be mapped to colors in the displaypgshe current colormap (see
Section 7.5). If the colormap is subsequently changed, themmage will change colours. The
functionimagesc scales the values @to the potential range of the colormap before displaying.

If CisaM x N x 3 array, then it will be displayed interpreting each of theles as RGB
colours, i.e.,C(;,:,1) , C(:,:,2) and C(:,:,3) are interpreted as red, green and blue
intensities, respectively. The colormap is ignored. Thegeaof values folC depends on its type.
For a standardlouble array, the range i§0, 1], but if the array uses an integer type such as
uint8 the range is0, 255]. Care must be taken when importing data that the type isciorre

We create a simple example below

N = 250; M = 250; alpha = 0.001,;

x = 1:N;

y = 1:M;

[X,Y] = meshgrid(x,y);

C = exp( -alpha =*((X-N/2)."2 + (Y-M/2)."2) );

colormap(’gray’); % change the colormap to B&W
image(255 *C); % show the image using the colormap
axis image; % make the axes look right

% create a RGB image

C(:,:,1) = exp( -alpha *((X-N/2)."2 + (Y-M/2)."2) );
C(:,:,2) = exp( -alpha *((X-N/2)."2 + (Y-M/2).2) );
C(:,:,3) = exp( -alpha *((X-N/2)."2 + (Y-MI/2)."2) );
image(C);
axis image;

7.6.5 Others

There are many other MLAB functions for drawing plots:

e plotyy : Sometimes we wish to plot two curves with different scalasttte same plot.
plotyy does this with one axis on the left, and the other on the right.

e pie : allows us to draw a pie chart.
e polar : draw a plot of polar co-ordinate data.

e stem: does a “stem” plot, showing lines growing from theaxis with a marker at the
top. Often used in discrete signal processing, along wéinstep plots, which we can draw
withstairs

e contour : allows one to draw a contour plot of some set of data. For @kanif a matrix
Z represented heights, then a contour plots would show cafvesnstant height.

e quiver : allows plots of a vector field. There are many other volume \actor visualiza-
tion functions.
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e movie in conjunction withgetframe can be used to create animations that can then be
saved as movies.

There are many others: rose plots, waterfall plots, Vorali@grams, Pareto charts, comet charts
and so on. However, rather than considering each, we shalhgo consider another large group
of plots, those in 3D.

7.7 Three-dimensional plots

MATLAB has a number of functions for displaying and visualisingadatthree dimensions. The
functionplot3 is the 3-D version oplot , which is called in the following form:

plot3( x, y, z )

wherex, y andz are (typically) vectors specifying the;, y, z) co-ordinates of a series of points.
This command draws a picture of the 3-D curve through thetpoifose coordinates are the
elements of the vectors y andz. As an example

0O : pi/50 : 10  =pi;

exp(-0.02 *z) . * sin(z);

y = exp(-0.02 =*z) . * cos(2);

plot3( %, vy, 2);

xlabel(’x-axis’);

ylabel('y-axis’);

Zlabel('z-axis’);

produces the inwardly-spiralling helix shown in figure 7T®eplot3 command admits the same
types of options as the 2plot command, so we can set line colour and style, the marker types
and linewidth. We can also control the axes as before, and plaee text on the graph using
labels, or the text command called with four input paransteq.,

z
X

text(x,y,z, 'text we wish to write’);

The figure’s GUI also allows the same types of options as befaut there is an additional
useful button for 3D plots. The image displayed is really ag2Bjection of the 3D curve we wish

to examine. The rotate buttc:@J allows us to use the mouse to rotate the projection that we see
so that we can examine the curve from different perspectiVee viewpoint can be changed in
the program using theew function.

7.7.1 Mesh surfaces

Another standard activity in 3D is to plot a representatiba surface. For instance, imagine we
wished to plot the function:

f(z,y) =5y — 2°
over the range-4 < = < 4 and0 < y < 5. The simple approach to plotting such a function is to

calculate it at a set of sample points, and plot an approximaif the surface at these points using
themesh command.



7.7. THREE-DIMENSIONAL PLOTS 75

y-axis X-axis

Figure 7.9: An example gflot3

Naively, we can compute the function at a series of pointshigrange using nesteadr
loops:

for column = 1:7
x(column) = column-4;
for row = 1:6
y(row) = row-1;
Z(row, column) = 5 =*y(row) - x(column)."2;
end
end

This will result in

x=[3 2 -1 0 1 2 3]
y=1[0 1 2 3 4 5]
7/ =
9 -4 -1 o -1 4 9
-4 1 4 5 4 1 -4
1 6 9 10 9 6 1
6 11 14 15 14 11 6

11 16 19 20 19 16 11
16 21 24 25 24 21 16

However, this approach is rather clumsy and inefficient. &é¢nable approach is
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step = 1,
x = -3:step:3;
y = O:step:5;

[X,Y] = meshgrid(x,y);
Z = 5*xY - X.2;

which produces the same vectarandy, and matrixZ. It also creates the matrixwith the rows
equal to the vectox, and matrixY with columns equal to the vectgr. This approach has the
advantages that it is more efficient (faster), and also allos/to change thetep parameter to
plot more, or fewer points as needed. The statements

mesh(X, Y, 2);
set(gca,’fontsize’, 24);
xlabel(’x’);

ylabel('y’);

then plots the surfacg as a “wire frame”, where the matrices provide they, =) co-ordinates on
the surface we wish to plot. In our case, because we have Rregid, we might also have called
mesh(x,y,Z) . In each case, we might imagine the valZeas heights on a map of terrain at
each(z, y) co-ordinate. The plot produced by these commands in showigime 7.10(a). Note
that by default MiTLAB will use colours from the current colormap to highlight chas in value
(i.e., the range of values @ will be scaled and mapped to the colormap and these colorbevil
used to change the mesh).

An alternative to a mesh surface is to fill in the rectanglesvben points using theurf
function. For instance, the above surface can be displayé@dfgure 7.10(b) using

surf(x, vy, 2);
set(gca,’fontsize’, 24);
xlabel(’Xx’);

ylabel('y’);

Again MATLAB uses colours from the current colormap to highlight change&lue. The
“faceted” view shown by default isurf can be smoothed by changing tsleading mode of
the plot. The default ifaceted interpolation, but we can also ulat  to get rid of the mesh
lines, orinterp  to make the shading color smooth so that we see an apparemibytls surface.
Figures 7.10(c) and 7.10(d) show the results of the follgggommands:

surf(x, y, Z); shading flat;
surf(x, y, Z); shading interp;

More information on 3D plots can be found from the individhelp for each function, and
from help graph3d
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(b) surf(x,y,Z2)
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(d) surf(x,y,Z); shading interp;

Figure 7.10: Examples of surface and mesh plots.
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Chapter 8

Defining Functions with M-files

As we have seen, MLAB has many built in functions. However, it is common for us tghvio
create our own functions. This allows us to encapsulate agpbMATLAB statements. Encapsu-
lation improves code re-usability, by enabling us and athereuse the same function more than
once without retyping the same code. It improves code miaiibdity by allowing us to fix a bug

in one place (in the function) rather than in all of the plasesmight have used that function.

We call thismodularityin programming. It separates the internal logic of a funcfimm the
interface— the inputs and outputs of the function. Modularity is partarly important for large
software systems, where more than one programmer may béngarik the system. It allows the
two programmers to work on separate code without knowingl#tails, except for the function
interfaces. Other programming languages provide modylarivarious ways (e.g. subroutines,
procedures, etc.), but MLAB’s primary approach is to allow us to define our own functions.

Another reason to use functions inAVLAB is that they will often run faster than the equivalent
script file.

8.1 Some examples

We will start with a couple of illustrative examples of fuiwst definitions. As when creating script
.m files, we will use MATLAB 's editor to input the commands into a file.

8.1.1 Harmonic oscillators

If two coupled harmonic oscillators are considered as dsisgstem, the output of the system as
a function of timef could be something like

h(t) = cos(8t) + cos(9t).

We can create a functiam file calledharmonic.m with the following two lines

function h = harmonic(t)
h = cos(8 *t) + cos(9 =*t);

79
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Then we can then call the function in another piece affMaB code, for instance atthe MLAB prompt,
just as we do for other functions, e.g.,

pi/2;

harmonic(x);

X
y

Note the following:

1. The name of the function — what we type when we want to cal is defined on the first
line of the file by the statemefinction y = harmonic(t) . The filename of them
file must match this name, for instance in this case we savideressharmonic.m

2. The variablg in the functionharmonic.m is theinput variable It implicitly creates a
variable called inside the function. The variable will be initialized withe value of the
corresponding input variable in the function call. In thisunple, it will start with the value
pi/2 , obtained from the variabbe. Note that if we change inside the function, it has no

effect onx. The input serves only to set the initial valuetofind thereafter the connection
betweerx andt is broken.

3. The variableh in the function file is theoutput variable We must assign a value toat
some point in our functionm file. The value we assign will be passed out to the output
variable when we call the function. For instance in the eXanihe value oh inside the
function will be assigned to the variabje after the function is finished.

4. Itis good coding practice to always use semi-colons atiokof lines in MATLAB functions
so that the function has no unintended “side-effects” sicpranting out intermediate val-
ues. However, we may ignore this guideline during debuggiragfunction.

5. We don’t have to use a variable as input to a function, wedcalso use an expression, or
another function. We can also pass vectors and matricepatsjrfor instance

y = harmonic([0:pi/40:6 * pi]);
plot([0:pi/40:6 *pi], y);

We sometimes talk ahput argumentistead of input variables. They are the same thing (likewis
for output arguments).

8.1.2 Statistics

Consider the following more general example which cal@ddahe mean and the standard devia-
tion of the values in the vector. We'll save this function in a file callestats.m

function [average, standard_deviation] = stats(x)
% Calculates the mean and standard deviation of
% the data in the vector x.

average = mean(x);

standard_deviation = std(x);

We can now test it with some random numbers:
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r = rand(100,1);
[ave,st_dev] = stats(r)

The function will calculate the mean and standard deviaioime input (random) numbers, and
will pass these to the output variabkese andst_dev .

8.2 The basic rules for function files

A function M-file name.m has the following general form.

function [outl, out2,... ,0utN] = name(inpl, inp2,... ,inp M)

% comments to be displayed by help

statements

outl = expression]l

out2 = expression2
where... is used here to indicate that there may be an indefinite nuwibi@put and output
variables (you would not type this). The function would tgdly be called by typing

[01, 02, ... , oN] = name(il, i2, ... ,iM);

The rules that wenustfollow when defining a function are as follows:

1. The function name and the name of the file containing it rbasidentical except for the
.m filename extension. RememberaVLAB is case sensitive. It is suggested that you use
lower-case for function names as this will increase politsitwif your code to other operating
systems.

2. The function name must follow MLAB ’s rules for variable names, as must the input and
output variables.

3. The function file must start with the reserved wéudction , followed by a vector of the
outputs, and equals sign, the name of the function, and rouackets with a list of input
variables.

4. If there is only one output variable square brackets are@cessary (even if it is a vector).
If there is more than one output variable, the output vaesbhust be separated by commas
and enclosed in square brackets (as with a vector). Thisesiwth in the function definition,
and when we call a function.

5. If an output is unassigned, this may cause an error, so aetodhave at least one statement
assigning values to each output variable. Often thesens¢aiis are at the end of a function
file. They don’t have to be, but it can improve program reddsio place them there.

6. Note that if the function changes the value of any of itaiing@riables the change does not
affect the corresponding variable used in the call to thetion.
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8.2.1 Optional inputs and output

We don’t need to call a function with all of its inputs and auttpariables. The input variables that
are not assigned will be undefined until they are given a viadlee program, as will unassigned
outputs. For instance, we could call

r = rand(100,1);
ave = stats(r);

This code would assign the varialdge the value of the internal output variatd@erage , but
the output variablstandard_deviation is not assigned to any workspace variable.

Likewise, we can define a functicadd_them_up that adds two numbers, when we input
two, or just outputs the original value when we only use ompeliras follows. It uses the function
exist to test whether the second variable exists and reacts ajpuiedp.

function result = add_them_up(x,y)
if (exist(y’,'var’))
result = x+y;
else
result = x;
end

We can now call this function two different ways

add_them_up(1, 3)
add_them_up(4)

and in both cases it will output the value 4.

This type of construction allows us to have optional inpats tunction, with default arguments
when an input is not used. It is somewhat limited, becausedépendent on order. We can’t omit
input parameteN, butincludeN+1. A better approach might be to use an input variable stractur
but this is outside the scope of this course.

The above mechanism is also quite clumsy when the numbepofsns large. To aid in this
MATLAB automatically creates two extra variables when a funcsaralled:

Variable | Meaning
nargin The number of input variables for this function ca
nargout The number of output variables for this function call

We could use these in the above example be rewriting theiumas follows:

function result = add_them_up(x,y)

if (nargin == 2)
result = x+y;
else
result = x;

end
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An even more flexible mechanism is to uggrargin  or varargout in place of all or
part of the list of input arguments. This allows us to speeifyplicitly that we don’t know the
number of input or output arguments. This type of mechanguosed in functions such adot
to allow us to specify an arbitrary number of options to thenowand, or irfprintf to allow us
to provide an arbitrarily long list of variables to subst&unto the format string. We will no go
further into this type of construction here, but it is img@ort to realize that such facilities exist.

8.2.2 Scope

The input variablesifipl , inp2 , ...) and output variable®(@tl , out2 , ...) are the function’s
means of communicating with the workspace. The input véaghllow you to pass in values
to the function, and the output variables allow values to &&spd out. There can be some other
interactions, for instance if the function reads a file, asants at plot, but typically these do not
pass values in or out of the workspace.

Variables defined inside a MLAB function havdocal scope This means that they cannot be
seen outside of this function. We cannot obtain their valaemteract with these variables in any
way. For instance, they will not appear in the workspace.nBte implicitly created input and
output variables cannot be accessed outside the functicepeat the start (for input variables)
and the finish (for output variables).

There are various reasons for this. Firstly, it is highlyidedse to minimize the side-effects of
functions. This makes program behaviour more predictabide-effects can have unanticipated
consequences!

Secondly, giving function variables local scope improvesrodularity of code. It simplifies
the interface between the function and other programs. kesithe interface as simple as calling
the function, e.g.

[ave,st_dev] = stats(r)
The result is that MTLAB functions are easy to use without necessarily examiningfathe
MATLAB code in the function. We just need to look at the first line @& tlinction to see how to
call it. In essence, we can treat aaAM.AB function as a black-box that performs an action, and
we don’t need to understand how it does it.

The third important result of local scope is that we avoaine collisiondetween variables
inside and outside the function. Say | want to use a complegtion defined by third party. It
may define many internal variables. | don’t want to have to enstkre all of my variables have
different names. For instance, they may use the common xamside their code, and | may
want to usex for something different outside of the code. | don’t want &wé to check that will
be OK. This problem may sound trivial, but imagine | am caglen hundred different functions
each with its own variable names. If there was overlap in trmespaces, then not only might
my names collide with the functions’ variable names, bub & functions might have collisions
between each others variables. Local scope of internahvias guarantees that variables can
co-exist peacefully within their own functions.

Itis possible to create “global” variables that are acddeslsewhere in the MrLAB program.
However, this mechanism should very rarely be used for thsares described above, and so we
will not describe how to create such variables here.
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8.2.3 Nested functions

One function can call another function! In fact this is conmn@articularly with respect to
MATLAB s built in functions. We will defer discussion of functiotisat call themselvegdcur-
sivefunctions) until Section 8.5. Apart from the examples ah@simple example of a function
that calls another function is one we used earfiermal_cdf(x) , Which calculates the normal
distributions cumulative distribution function in term& M ATLAB 's built in function erf(x)
(which calculates the “error” function).

function result = normal_cdf(input)

% compute the CDF of the normal distribution using matlab’s
% built in erf function

result = (1 + erf( input / sqrt(2) ))/2;

We can also define a new function inside another functionirfstance MTLAB .m file may
also contain extra sub-functions (extra functions defimesidie the same file). Such functions
are only visible to the main function defined inside the fileack starts with its own function
definition line. We discourage this, from a programmingesfyrspective, because the scope rules
for such functions become complicated, and the behaviotunations with the same name is also
complicated, and it is easy for program to become confusing.

8.2.4 Example: Newton’s method re-visited

Newton’s method may be used to solve a general equdtioh= 0 by using the iterative process

T )
n

wheref’(x) is the first derivative of the functiofi(z). We can write a general script to implement
Newton’s method by first writing M-files for the functiofi(z) and f'(z). Let's consider the
particular example of (z) = 2® +x — 3. Using an editor we create and save affie containing
the function we are interested in

function y = f(x)
% function of interest: f(X)=x"3+x-3
y = X3+ x -3

and another filé _dashed.m containing its derivative

function y = f _dashed(x)
% function of interest’s derivative: f'(X)=3x"2+1
y = 3*X2 +1;

We now need to write owscriptfile, newton2.m , which will stop when either the absolute value
of f(z) is less thari0~® or after20 steps of the iterative process.

% Newton’s method example 2

format long

steps = 0; % a counter for the number of steps
X = input( ’'Initial Guess: ’ );
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tolerance = 1.0e-8;

while (abs(f(x)) >= tolerance) & (steps < 20)
x = x - f(x) / f_dashed(x);
disp( [x f(x)] )
steps = steps + 1;

end

if abs(f(x)) < tolerance
disp( 'Zero is at approximately ’ )
disp(x)
else
disp( 'Zero not found after 20 steps’)
end
Here’s an example of the output starting with an initial guek1.5

Initial Guess: 1.5

1.25806451612903  0.24923634654762
1.21470533274159  0.00701403868629
1.21341278623619  0.00000608597942
1.21341166276308  0.00000000000459

Zero is at approximately
1.21341166276308

8.2.5 Programming style

Apart from the usual programming style guidelines we haveaaly explained, there are some
additional style considerations when we write&sMAB functions.

Comment lines up to the first non-comment line in a functiaavilll be displayed ihelp is
requested for the function name. This allows us to put isterg information about the function
in a place that is easily accessible without reading thetBlefi It is common to use these lines
of comments to define (i) what the function does, (ii) whatiniguts and outputs are, and (iii)
to provide meta-information such as the author of the famgtits version, and the dates it was
created and revised.

The first line of a MATLAB function’s comment, and its the function name are also used i
lookfor command. Hence we should (i) choose a meaningful functiomenand (ii) carefully
select the first line of comments to make this function eaginth

It is good coding practice to always use semi-colons at tlieogifines in MATLAB functions
so that the function has no unintended “side-effects” ssghrenting out intermediate values.

It is also good practice to avoid redefining common functiortsis will avoid simple bugs in
code where a function gives an unexpected result.

In any programming language, care should be taken to ch@ck arguments carefully! This
makes good sense, as a user of a function may not have reaodimaentation carefully and may
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make a mistake in calling the function. Also, failing to cke@lidity of input arguments is a
major source of security holes in various pieces of compmade. We generally omit such checks
in our examples, to keep them short and simple, but they dhmilbe omitted in practice.

Finally, we should (almost) never use global variables.

8.3 Function names as input variables witlf eval

It is possible that we don’t know the function we wish to callem we are writing our program.
For instance, we might wish to use Newton’s method (aboved fanction that a user inputs. We
need a way of computing the result of a function, where thetfon name is held in a variable.
To do so we use thieval function, for instance:

feval( ’'sqgrt’,9)
would give the answer 3 (the square root of 9) f8al(’sqgrt’,x) isthe same asqrt(x) !

The firstargument deval is astring(i.e. a name enclosed within single quotes) representing
the function to be evaluated. The subsequent inpufestal acts as inputs to the function of
interest.

In our earlier Newton iteration scheme it would be usefuléf @ould write a general script that
accepts the function as an input variable — this would ma&ethipt that much more general (and
useful). We would therefore like to calewton as follows:

x0 = 1.5;
[x f conv] = newton( ', 'f_dashed’, x0)

where’f”  and'f _dashed’ are the names of the function M-files containjfig:) andf’(z) that
we previously defined, amxD is the initial guess. The outputs are the approximate lonaif the
zero, the function value at the zero (which should be clogeto) and a variableonverged to
indicate whether or not the output process has convergeglcdimplete, new, M-filmewton.m
is as follows:

function [ x, f, converged] = newton(fn, derivative_fn, x0)
% Newton iteration

% Performs Newton iteration to find the root of

% function fn with derivative derivative_fn.

% Initial guess is x0. Returns the final value of

% x and f(x) and the flag converged (1 =

% convergence, 0 = divergence).

steps = O;
tolerance = 1.0e-8;
X = Xx0;

while (abs(feval(fn,x)) >= tolerance) & (steps<20)
x = x - feval(fn,x) / feval(derivative_fn,x);
disp( [x feval(fn,x)] )
steps = steps + 1;
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end

f = feval(fn,x);
if (abs(f) < tolerance)
converged = 1;
else
converged = O;
end

Now we can call the function as required above, i.e.,

x0 = 1.5;

[x f conv] = newton( ', 'f_dashed’, x0)
but we could also call it as

x0 = 1.5;

[x f conv] = newton( ’sin’, 'cos’, x0)
and we would now find a zero of the sine function. This gives Uist anore power to create
numerical routines that are not tied to particular functiobut can instead take the function of
interest as a input. This is a common approach for many opditioin routines or DE solvers.

An alternative, slightly more general, method to implentbetsame process is to usection
handles We can obtain a handle to a function using @symbol. The handle is analogous to a
pointer inC, but it is outside the scope of this course, so we shall simptg that more information
can be found usingelp function_handle

8.4 Inline and anonymous functions

Sometimes, we have a very short function that we want to wsFadimes in a program, but don’t
think is worth creating a separata file for. We can use amline function for such a function.
cube=inline('’x"3"); % define the inline function

y = cube(3);
The above code would sgt= 27, the cube of 3.
The function (and its input arguments) is specified imgdircih the string’x”3" . Inline

functions don’t leave much space for comments, and are walyalas clear as a propen file, so
we generally avoid their use except for trivial functions.

Anonymous functions are functions without a nameam™e has methods for constructing
such functions, and keeping a reference (a handle) to thénoutia name, but these are beyond
the scope of this course.

8.5 Recursion

Many mathematical functions are definetursively that is, they are defined in terms of them-
selves. For instance, the factorial function may be defieedrsively as

n!l=nx(n—1)!
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provided we defin®! = 1. MATLAB allows functions to call themselves; a process that is dalle
recursion We can write a M-file for the factorial functiofgact.m

function y = fact(n)
% Factorial function
% Recursive evaluation of n!

if n ==

y = 1
else

y = n = fact(n-1);
end

The above function simply calculates the valueObto be 1, but when we call it fon > 0,
it calculates the value by calling itself again. The progitammninates (for non-negative integer
inputs) because each time it decrements the input arguiméme recursive call of itself.

In general recursion isot efficient. An iterative approach to the same calculatiog,, e.

function y = fact(n)
% Factorial function
% Iterative evaluation of n!

y =1
for i=1:n
y =y * i

end
would be much faster. In fact, because of the additional nmgnmeed by all of those function calls,
the recursive approach may fail for largeln addition, a great deal of care must be taken that the
recursion terminates, and we don't fall into an infinite msoon. The recursive implementation of
factorial given above would fall into infinite recursion ifé input argument is not an integer. Care
should be taken to check input arguments carefully!

In point of fact, the above is still not the most efficient agpgorh in MATLAB . We can create a
vectorised approach as follows:

function y = fact(n)
% Factorial function
% Vectorized evaluation of n!

if n ==

y =1
else

y = prod(1:n);
end

which would be faster again.

However, there are some programing tasks which are relja@asy using recursion, but quite
hard using an iterative approach. The Tower’s of Hanoi pnabis a classic case. The puzzle was
invented by the French mathematician douard Lucas in 18&Bw& describe it below.
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Towers of Hanoi: There is a legend about an Indian temple which contains a fagm with
three time-worn posts in it surrounded by 64 golden disksiftéreént sizes. The priests of
Brahma, acting out the command of an ancient prophecy, he@e moving these disks, in
accordance with the rules: they must move all of the disksifome post to another but may
never place a larger disk on a smaller.

The trick, in this puzzle, is to realize that to move all 64kdisve need only move the top 63,
then move the bottom disk to the third post and move the topg&anto the third post as well.
Likewise, we can move the 63 disk stack by first moving the &R diack, and so on. Therefore
this problem has an obvious recursive implementation. DHeviing function implements this,
and illustrates how it works.

function disks = move_subtower(disks, n, i, j, do_plot);
% move a subtower of size n from post i to |

if (nargin < 5)

do_plot = O;
end
if (do_plot)
plot_disks(disks);
pause;
end
if (n==1)
disks = move_disks(disks, i, j);
else

k = setdiff([1:3], [i j]);
disks = move_subtower(disks, n-1, i, k);
if (do_plot)
plot_disks(disks);
pause;
end

disks = move_disks(disks, i, j);
if (do_plot)

plot_disks(disks);

pause;
end

disks = move_subtower(disks, n-1, k, J);
if (do_plot)

plot_disks(disks);

pause;
end
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end

The inputs are a vector giving the pole each disk is on (agsyithey are in order of size), the
number of disks to move, and the two posts we wish to move & sivveen, plus an optional
argument that will allow us to plot the results. The functisses two other functions, one that
moves individual diskenove disks ,

function disks=move_disks(disks, i, j);
% move the top disk from post i to post |

% really should also check for errors
k = max(find(disks == 1));
disks(k) = j;

and one to plot the towemot_disks |,

function plot_disks(disks);
% plots disks

n = length(disks);

figure(1)
hold off
plot(0,0)
hold on
for i=1:3
plot([i i], [0 n+1], ...
'k’, ’linewidth’, 10);
end
set(gca, 'xlim’, [0 4]);
set(gca, 'ylim’, [0 n+2]);

n_disks = 0.5 =*ones(3,1);
for i=1:n
disk ra = 0.5 =*(1 - i/(n+1));
post = disks(i);
plot([post-disk_ra post+disk_ra], ...
[n_disks(post) n_disks(post)], ...
'linewidth’, 20);
n_disks(post) = n_disks(post) + 1;
end

We would call the function as follows:
N = 7; % do a stack of 7 disks
disks = ones(N,1); % initially all disks are on post 1
plot_disks(move_subtower(disks, N, 1, 3, 1));
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Note, however, that this program makes two recursive caligéch level of the tower to be
moved, so the total number of recursive calls for a tower affteV would be2?, which grows
quite quickly. For instance, so a stack of 64 disks, we woetplire2%* ~ 2 x 10'? function calls.
The universe is not in any immediate danger!
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Chapter 9

0-1 vectors

As we have seen, MLAB is more efficient when we can use vector operations insteaol of
loops. Vectorization of matrix of some operations is verjuna, but other operations need some
thought. In particular, the best approach to vectorise itmmal statementsiftelse  ’s) is not
always obvious. One handy trick is the use of logical vediegstors of logical variables). Logical
variables are represented inAVLAB as 0’s (FALSE) and 1's (TRUE), and so we sometimes call
these0-1 vectorsand matrices To introduce this concept first carry out the following aé th
MATLAB prompt:

r = 0:0.2:1
z = (r <= 0.5)

When vectors are involved in logical expressions such asehend step above, the comparison
is carried outerm-by-term The brackets are not necessary, but make the statementeaciable
by clarifying that a logical vector is being assignedtalf the comparison is true for a particular
element of the vector, the resulting vector hdsia the corresponding position, otherwise it has a
0. Thus the response to these commands will be

r =
0 0.2000 0.4000 0.6000 0.8000 1.0000
1 1 1 0 0 0

We can see that the vectoris constructed to take values from 0 to 1 in steps of 0.2. Tltove
logical z takes values of 1, wherkis less than (or equal to) 0.5 and valueaftherwise. The
whos command returns

Name Size Bytes Class Attributes
r 1x6 48 double
z 1x6 6 logical

Note that the logical array takes only 6 bytes (one byte for each term in the vector), aritlis
much more compact than a double array (though it could be cwrgact still as it onlyweedsl
byte for each eight elements).

We can easily construct other 0-1 vectors, e.g.,

93
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0:0.2:1;
r==04

which returns

r
z

Z =
0 0 1 0 0 0
Note that in the statement the firstsign is an assignment operator (it assigns the value of the

right-hand side to the variable). The second “double== is thecomparisoroperator that tests
wherer is equal to 0.4.

We can use vector and matrix operations to work on logicalsga we can for other variables,
for instance a * product acts like and AND operation, e.g.,

r = 0:0.2:1;
z = (r <= 0.5)
y = (r >= 0.2)
X =2Z.%Yy
results in
Z =
1 1 1 0 0 0
y =
0 1 1 1 1 1
X =
0 1 1 0 0 0

We could have obtained the same result with
X=2z8&Yy

where& is MATLAB’s AND operator. Other logical and arithmetic operators barcombined to
construct more complicated expressions. Combinationsgd€él and numerical vectors can also
be used to great effect as we shall see in the following exasnpl

9.1 Combining logical and numerical vectors

The key to vectorization of conditional statements is themlsmation of logical and numerical
expressions. We explore this through several examples.

9.1.1 Avoiding division by zero:

Suppose we want to plot thenc function over the range € [—2, 2x|. Typically we consider
the sinc function to bein(z)/x. We can, of course, set up a vector containingith@lues

X = -2xpi > pi/ 20 : 2 * Pi;

and then calculate
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y = sin(x) ./ x;

In this case MTLAB will return the error messag@&arning: Divide by zero and at
x = 0 the vectory will contain NaN(Not a Number).

However, the precise definition of the sinc function is

siner) = { 117

The formal definition above explicitly removes the probleira= 0. We can easily check that
the resulting function is continuous, and defined everyahleence the limit as — 0 of the sinc
function is 1. We exploit this by computing the function atadue very close to zero, rather than
at zero. We will replace the element where=0 by x = eps . This is a special MTLAB value

that is defined at the difference betwekand the next largest number that can be represented in
MATLAB ; it has the valueps = 2.220446049250313e-16 . To remove the troublesonfe
from z we can use

X =X+ (x == 0) =*eps;

The expression == 0 returns a 0-1 vector with a singlein the position corresponding to the
zero elementeps is only added to this value, so that the new vector is idehtiocche old, except
that it no longer has a zero value anywhere. We can now plaréqeh of sin¢x) correctly using

X = -2=*pi : pi/ 20 : 2 * Pi;

X=X+ (x==0) =+ eps; % change x=0 to x=eps

y = sin(x) ./ x;

plot(x,y)
The beauty of the above approach is we don't assumextisa¢qual to zero anywhere. If no term
of the vector is ever zero, then the statement x + ( x == 0) =xeps; has no affect. It

only effects those places whexre=0.

9.1.2 Using 0-1 vectors to replacelse-if ~ ladders

Income tax in Australia depends in a non-linear way on yoaome. As your income increase,
the marginal tax— the tax you pay in each extra dollar of income — increases serées of
steps. The rates, as of 2007-2008 are givdnttat//www.ato.gov.au/individuals/

content.asp?doc=/content/12333.htm&mnu=5464&mfp=001 /002 as
Taxable Income | Marginal Tax Rate | Total Payment
<$6,000 0.00 | Nil
$6,001-$30,000 0.15| 15c for each $1 between $6,000-$30,000
$30,001-$75,000 0.30| +30c for each $1 between $30,000-$75,000
$75,001-$150,000 0.40 | +40c for each $1 between $75,000-$150,000
>$150,001 0.45| +45c for each $1 over $150,000

ignoring the medicare levy. The above table expressed iac@mx rates in the standard form
presented to the public, but another way to write these isd& at the ratalifferencese.g., the
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difference between the tax bracket from $30,000-75,0006&n@00-30,000 i8.3 — 0.15 = 0.15.
For each dollar above the relevant tax bracket we pay thia diferencein the income tax. In
tabular form:

Taxable Income | Difference | Total Payment

<$6,000 0.00| Nil

$6,001-$30,000 0.15| 15c for each $1 above $6,000
$30,001-$75,000 0.15| +15c for each $1 above $30,000
$75,001-$150,000 0.10| +10c for each $1 above $75,000
>$150,001 0.05| +5c for each $1 above $150,000

The naive approach to this calculation would be to use a cexgeries off statements in an
if-else ladder. Note that we use tlff  function to calculate the tax rate differences.

tax_rate = [0 0.15 0.30 0.40 0.45];
tax_rate_diff = diff(tax_rate);
tax_threshold = [6000 30000 75000 150000];
income_tax = O;
if (income > tax_threshold(1))
income_tax = (income-tax_threshold(1)) * tax_rate_diff(1);
if (income > tax_threshold(2))
income_tax = income_tax + (income-tax_threshold(2)) ...
* tax_rate_diff(2);
if (income > tax_threshold(3))
income_tax = income_tax + (income-tax_threshold(3)) ...
* tax_rate_diff(3);
if (income > tax_threshold(4))
income_tax = income_tax + (income-tax_threshold(4)) ...
* tax_rate_diff(4);
end
end
end
end

Imagine that we were the tax office and wished to calculatéitmme tax for all 20 million or so
Australians. In this case the varialiteeome would be a vector. Given thé statements above,
the only viable approach would be to put a (very) fag loop around the above code. As we
know, in MATLAB this will be inefficient. It is also inelegant — for instandeassumes that the
number of tax brackets will not change. The better option krM\B is to use a combination of
logical and numerical operations.

We can replace this complex series of statements with a nmhaies piece of code, which we
given in the form of a functiomm file below.

function tax = income_tax(taxable_income)

% Calculate income tax.

%

% file: tax.m, (c) Matthew Roughan, Thu Apr 10 2008
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%
% Income tax rates financial year 2007-2008

% http://www.ato.gov.au/individuals/content.asp?doc= /content/12333.htm&
% Taxable income Tax on this income

% <$6,000 Nil

% $6,001-$30,000 15c for each $1 between $6,000-$30,000

% $30,001-$75,000 +30c for each $1 between $30,000-$75,000

% $75,001-$150,000  +40c for each $1 between $75,000-$150,0 00

% >$150,001 +45c for each $1 over $150,000

% ignoring medicare levy

%

% Inputs:

%  taxable_income = a vector or matrix of incomes

%

% Outputs:

% tax = a vector or matrix the same size as the input
%

tax_rate = [0.0 0.15 0.30 0.40 0.45];
tax_rate_diff = diff(tax_rate);
tax_threshold = [6000 30000 75000 150000];

tax = zeros(size(taxable_income));
for i=1:length(tax_rate d)
tax = tax + tax_rate_diff(i) *
(taxable_income - tax_threshold(i)) . *
(taxable_income > tax_threshold(i) );
end

You will note that the majority of the code is comments; theuatcalculation code is only a
couple of lines. There is stillBor loop, but this is a for loop across the number of tax brackets,
not the length of thencome vector. This adds flexibility in the number of brackets, budren
importantly, the calculation is done using vector operajaather than a loop.

9.1.3 Converting marks to grades

In the part of this course on Excel we coxnsidered convedisgries of marks into grades accord-
ing to the following table:

\ Mark \ Grade \ Letter code\

< 50 | Fail

50-64| Pass

65-74 | Credit

75-84 | Distinction
85-100| High Distinction

T OO0 T
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Here we denote each grade by a single letter code, and weseeRdtruct a vector of such codes
from a vector of marks. The following code does so:

mark = 100 *rand(100,1); % generate 100 random marks between 0-100
grade = (mark < 50) * B+

(mark >= 50 & mark < 65) * P’ + ..

(mark >= 65 & mark < 75) = 'C + ..

(mark >= 75 & mark < 85) * D’ + ..

(mark >= 85) * 'H
grade = char(grade)

The code relies on the fact that we can treat characters abergpand that the logical vectors
being constructed will not overlap (i.e., the intersectidrvalues where more than one is true is
empty). The final step converts the numbers back into chemsact

9.2 Additional tests

We can test il of the elements of a logical vector are true usingghed command as follows:

check_all = (prod(some_logical vector) == 1)

The logical variablecheck all  will take the value 1, iff all of the elements of the vector
some_logical_vector are 1, and it will otherwise be 0. We can testifleastone of a
logical vector is true using theum function, e.g.,

check_at_least = (sum(some_logical_vector) > 0)

The variablecheck_at_least will take the value 1 if at least one of the elements of themect
some_logical_vector is 1, and O otherwise.

9.3 Thefind function

An important function, in the context of logical vectorsthefind function. The function returns
the indices at which a logical vector is true. For example:

r = 0:0.2:1;
z = find(r <= 0.5)
will return
Z =
1 2 3

This indicates that the condition<= 0.5 s true for the first terms of the vector Another
simple example is

0:0.2:1;
find(r == 0.4)

which returns

r
z
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3

because only the third elementrof== 0.4 s true.

Thefind function returns an empty vector when there are no true elesnéVe can test this
using theisempty function, for example:

= rand(10,1);
= find( r < 0.1 );
(Cisempty(k))
disp('the following values are < 0.1');
disp(r(k));
else
disp('no results found’);
end

r
k
if

The code finds values of the random vegtdhat are less than 0.1, and prints them out, but if none
are found, we writeno results found

Thefind command is often useful. For instance, in the example abbptiing thesinc
function, theNaNfrom our computation of by addingps to the zero term does have a limitation.
It assumes that our calculation @fi(x)/x is still accurate for small values af In this case, it
does not cause a problem, but for some other functions it tmiigh alternative is to replace the
final values ofy with the correct value. For instance:

X = -2xpi > pi/ 20 : 2 * pi;
y = sin(x) ./ x;

y(find(isnan(y))) = 1;

plot(x.y)

Thefind function looks for indices of wherey=NaN, and replaces these valuesyoivith 1.
For more information ofind including how to use it for matrices, ukelp find
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Chapter 10

The Optimization Toolbox

Toolboxes add extra functionality to MLAB . One extremely useful toolbox is the Optimization
Toolbox. We can use this to solve a variety of optimizatioolgems, such as those discussed ear-
lier. However, we don’t need it for simple problems. As no¢edlier, we can program a bisection
search (or other) to find zeros and other function propesigh as maxima. The place where
the optimization toolbox comes into its own is where we hawmglex optimizations problems,
for instance of the linear programming type. We will consitles case below, but note that the
Optimization toolbox has a range of functions: sedp optim  for more details.

10.1 Linear Programming

We now consider a problem where we have more than one varialileear objective function,
and a series of linear constraints. We call such a problémear program, and there are good
reasons to consider such problems, and good techniqudsefosblution.

This particular example came out of Ragsdale, page 20. Tdta@gms originates from a hy-
pothetical company Blue Ridge Hot Tubs that sells two tygdst-tubs (saunas): Aqua-Spa and
Hydro-Lux. The manager of BRHT needs to know how many of eabhd produce.

She wishes to maximise her profit each cycle [each month,ssdyjgct to supply constraints
[on labour and inputs]. Each hot tub needs one pump and th@ysoppumps is at most 200 per
month. The Aqua-Spa tub needs 12 feet of copper tubing imitsteuction, while the Hydro-Lux
uses 16 feet and we can only get 2889 feet of tubing per momith Bqua-Spa tub needs 9 hours
of labour to construct, while the Hydro-Lux needs 6 hourd,tbare are only 1566 man hours of
workers available per month. [BTW Aqua is water in Latin, Hyds water in Greek (cute!)]. The
profit from the sale of an Aqua-Spa tub is $350 and for the Hytdmo tub $300.

We now introduce decision; andx, which represent the number of Aqua-Spa tubs and the
number of Hydro-Lux tubs made in each cycle. We then wish tgimige the profit

P = 350z + 300z,

101
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subject to the constraints

T, + To S 200
1221 + 1625 < 2889
9.7}1 + 6.7}2 S 1566

and of courser; > 0 andzs > 0. The first constraints says that the number of pumps is lavde
200, the second refers to the available copper tubing, anthitd to the total available man-hours.
Actually we should also require that andz, be integers (half a hot-tun isn’t worth much), but
we will won't try to do this here.

In MATLAB, we need to represent this problem in the formmimize
f' xx
subject to the constraints
Axx < b
Ay X = bgy

)

andl < x < u. Here, we us& as a vector of the variables (in this caseandz,), andl andu are
lower and upper bounds on the variables. In general, it is1adod to transform a linear program
into this form. Some tricks that are useful are

e If the original problem is a maximization, then we simply tipily the objective function by
-1 to obtain a minimization problem.

e the vectorf used in the objective function is just given by the co-effitsein the linear
objective function, e.g., in the example

f = —(350,300)".

e If a constraint has & sign, then we can transform it to havelasign by multiplying by -1.

¢ If a variable doesn't have an upper bound, e.g., in the prolalbove, then we can usef
in place of a number in the vectar Similarly with-Inf  for lower bounds.

e One or the other of the equality, or inequality constraints/rbe empty. In the example
problem there are no equalities so we sdeq = [], beq = [];

e The rows ofA are made up of the co-efficient of the same row of the cons$,arg., in our
example
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e the vectorb is made up of the right-hand side of the constraints, in tmeesarder they
appear, e.g., in our example
200
b= 2889
1566

One the problem has been constructed, we can find the opthala® using thelinprog
function, which is part of the Optimization Toolbox. It taka variable number of arguments, but
to solve the above problem, we would call it uskwjinprog(f,A,b,Aeq,beq,l,u)

So in the example problem, ourMLAB code to construct and solve the linear programming
problem would be
f = -[350; 300];
A=11 1]
[12 16];
[ 9 6l
[200; 2889; 1566];
[;

> T
@
ol
o

[Inf; Inf];
x = linprog(f,A,b,Aeq,beq,l,u)
which outputs
Optimization terminated.
X =
122.0000
78.0000
There are a variety of additional input terms, or output tethat one can use to specify initial
solutions, numbers of iterations, objective function esluand so on. Sdelp linprog for
more details.

There are other optimization routines, both in the Optinidzatoolbox (e.gfgoalattain )
and elsewhere that allow us to mimic most of the possibslitieExcel, and some others as well.

c — T
e
TR !

10.2 Why useMATLAB for optimization

MATLAB and Excel both allow us to solve optimization problems. Whkauld we use one, or
the other. Often it is a matter of person preference — usehgki@r you are most comfortable
with. For many people this will be Excel, because they carsiceasier to enter the optimization
problem constraints through a spreadsheet. However/ B does have distinct advantages over
Excel.

e MATLAB can solve much larger optimization problems than Excell{l@ms with more
variables and more constraints). The exact numbers wikdepn versions, and hardware,
but typically we might be able to solve problems 10 timesdaig MATLAB with roughly
equivalent systems. MLAB is typically a lot faster as well.



104 CHAPTER 10. THE OPTIMIZATION TOOLBOX

e MATLAB enables the solution of many optimization problems. Fotaimse, it is easy, in
MATLAB, to write an optimization inside for loop, and thus execute it (with some dif-
ferences presumably) each time the loop is executed. Ftanios, each iteration might
load a new set of data from a different file. The outputs of egatimization could then be
automatically sent to a file.

e MATLAB facilitates using the outputs of previous programming a&sitiputs to our opti-
mization. For instance, the constraint matdixmight be constructed using other functions.
The same can be done in Excel, but if things like the numbeon$traints change then this
is not so easy to cope with whereas imMAB it is trivial.

The features make MLAB more suitable when optimization is to be done on large probjer
frequently, or as part of an automated system.

Finally, there are even better tools for solving optimiaatproblems. Some can handle much
larger problems even than MLAB . However, one thing most other sophisticated tools have in
common is that problems are specified (mathematically) imdas way to that above, so it isn't
going to waste your time to learn MLAB s approach.



Chapter 11

MATLAB Roundup

11.1 More stuff

In addition to the many features which we have mentioned td@escribed in detail, MrLAB has
many other features we have not discussed at all:

MATLAB has a large array of mathematical functions not mentionee fog many tasks.
Toolboxes add to this functionality considerably.

Ability to build new GUIs for specific tasks;
MATLAB has built in debugging, lint and profiling tools.

Lots of technicalities,e.gfunction overloading:it is possible to have two functions with
the same name, where the one that is called depends on theairguments;persistent
variables: variables with local scope that can keep a value in betwesectifun calls; error
handling; and so on.

An interface toC, so that C-code can be used directly fromaAB (see MEX files). Also,
MATLAB has interfaces to the system in which it runs (i.e., it cahathker programs).

There are alternative data structures suctstasct which allows a more object oriented
approach in MTLAB, and acell array which allows us to construct arrays of any other
datatype, e.g. strings.

There are many toolboxes which come complete with additiumection and features in-
cluding, for instance, the parallel processing toolbox] symbolic manipulation toolbox.

11.2 Limitations

MATLAB does have limitations:
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Itis much faster than Excel, but still not the fastest pdssiay to program. Where multiply
nested loops are needed, there are faster ways of progr@nthuector/matrix operations
are used, it can be quite fast, but still better performanag e achieved through carefully
optimized low-level code.

MATLAB is not particularly efficient in its (default) storage of iables. The standard is to
always used double precision floating point, which is goodimef the time, but may be
overkill at 64 bits per variable.

MATLAB’s string handling is not the easiest to program — there atertt®ols such as Perl.
Lack of associative arrays (hashes) is sometimes annotgng«).

MATLAB will have trouble if you need to access low-level machineahejent components,
such as registers.

11.3 Summary

MATLAB also shows us the same set of concepts that we first saw in, Excel

variables: a value that we can change or control. ImMAB, variables can have almost
arbitrary names that we choose. AM.AB variables are different from Excel variables in
that they have &ype , which we can access (vi@hos) or change, to effect the amount of
memory stored, or the accuracy of floating point numbers. él@n MATLAB cannot store
a formula into a variable (though a reference to a functiontz=).

vectors, and matricesare a standard data structure in most computing envirorsnantl
of great use in maths, in particular when we have a group ofbauga MATLAB allows us
to store vectors and matrices into variables.

functions:are a useful way of representing something (usually mattieatgthat we want
to do with some data.

reference:is how we include other data into our functions. IZMAB , we make a reference
to a variable explicitly when calling a function, or usingariable’s value in an expression.

graphing: can be used to visualise data in various ways.

mapping: values from say a number to a grade can be easily performad asnditional
statements (e.gt ).

sorting: data into order, either numerically, or alphabetically.

filtering: to see only values that match a particular criteria. IaTMAB we do this using
0-1 vectors.

optimisation: where we seek to maximise or minimise some quantity (e.gfitpoy rev-
enue).
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e constraints:limits on our variables.

e iteration:, i.e., repeating some set of stepsaAMAB provides explicit constructs for itera-
tion (e.g.for andwhile loops).

e conditionals:in MATLAB are expressed via ah statement allow us to execute code con-
ditional on variables.

In MATLAB these concepts are often more explicit in that they are stggbby specific language
constructs, rather than implicitly, or by function callsthey are in Excel.

There are additional concepts we have seen here, such as

e vectorization writing formula such that they can be applied to vectorssaeed up calcu-
lation not just in MATLAB, but also in specific graphics applications, and other areas

e modularity breaking code into meaningful modules (inAM.AB we use functions to do
this).

e scope variables defined inside a MtLAB function cannot be seen outside of this function
unless they are explicitly given global scope. This avoiasa collisions.

e recursion a function may call itself, and we call this type of functiamecursive function.

e performance most tasks can be implemented in many different ways. Rahegob of a
programmer is implementing the program efficiently.

e style correctness is not the only task when writing code. We aksednto write read-
able/maintainable code, and coding style can help this dftiaaily.



