Communications Network Design lecture 18

Matthew Roughan
<matthew.roughan@adelaide.edu.au>

Discipline of Applied Mathematics School of Mathematical Sciences University of Adelaide

March 2, 2009

Communications Network Design: lecture 18 – p.1/21

This lectures describes some aspects of the Internet implementation of importance for our lectures. It is by no means a complete description of the Internet.

Tree-like networks implementations

We look into one example where tree-like network design is important: the design of Ethernet LANs. This leads onto consideration of the Internet as a larger "Network of networks".

Communications Network Design: lecture 18 – p.2/21

Communications Network Design: lecture 18 - p.1/21

Communications Network Design: lecture 18 – p.2/21

Lecture goals/outline

- ► Talked about Internet in abstract terms
- ▶ Today we want to firm up some details
 - ▷ e.g. how do packets go across network
 - ▷ addresses, routing, forwarding
- ► Ethernet details
- ▶ references for today
 - ▷ [1]
 - ▶ http://www.ethermanage.com/ethernet/

 \triangleright

http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/ethernet.htm

▷ IEEE 802.3 standard
 See http://standards.ieee.org/getieee802/802.3.html

Communications Network Design: lecture 18 – p.3/21

Routing vs Switching

Routing

- ▶ packets (headers) contain an "end" address
- ▶ "router" looks up address, and works out where to send the packet to get to its destination.
- ▶ forwarding is done hop by hop
 - b each router does it independently

Switching

- ▶ virtual circuit (VC) created prior to data packet/cells
- ▶ packet (cells) contain "circuit ID"
- each switch looks at circuit ID, and sends to an outgoing link

Communications Network Design: lecture 18 – p.4/21

Routing vs Switching

- ▶ there are many more addresses than circuits
 - > routing tables are larger than circuit tables
 - * lookups may be slower (not now)
 - ▷ address are larger (more bits)
 - * more overhead per packet
 - ▷ forwarding implementations are often simpler
- ▶ circuits required to be set up earlier
 - ▷ can be a purely logical construct
 - * maybe no resource allocation
 - * circuit switching is not necessarily like dedicated circuits
 - complex circuit setup (UNI, RSVP)
 - * more network state

Communications Network Design: lecture 18 - p.5/21

Addresses

- ▶ IPv4 addresses, 32 bit, written as X.X.X.X
 - ⊳ e.g. 10.1.2.255
 - subnet = group of IP addresses with a common prefix
 - * e.g. private addresses 192.168.0.0/16
 - + all address with same first 16 bits 192,168
 - 192,168.0.0 192,168,255,255
- ► Ethernet addresses: 48-bits written in hex as xx-xx-xy-yy-yy, where
 - > xx-xx-xx is manufactorer code
 - > yy-yy-yy chosen to be unique
 - ▷ e.g. 00:0E:7F:2A:D3:4F
- ▶ IPv6 addresses, 128 bits see [2]

Communications Network Design: lecture 18 – p.6/21

Other types of communications

Not all communication is point-to-point

- ▶ broadcast: send a message to all receivers
 ▷ e.g. cable TV
- ▶ multicast: send a message to a group of receivers
 ▷ e.g. video-conference
- anycast: send a message to so it gets to at least one receiver

⊳ e.g. DNS

Different approaches may work best for different applications.

Communications Network Design: lecture 18 – p.7/21

Ethernet

- ► Ethernet invented by Robert Metcalfe, c1973 [3]
- ► The physical medium (i.e., a cable) carries bits similarly to the way "luminiferous ether" was once thought to propagate electromagnetic waves.
- ▶ originally 3 Mbps
 - ▷ now there is a standard for 10 Gbps
- ▶ 1979: 3Com founded (by Metcalfe)
- ▶ 1980: standardized
- ▶ 1982: PC cards generally available
- ► today: almost ubiquitous

Communications Network Design: lecture 18 – p.8/21

Communications Network Design: lecture 18 – p.7/21

Communications Network Design: lecture 18 - p.8/21

Ethernet flavours

IEEE 802.3 standard = 1,562 pages

- ▶ 10-Mbps Ethernet (Thick Coaxial), 10BASE5.
- ▶ 10-Mbps Ethernet (Thin Coaxial), 10BASE2.
- ▶ 10-Mbps Ethernet (Twisted-Pair), 10BASE-T.
- ▶ 10-Mbps Ethernet (Fiber Optic), 10BASE-F.
- ▶ 100-Mbps Fast Ethernet (Fiber Optic), 100BASE-FX.
- ▶ 100-Mbps Fast Ethernet (Twisted-Pair), 100BASE-TX.
- ▶ 100-Mbps Fast Ethernet (Twisted-Pair), 100BASE-T4.
- ▶ 1-Gbps Gigabit Ethernet (Fiber Optic), 1000BASE-X
- ▶ 1-Gbps Gigabit Ethernet (Twisted-Pair), 1000BASE-T
- ▶ 10-Gbps 10-Gig-Ethernet, 10GBASE
- ► (another 12 variants at least)

Communications Network Design: lecture 18 - p.9/21

Ethernet frame

http://standards.ieee.org/getieee802/802.3.html

▶ this is a simplified view

Communications Network Design: lecture 18 – p.10/21

Ethernet topologies: bus

- ▶ shared medium (coax cable)
- ▶ repeater simply extends max length of cable.
- ▶ failure anywhere disrupts network

Communications Network Design: lecture 18 - p.11/21

CSMA/CD

Ethernet uses CSMA/CD for its MAC

- ► Carrier Sense Multiple Access (CSMA)
 - before you transmit, sense medium to check if anyone else is transmitting
- ▶ with Collision Detection (CD)
 - > sometimes, two hosts start transmitting at almost the same time
 - > they won't sense each other in time

 - hence we need collision detection, and retransmission

Communications Network Design: lecture 18 – p.12/21

MAC sub-layer (of Link layer)

Where-ever you have a shared tranmission medium (wire, fiber, RF band), you need a method to share.

- ► called the MAC sub-layer (Medium Access Control)
- ▶ several ways to share a common medium
 - ▶ TDMA (Time Division Multiple Access)
 - \star each transmitter gets its own time slot
 - ▶ FDMA (Frequency Division Multiple Access)
 - * each transmitter gets its own frequency
 - ▶ WDMA (Wavelength Division Multiple Access)
 - * each transmitter gets its own wavelength
 - ▷ CDMA (Code Division Multiple Access)
 - * each transmitter gets its own code
 - ▷ CSMA (Carrier Sensing Multiple Access)
 - * quite different no reservation

Communications Network Design: lecture 18 - p.13/21

Ethernet topologies: hub/spoke

- ▶ shared medium (twisted pair cable)
- ▶ passive hub (multiport repeater) joins medium
- ▶ failure on link disrupts just that link
- ► failure on hub is still critical

Communications Network Design: lecture 18 – p.14/21

Ethernet topologies: switched

- ▶ medium is no longer shared
- ► cables are now really point-to-point
- ▶ active switching of packets onto separate cables
- ▶ switch is just a multi-port bridge
- ▶ failures similar to hub
 - but we can build redundancy (STP)

Communications Network Design: lecture 18 - p.15/21

Mixed Ethernet Topologies

Communications Network Design: lecture 18 – p.16/21

Switched Ethernet

Why call it switching (it isn't quite circuit switching)

- creates separate segments, each with shared medium only on the segment.
- ▶ think of Ethernet address, as address of circuit to that address
- ▶ bridged might be a better term than switched

Combination of switches and hubs was common

- ▶ hubs are very cheap O(\$10)
- ► switches are more expensive O(\$100), but have better performance.
 - ▶ reduce size of collision domains
 - > support higher speeds

Communications Network Design: lecture 18 – p.17/21

- ▶ Ethernet switches are typically cheaper than routers
 - - * no complex routing protocols (e.g. BGP)
 - * not much security
 - □ uniform interface (all Ethernet)
 - * router needs to support different types of interface, and comm.s protocol
 - b higher volume
 c higher volume
 b higher volume
 c higher volume
- now bluring of lines between router and switch
 - ▶ e.g. inexpensive ADLS router including firewall, also acts as Ethernet switch

Ethernet limits

- ▶ limit to packet size (46-1500 byte payload)
 - Ethernet's prevalence has led to this being a common maximum IP packet size for the Internet
- ▶ limit to cable lengths
 - need to maintain signal strength so max 100m per segment (repeaters can help, but can't have more than one)
 - collision detection imposes max limit 2500 meters for 10BASE-T, and 205 meters for 100BASE-T
 - these limits are less importance with intro of switching and fiber standards

Communications Network Design: lecture 18 - p.18/21

Internet as a network of networks

- ► Internet connects up Ethernets
 - > and other types of networks
- ► ARP (Address Resolution Protocol RFC826 [4])
 - > translates IP address to Ethernet address

Communications Network Design: lecture 18 – p.19/21

Internet as a network of networks

Communications Network Design: lecture 18 – p.20/21

References

- [1] Z. Wenzel, J. Klensin, R. Bush, and S. Huter, "Guide to administrative procedures of the Internet infrastructure." IETF RFC 2901, 2000.
- [2] S. Deering and R. Hinden, "Internet Protocol, Version 6 (IPv6)." IETF, Request for Comments: 2460, 1998.
- [3] R. M. Metcalfe and D. R. Boggs, "Ethernet: Distributed packet switching for local computer networks," Communications of the ACM, vol. 19, no. 5, pp. 395 404, 1976.
- [4] D. C. Plummer, "An Ethernet Address Resolution Protocol or Converting Network Protocol Addresses to 48.bit Ethernet Address for Transmission on Ethernet Hardware." IETF, Request for Comments: 826, 1982.