
Information Theory and Networks
Lecture 11: Coding Language

Matthew Roughan
<matthew.roughan@adelaide.edu.au>

http://www.maths.adelaide.edu.au/matthew.roughan/

Lecture_notes/InformationTheory/

School of Mathematical Sciences,
University of Adelaide

September 18, 2013

Part I

Coding Language

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 2 / 31

Thanks to the redundancy of language, yxx cxn xndxrstxnd
whxt x xm wrxtxng xvxn xf x rxplxcx xll thx vxwxls wxth xn
”x”.
t gts lttl hrdr f y dn’t vn kn whr th vwls r.

Steven Pinker

Aoccdrnig to rscheearch at an Elingsh uinervtisy, it deosnt mt-
taer in waht oredr the ltteers in a wrod are, the olny iprmoetnt
tihng is taht the frist and lsat ltteer is at the rghit pclae.

http: // knowyourmeme. com/ memes/

aoccdrnig-to-rscheearch

TOBEORNOTTOBEORTOBEORNOT
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Redundancy

Definition (redundant)

Adjective:

1 No longer needed or useful; superfluous.

2 (of words or data) Able to be omitted without loss of meaning or
function.

English (and other languages) have a lot of redundancy.

but the definition is misleading
I it is needed, to ensure that communication is accurate even when there

is noise
I English has subtlety layered on complexity
I we are ignoring poetic and aesthetic considerations

but no doubt there is a lot that can be dropped in some cases
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Redundancy

Redundancy in English

We use extra words
“He was ready and able”

We use more letters than we need: see earlier quotes

We use indicators of all types to ensure clear meanings, when mostly
it would be obvious (e.g., apostrophe’s)

Letters and words don’t have equal frequencies
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Entropy, Redundancy and Compression

So we know that there is something that could be compressed
I at least for error free communication

How can we exploit it?
I lets go back to Entropy and coding, to start with
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Entropy, Redundancy and Compression

Letters and numbers

All letters are just numbers!

all data on the Internet is just stored as numbers

standard methods
I ASCII (American Standard Code for Information Interchange )

F pronounced “Ass-kee”
F developed from telegraphic codes (around 1960s)
F includes 128 characters, including punctuation and 33 non-printing

characters (line feeds, tabs, etc.)
F so we need 7 bits
F often done as 8 bits (which fits into one byte, and allows extra machine

dependent codes)

I Unicode is taking over
F has support for non-English character sets
F 110,000 characters covering 100 scripts
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ASCII
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ASCII in detail

Letter Number Binary
...

...
...

@ 64 100 0000

A 65 100 0001

B 66 100 0010

C 67 100 0011

D 68 100 0100

E 69 100 0101

F 70 100 0110
...

...
...
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ASCII art

50 100 150 200 250 300 350 400 450 500 550

100

200

300
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500

600

⇒

=IZm#mmWWQWQQQW&>+-::;==vvSnXYY1uXXXSX1isilvvSX1><ii|:=|vv
|vZ#mBWWWWWWWWY~:===||indvvnovooonu1o1iv32owoXuI><|i=+=%v}
oomWWWWWWBWQB(<suqX1vvn*+<omqm#XmXXqZXoXqqZ#Bmmoc||||=ii+=
({$WWWWWWWW#nommZ1|li|:::<mWmmm#X21XZo#mBWWWWWWQmoo2>=il|s
;+3WWWWWWWW&m#WBl|||+++||vXTYYY1lIvvXXX#mmWWWWWBBm2I|vvvvv
:=]QWWQWWmWm#BWel||+|||||||+|||iiIvn2XXZ#BWWWWWWWW1nSSovnn
;;<QWQWQWWW#Wm#ei=:;==||||||||ivvIvIII1X#mWWWQWWWEin1**+*|
>:<$WWQWWmmmWBZ+=;|ivXXZZXv|ivXmZ##ZXwwwX##WWQWWWk><==>=|l
c:=dWWQWQW1v$#>;<vwm#mWBmZ+:-<X#mWWWWmmm####WWQWWZvviiiiiI
C:;3QWWQWEX#SS;:--~+"!!"+:: .=iI*YYYYYYYSX##WWWWWmovvv<nns
h=>)WmWWQQ2evd>::....:_===_=iiuna>;:;==ivo##mWm###1nvsi2no
Q=1=WWWWWWm%il====i%uoX1IX#mZmm#XXXuauoqX###m##XX+==<vvvvs
W>+=3QWWWWWQa;;|vIvSXmasaawXmmmqwwXZXXZ#U###2XXe=:==|i||ll
Xc;=]WWWWWWWWQp|||iI1YVVX11v13XX#UVS1nXZZ##YXXv>=><%ii>+++
?^=+IWBBWBWWQWWoilil|=:===|illvvviilvXZ##m#=n1i=<=|||i=+++
:====*?TV$QWQWWWsivvi;::--=-=-++=inomX#mmB#=vi|:)ss>|isiIi
;=====|=ivd$WWQ#liiInna>||||iiaawm##mWWWmm#=v%|:)S21vXXXZo
sssvaouwwqmm#WWW>{ollvnXXqqqqmm#mWmWWWWBmWE|2o|:=|IIi*l*Yv
nnauXqd###ZVTT*l|}n%ivnnXZ##mmmBWBWWWWBBW#XoX1|;=innovvvv|
XX1Y!""~..iu2}===aB||v2XXX##X##mmBmm###Z#ZZSoonsiiII1vvvi|
+=:.;;==uZY|=:;:<#(-=<1IllIISZ####X#Z#Z#X2onv1li|||||i=<iv
i|==a|nX2<||====<nas>>|i|svuqqqXXZZXXSooo1vno1llvaonli||I1
+:vZ1oY+iv>==++||ilv2XUU###XXXSXXXX21no1vuZ2lnomZSvii|vlll
aomXva=vl+=|+|=|||IIvnnnoooXXXX2onlvnoIumS1lomZYlisvIvsvnS
Sm#mZiv|=+|=++=|+|ilIvvvoXXSnnvn1ivoIvwZ1ivd#XonnoXS2113#v
XZmZ|||=+||+||=+||ivnoXXXnnvvvvl|v1|vZSulvdZZYsuX2nvvilnZh
dZ#oawwwwpwwwwwwwumqXX1IlIvvI|||%i<w#nZoXqmSvoXX11ili|vXX#
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English

ASCII coding of letters uses 8 bits per letter (typically)

H for English

1 Simple random letters with typical frequencies

H(X ) ' 4 bits per letter

Compression ratio of about 2 to 1.
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English
Word frequencies:

English word frequencies follow Zipf’s law
I power-law or Pareto distribution

Entropy of most popular 1000 words
I empirical: ' 8 (or ' 1.75 per letter)
I theoretical: ' 7.5 (or ' 1.63 per letter)
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English

Zipf’s law = the frequency of any word is inversely proportional to its
rank in the frequency table.

Data from TV scripts via
http://en.wiktionary.org/wiki/Wiktionary:Frequency_lists

English

ASCII coding of letters uses 8 bits per letter (typically)

H for English

1 In reality, both of these are a bit simplistic

0.6 < HEnglish < 1.3

So maybe 1 bit per letter, or compression of at least 8/1.3 or about 6
to 1.

2 But how might you realise this in practice?
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Upper Bound on Optimal Codes

Remember:

Theorem

The expected length L of the optimal code for a random variable X is
bounded below by the entropy of X , i.e.,

HD(X ) ≤ L < HD(X ) + 1.

That +1 could be really critical, if the entropy is less than 1 per character.
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Upper Bound on Optimal Codes

Remember the ceiling dxe is the smallest integer ≥ x .

Block encoding

We can see that there is at least a small loss of efficiency for codes,
when we don’t have natural integer length codes.

This can actually be quite a big cost, in terms of optimality
I in binary codes its up to one bit per symbol

We can spread the overhead out by coding blocks of symbols at a
time

I to understand how to do this properly, we need a better model for
language, and the entropy thereof
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Block encoding
Encode blocks X1,X2, . . . ,Xn, then the expected code length for the entire
block will be

H(X1,X2, . . . ,Xn) ≤ E [`(X1,X2, . . . ,Xn)] < H(X1,X2, . . . ,Xn) + 1

If the Xi are IID, then

H(X1,X2, . . . ,Xn) = nH(X )

so the length of code per input symbol satisfies

H(X ) ≤ Ln < H(X ) + 1/n

If we use large blocks, we can achieve very close to the best possible
efficiency, but the assumption that the symbols are IID is a little too
strong.

We need to deal with more general stochastic processes

We need to incorporate correlations
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Section 2

Markov Chains
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Stochastic Process

Definition (Stochastic Process)

A stochastic process is an indexed series of random variables

(X1,X2, . . .)

characterised by the joint PMFs

P
(
(X1,X2, . . . ,Xn) = (x1, x2, . . . , xn)

)
= p(x1, x2, . . . , xn)

for all n.

In general:

the Xi don’t have to come from the same sample set Ω

the Xi can have any dependency structure you like

this is a little hard to handle, so we will restrict our attention.
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Stochastic Process

Stationarity

Definition (Stationary)

A stochastic process is said to be stationary if the joint distribution of any
subset of the sequence of RVs is invariant with respect to shifts in the
time index, i.e.,

P
(
(X1,X2, . . . ,Xn) = (x1, x2, . . . , xn)

)
= P

(
(X1+t ,X2+t , . . . ,Xn+t) = (x1, x2, . . . , xn)

)
for any shift t, and for all xi ∈ Ω.

Stationarity significantly restricts the processes we consider, but not
always enough, so we shall do one further restriction.
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Implicitly, for a stationary sequence, all the RVs Xi are in the same
sample set Ω.

In practice, we often use a weaker form of stationarity (called weak

stationarity, or second order stationarity) that requires that the mean and

variance are invariant to time shifts.



Markov Chains

Definition (Markov Chain)

We call a discrete stochastic process a Markov Chain if the next state
change depends only on the current state, not the entire history of the
process, i.e., for n = 1, 2, . . .

P
(
Xn+1 = xn+1

∣∣X1,X2, . . . ,Xn

)
= P

(
Xn+1 = xn+1

∣∣Xn

)
for all xi ∈ Ω.

This expresses a type of conditional independence of the process, namely
that the past and future are independent, conditional on the current state.

We call a Markov Chain time invariant or homogeneous if it is also
stationary, and we will assume that all of our Markov Chains are thus,
unless otherwise specified.
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Markov Chains

For more details on Markov Chains and their extension to continuous

time, Markov Processes, see other courses, e.g. Applied Probability III.

Transition Matrix

Definition (Probability Transition Matrix)

For a time-invariant Markov Chain, we define the probability transition
matrix P = [pij ] by

pij = P
(
Xn+1 = j

∣∣Xn = i
)

for i , j = 1, 2, . . . ,m where Ω = {1, 2, . . . ,m}.

The probability transition matrix is a stochastic matrix, i.e., its elements
are non-negative, and its rows sum to one.
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Some more definitions

Definition (Irreducible)

We say a time-invariant Markov Chain is irreducible if it is possible to go
from any state to any other state with positive probability.

Definition (Periodic)

A state i has period k if any return to the state must occur in multiples of
k time steps. If the only valid k = 1, then we say the state is aperiodic. A
Markov Chain is aperiodic if all states are aperiodic.
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Some more definitions

An irreducible Markov Chain needs only one aperiodic state to imply the
Markov chain is aperiodic.

Some more definitions

Definition (Recurrence)

A state is transient if, given we start in state i , there is a non-zero
probability that we will never return to i . If the state is not transient, it is
recurrent, and it is positive recurrent if the expected time to the next
recurrence is finite.

Definition (Ergodic)

A state i is called ergodic if it is aperiodic and positive recurrent, and if all
states in an irreducible Markov Chain are ergodic, we say the Markov
Chain is ergodic.

Typically, we will assume our Markov Chains are homogeneous and ergodic.
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Some more definitions

There are many other properties and theorems we could present, but this

set should suffice for our work.



Markov Chain Results
Given a current state probabilities at time n, µ(n), i.e.,

µ
(n)
i = P(Xn = i),

We can calculate the state probabilities after a transition by

µ
(n+1)
i = P(Xn+1 = i)

=
∑
j

P(Xn+1 = i |Xn = j)P(Xn = j)

=
∑
j

µ
(n)
j pji

or, in vector notation
µ(n+1) = µ(n)P

and hence
µ(n+1) = µ(1)Pn
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Markov Chain Results

Stationary Distribution

Give a homogeneous Markov Chain, then the vector π is called a
stationary distribution (or invariant measure) if

It is a PMF (e.g., non-negative, and summing to one)

And
π = πP

An irreducible Markov Chain has a stationary distribution iff all its states
are positive recurrent, in which case π is unique, and

lim
n→∞

Pn = 1π

This is often called the equilibrium distribution of the Markov chain.
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Stationary Distribution



Higher Order Markov Chains

What if process depends on some history?

Create a new process, whose states include some history: e.g.,
I assume n + 1 state depends on n and n − 1
I create

Yn = (Xn,Xn−1)

I Now Yn is a Markov chain

P
(
Yn+1

∣∣Y1, . . . ,Yn

)
= P

(
Yn+1

∣∣Yn

)
= P

(
(Xn+1,Xn)

∣∣(Xn,Xn−1)
)

= P
(
Xn+1

∣∣Xn,Xn−1

)
We can do this for an arbitrary amount of the history

I 2nd order = case above
I 3rd order = include three states of the history

Note that state space expands
I nth order Markov chain on m states has md states
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Higher Order Markov Chains

Markov Chains for Letters [Sha48]

0th order: equiprobable letters
XFOML RXKHRJFFJUJ ZLPWCFWKCYJ FFJEYVKCQSGHYD
QPAAMKBZAACIBZL HJQD

1st order: IID letter frequencies
OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI
ALHENHTTPA OOBTTVA NAH BRL

2nd order: simple Markov Chain, i.e., diagrams
ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN
D ILONASIVE TUCOOWE AT TEASONARE FUSO TIZIN ANDY
TOBE SEACE CTISBE

3rd order: 2nd order Markov chain, i.e., trigrams
N NO IST LAT WHEY CRATICT FROURE BIRS GROCID
PONDENOME OF DEMONSTURES OF THE REPTAGIN IS
REGOACTIONA OF CRE
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Markov Chains for Letters [Sha48]

Sorry that the “order” used above (the order of the approximation)
doesn’t match the “order” of the Markov Chain, but the examples above
come directly from Shannon’s paper [Sha48], so I am trying to be
consistent with his notation, as well as common Markov chain notation.

There are 27 symbols modelled, the 26 letters, and the space (so 27
states in the 1st order Markov Chain).



Markov Chains for Letters [Sha48]

1st order words: just based on word frequencies
REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME
CAN DIFFERENT NATURAL HERE HE THE A IN CAME THE TO
OF TO EXPERT GRAY COME TO FURNISHES THE LINE
MESSAGE HAD BE THESE.

2nd order words: simple Markov Chain for words
THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH
WRITER THAT THE CHARACTER OF THIS POINT IS
THEREFORE ANOTHER METHOD FOR THE LETTERS THAT
THE TIME OF WHO EVER TOLD THE PROBLEM FOR AN
UNEXPECTED.
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Markov Chains for Letters [Sha48]

The examples above come directly from Shannon’s paper [Sha48].

Entropy for Markov Chains

So, to get coding closer to the real entropy of English
1 have to account for these correlations, across letters and/or words
2 have to have a way of calculating entropy
3 need to have a way to code
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Further reading I

Gjerrit Meinsma, Data compression & information theory, Mathematisch cafe,
2003, wwwhome.math.utwente.nl/~meinsmag/onzin/shannon.pdf.

C.E. Shannon, A mathematical theory of communication, The Bell System
Technical Journal 27 (1948), 379–423,623–656,
http://cm.bell-labs.com/cm/ms/what/shannonday/paper.html.
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