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Advanced tree-like
network design

Tree-like networks, and some more advanced algorithms.
Starting with cutsets we get Gomory-Hu and Gusfield's
methods.
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Tree-like networks

The problems can be bit more complicated

m in cable TV network, no congestion cost, as content
is replicated

m in Ethernet, congestion is arbitrarily delt with using
weights that depend on bandwidth

m in some networks we may have to deal with load
based costs
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Costs

Take a general linear cost model C(f) = zl(aefe+ Be)

ec

m |ast lecture we considered the minimum weight
spanning tree (MWST) which has 0. =0, so

C(f) = e; Be

m today, we consider the case 3. =0, so

C(f) = e; Oefe

m unfortunately, this is NP-complete
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Methods of attack

m enumeration impractical (too many trees)

m use standard trick from before

C(f) = Zl_o‘efe: > Tpa(T)tpg
ec [p,q/eK

m use a hew idea, based on cutsets
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Cutsets

Take a graph G(N,E), then X, X is a partition of the
nodes N, if

X = N\ X
that is B

XUX = N

XNX = @

Definition: A cutset (X,X) of G(N,E) is the set of links

(X,X) ={(i,]) [T € X,j e X}
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Cutset example
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Fundamental Cutset

m Suppose a cutset contains a single link ec E

mif the link eis deleted from T, then T will be
disconnected into two subtrees X. and X

m the cutset (Xe, Xe) is called a fundamental cutset

fundamental cutset
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Fundamental Cutset

m for atree T with n—1links, there are n—1
fundamental cutsets

m cutting any link makes network disconnected
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Fundamental Cutset
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Non-crossing cutsets

Definition: Cutsets (X,X) and (Y,Y) are said to be
crossing if

XNY#£0, XNY#0, XNY#0, and XNY#0D

Definition: Cutsets (X,X) and (Y,Y) are said to be
non-crossing if at least one of the above intersections is
empty.
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Crossing cutsets examples
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Crossing cutsets examples
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Crossing cutsets examples
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Crossing cutsets examples
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Non-crossing cutsets examples
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Non-crossing cutsets examples
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Non-crossing cutsets examples
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Non-crossing cutsets and trees

m Fundamental cutsets are non-crossing
m so a tree has at least n— 1 non-crossing cutsets

m also, suppose (Xe, Xe) is a fundamental cutset

m if the O-D pair has p € X and g € X
m all traffic tpq must pass through e
m (X, Xe) is said to separate p and g
m the traffic on link e will be

fe = > tog i =1(Xe, Xe)

PERegeXe
i.e., the traffic between sets X; and Xe is t(Xe, Xo)

m network cost will be

C(f) = e; Oefe = e; et (Xe, Xeo)
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Cutsets and trees example
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Min-hop tree
m we will simplify to the case where

ae:]., VGGE

Zfe— pq T)tpg = Zrt

m equivalent to minimizing hop count I(T) = > eecul

m implicitly assumes processing time for a packet
at a node dominates performance.

m result is called a min hop tree
m also called a Gomory-Hu tree (we see why below)

m can be found in O(|N|?|E|) time, which is polynomial
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Gomory-Hu Method

Objective: given a graph G(N,E), and predicted traffic
tpq, find a min hop tree.

Principle: find a set of n— 1 non-crossing cutsets that
minimize t(Xe, Xe) at each step.
m another greedy algorithm
m choose the best cutset at each stage
m however, it does reach the optimum

m n—1 non-crossing cutsets define our tree, e.g.

m Lemma: A spanning tree with n—1 links
corresponds uniquely o a set of n—1
hon-crossing cutsets.

m the links occuring in exactly one cutset form a
spanning tree T.
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Lemma proof

Proof: (=) Given T, removing any link ec T disconnects
the network into T. and 'I_Te and so corresponds to a
fundamental cutset (Te, Te). Now we can do the same with
Te, or Te. Imagine we partition To with cutset (Tg, Tg), then
Ty C Te, and so TyN Te = @, and so these are non-crossing
cutsets. Repeat recursively, until, after removing n—1
links, we will have n— 1 non-crossing cutsets.
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Lemma proof (continued)

Proof: (<)

Suppose we have a set of (n— 1) non-crossing cutsets,
{F1,F,...,F_1}. Construct a spanning tree T as follows.
Consider the cut F; = (X1, X;). Draw two supernodes, one
corresponding to the set of nodes in X;, and the other to
those in X;. connect by a link. This creates a link in the
spanning tree. Now consider the next cut, F, = (X2, X2).

Since F, does not cross F;, we have X, C X; and X; C Xp,
(or we have X; C X; and X, C X3). Then we can create a
tree with three supernodes, X;, X; — Xz, and X3, and two
links in a spanning tree. Continue in this manner for all

n—1cutsets K, to get the (n—1) links in T.
O
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Gomory-Hu Algorithm

m Initialize: ¥ = @is a list of non-crossing cutsets.

m While: at least one pair of nodes p and g are not
yet separated by a cutset in F.

1. select a pair of nodes p,q € N not yet separated

by a cutset in F

2. find a cutset (Xpg, Xpq) that
= minimizes t(X,X) subject to
m (X,X) separates pand g

m (X,X) does not cross any cutset in ¥
3. put F — F U{(Xpq Xpq) }, and record t(Xyq, Xoq)

m Terminate: Determine the set of links contained in
exactly one cutset — these links form T.
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Gomory-Hu Example

The traffic tpq
(zero entries not shown)
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Gomory-Hu Example

The traffic tpq The  possible  cutsets

(zero entries not shown)  (Xq2, X1»)

Communications Network Design: lecture 17 — p.21/47



Gomory-Hu Example

A list of the possible cutsets separating nodes 1 and 2

X, = {1} {1,3) {1,4} {1,5} {1,6} {1,3,4} {1,3,5) {1.3,6)
{1,4.5) {1,4,6} {1,56) {1,3,4,5} {1,3,4.6)
{1,3,5,6} {1,456} {1,3,4,5,6}.

Here the one with minimum value has
Xio={1,3} and Xi,={2,4,5,6}

with value 4+ 1+1=6=ve, S0 F = {(X12, X12)}

Communications Network Design: lecture 17 — p.22/47



Gomory-Hu Example

The traffic tp, Some values t(Xy2,Xi2) and
(zero entries not shown)  the min for X;» = {1,3}
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Gomory-Hu Example

Current partitioning of G Step 1: (p,q) = (1,2) and
along with t(X,X) X12=1{1,3}

() "

(2456 ) -
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Gomory-Hu Example

Current partitioning of G Step 2: (p,q) = (1,3) and

along with t(X,X) X13= {1}
.t ) —
8] 2 |-
L3 )

d

(2456 ) |
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Gomory-Hu Example

Current partitioning of G Step 3: (p,q) = (2,4) and

along with t(X,X) Xo4=1{1,2,3,5}
)
8| 2 |-
(3 ) 3
o]

[;iSJ 0
(45 )
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Gomory-Hu Example

Current partitioning of G Step 4: (p,q) = (2,5) and

along with t(X,X) Xo5=1{1,3,4,5,6}
)
8| 2
3 )
o]
.
{ 67 2 ) o
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Gomory-Hu Example

Current partitioning of G Step 5: (p,q) = (4,6) and

along with t(X,X) X46 =1{1,2,3,4,5}
1)
8| 2 |- | 4
3 ) 13
o]
.
{ 6*|3 2 ) 8
4 ) E
o]
6
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Gomory-Hu Example

Choose links in exactly Final result for T also show-
one cutset ing fe =1t(X,X)
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Gomory-Hu Example: summary

SUMMARY: ) -
(@) 1,2 F1={(X,X)} where X ={1,3};X ={2,3,5,6},

(b) 1,3 H=FU{(X,X)} where X = {1};X ={3,2,4,5,6},

U{(X,X)} where has X = {4,6};X = {1,2,3,5},

~
(@)
~—
N
N
N
|
N

(d) 2,5 Fa= FU{(X,X)} where has X = {2};X = {1,3,4,5,6},

(e) 4,6 Fs5= F4aU{(X,X)} where has X = {6}:X = {1,2,3,4,5},

t(X,X) =8,
Total cost: Yo7 fe=8+6+7+6+8=236
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Gomory-Hu Complexity

m We have to find [N| — 1 non-crossing cutsets, i.e.
there will be O(|N|) steps

m each step requires minimization over all allowed
cutsets

m how do we find non-crossing cutsets?
m Ford-Fulkerson Maximum Flow Labelling
Algorithm (see Math Programming IIT)

max flow — min cut theorem gives the
minimum cutset

m but how do we test non-crossing (in reasonable
complexity)?
non-trivial

m Gusfield's Algorithm is an alternative

Communications Network Design: lecture 17 — p.31/47



Gusfield's Algorithm

How can we get away from needing non-crossing cutsets?
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Gusfield's Algorithm

Objective: given a graph G(N,E), and predicted traffic
tpq, find a min hop tree.

Principle: start with a star, and break of f bits that can
become substars

m WLOG we can choose initial hub to be node 1
m another greedy algorithm

m for each node, test to see if the network is
cheaper if we break it off the main hub

m however, it does reach the optimum
m we have a spanning tree at each step
m use r(k) to denote the parent of node k

m because its a spanning tree, this is a unique
representation
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Gusfield's Algorithm

m Initialize: start with the tree T being star, with
node 1 as the hub, ie. r(k)=1fork=23,...,n

m also for each link (kr(k)) assign v =0
mFor: k=23,....n
1. amoung all cutsets separating k from its parent

r(k), determine the cutset with smallest value of
t(X,X), i.e. choose (X, X) that solves

min{t(X,X)|k € X,r(k) € X}

2. assign Ve =t(X,X) to the linke= (k;r(k)) e T
3. For: i=23,...,n
mifieXandi#kand (i,r(k)) eT
m then replace link (i,r(k)) in T by (i,k) with
value equal o the old link, e.g. vik = Vi 1
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Gusfield's Algorithm Example

The traffic tpq Initial star network
(zero entries not shown)  also showing viq
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Gusfield's Algorithm Example

Iteration 1: k=2

m r(k) =1, so we find minimal cutset that separates
node 2 from node 1

m this is just the same as step 1 of G-H, and so the
minimal cutset is X = {2,4,5,6} and X = {1,3}

HVy1 — t(X,)Z) —6

mforieX=1{2,456},wegeti#kandiecX for
| =4,5,6

m fori=4,56, check whether e=(i,r(k)) €T, e.g.
(4,1) €T, sosetr(4)=k=2
(5,1) T, sosetr(5)=k=2
(6,1) €T, sosetr(6)=k=2
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Gusfield's Algorithm Example

The traffic tyq Iteration 1: k=2
and the first cutset also showing values

1
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Gusfield's Algorithm Example

Tteration 2: k=3
m r(k) =1, so we find minimal cutset that separates

node 3 from node 1

m this is just the same as step 2 of 6-H, and so the
minimal cutset is X = {2,3,4,5,6} and X = {1}

B V31— t(X,X) =8

mforieX=1{2,34,56},wegeti#kandiecX for
| —2456
m fori=2456, check whether e=(i,r(k)) €T, eg.
(2,1) €T, sosetr(2)=k=3
4,1)¢T, so take no action
)¢ T, so take no action
)¢ T, so take no action
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Gusfield's Algorithm Example

The traffic tyq Iteration 2: k=3
and the second cutset also showing values
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Gusfield's Algorithm Example

Iteration 3: k=4

m r(k) =2, so we find minimal cutset that separates
node 4 from node 2

m minimal cutset is X = {4,6} and X = {1,2,3,5}

m Vo :t(X,)Z) =6

mforie X={4,6},wegeti#kandieX fori==6
m for i =6, check whether e=(i,r(k)) €T, e.q.

(6,2) €T, sosetr(6)=k=4

Communications Network Design: lecture 17 — p.40/47



Gusfield's Algorithm Example

The traffic ty Iteration 3: k=4
and the third cutset also showing values
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Gusfield's Algorithm Example

Iteration 4. k=5

m r(k) =2, so we find minimal cutset that separates
node 5 from node 2

m minimal cutset is X = {1,3,4,5,6} and X = {2}

N V5’2 — t(X,X) =/

mforieX=1{1,34,56},wegeti#kandiecX for
| —1.3,4.6

m fori=134,6, check whether e=(i,r(k)) €T, e.qg.
(1,2) £ T, so no action

(3,2) €T, sosetr(3)=k=5

(4,2) €T, sosetr(4)=k=5

(6,2) €T, so no action
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Gusfield's Algorithm Example

The traffic tyq Iteration 4: k=5
and the forth cutset also showing values
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Gusfield's Algorithm Example

Iteration b: k=6

m r(k) = 4, so we find minimal cutset that separates

node 6 from node 4
m minimal cutset is X = {6} and X = {1,2,3,4,5}

B Vgg— t(X,X) =8

m foricX=1{6},wegeti#kandiec X for no values of
i

m so there are no changes to the links
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Gusfield's Algorithm Example

The traffic tyq Iteration 5: k=6
and the fifth cutset also showing values
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Gusfield's Algorithm Example

m Final result is the same as for Gomory-Hu, which we
expect

m didn't need to look for non-crossing cutsets

m actually we could have used different cutsets
m get a different tree
m same cost though
® non-unique solution to this particular problem
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