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Tree-like networksTree-like networks, and algorithms for their design:minimum spanning tree problem, spanning trees andspanning tree proto
ol, greedy methods (Kruskal's andPrim's methods).
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Tree-like networks

A Tree
onne
teddoes not 
ontain any 
y
les (loops)A graph 
ontains no 
y
les if there is no path ofnon-zero length {vi}
k
i=1 through the graph su
hthat v0 = vk
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Spanning Tree

Spanning tree, alternative de�nitionsa tree that 
onne
ts all nodes in the graph
onne
ted graph where the number of links in
G(N,T ) is |T | = |N −1|the graph is 
onne
ted, but if we ommit a singlelink, it be
omes dis
onne
tedevery pair of verti
es is 
onne
ted along one andonly one pathGiven |N| nodes,there are as many as |N||N|−2 su
h treesmore even than the number of paths
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Spanning Treeexample appli
ation: 
able TV networkneed to get a broad
ast TV signal from one(root) to many (leaves)maybe we want to do this as 
heaply as possible?example appli
ation: EthernetSpanning Tree Proto
olexample appli
ation: Fibre-To-The-Node (FTTN)proposed design for Australian broadbandhybrid �bre/
opper networkuse 
opper telephone lines from homerun �bre out to �nodes�result is a tree-like networkwhere should nodes be?
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Spanning Tree Proto
ol

an Ethernet 
an have multiple possible swit
hing pathsfor reliabilitybut Ethernet effe
tively broad
asts some messagese.g. ARProute loops 
ould be REALLY badlooping broad
asts would take up all availablebandwidthno me
hanism at the IP layer 
an stop this, as it ishappening at layer 2Spanning Tree Proto
ol (STP) intended to 
reate a treehen
e avoid loopsIs the STP optimizing anything we 
are about?
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Spanning Tree Proto
ol

Two versions of STPDEC and IEEE (not 
ompatible) we will look at IEEEswit
hes are assigned numeri
al priorityEthernet swit
h with lowest priority is roottie break is lowest MAC addressMAC addresses are unique
ombination of priority and MAC is 
alled node IDea
h Ethernet swit
h port is given a 
ostbased on bandwidth of the linksee next slidelike a link weight (in Dijkstra)
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Port 
ostsdefault 
osts based on bandwithold version based on 1 Gbps/(link bandwidth)new version arbitrary tableport 
ost has to be integer > 0new 
osts a

ount for link speeds > 1 GbpsMedia new 
ost old 
ost10 Mbps 100 100100 Mbps 19 101 Gbps 4 110 Gbps 2 1gives port IDMAC address is used as a tie break again
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Spanning Tree Proto
ol

Ethernet swit
hes send Bridge Proto
ol Data Unit (BPDU)e.g. Cis
o default is every 2 se
onds
ontains information above, and state�ooded through networkswit
hes try to �nd 
heapest path to the root swit
h
losest port to the root on a swit
h is 
alled the root portea
h Ethernet segment 
hooses the port advertizing theshortest path to the rootlabel the swit
h on this path the designated swit
hports not on the designated swit
h are blo
kedput into ba
kup modethey still listen to BPDUs, but don't forward pa
kets
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Spanning Tree Proto
ol Example

100 Mbps

To router

1 Gbps

10 Mbps

loop

Switch
Ethernet 

Switch
Ethernet 

Switch
Ethernet 

Communications Network Design: lecture 16 – p.10/41



Spanning Tree Proto
ol Example

100 Mbps

To router

1 Gbps

10 Mbps

priority 1

priority 32768 BPDUs priority 32768

Switch
Ethernet 

Switch
Ethernet 

Switch
Ethernet 
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Spanning Tree Proto
ol Example

100 Mbps

To router

1 Gbps

10 Mbps

Root

root ports

Switch
Ethernet 

Switch
Ethernet 

Switch
Ethernet 
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Spanning Tree Proto
ol Example

100 Mbps

To router

1 Gbps

10 Mbps

port cost 19port cost 4

port cost 100 port cost 100

path
shortest

Switch
Ethernet 

Switch
Ethernet 

Switch
Ethernet 
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Spanning Tree Proto
ol Example

100 Mbps

To router

1 Gbps

10 Mbps

Root

blocked port

Switch
Ethernet 

Switch
Ethernet 

Switch
Ethernet 
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Algorhyme

AlgorhymeI think that I shall never seeA graph as lovely as a tree.A tree whi
h must be sure to span.So pa
kets 
an rea
h every LAN.First the root must be sele
ted.By ID, it is ele
ted.Least 
ost paths from Root are tra
ed.In the tree these paths are pla
ed.A mesh is made by folks like me.Then bridges �nd a spanning tree.STP is attributed to Radia Perlman as is the poem above.
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Minimum Spanning Trees

STP is doing an optimization:it is minimizing the path length for ea
h leaf to getto the rootusing somewhat arbitrary link weights!effe
tively it is trying to minimize 
ongestion byswit
hing traf�
 on higher bandwidth paths

Another standard optimization is to minimize the total
ost of the treethe exa
t problem depends on what we mean by�
osts�often referred to as Minimum Spanning Tree (MSP)
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Minimum Spanning Trees

Take a general linear 
ost model

C(f) = ∑
e∈L

(αe fe +βe)

various sub
ases existminimum weight spanning tree (MWST)
αe = 0

C(f) = ∑
e∈L

βe
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ForestsA 
olle
tion of sub-trees is 
alled a forest

links in the forest

links in G
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Properties of importan
e

Proposition 1: If F ,G are two forests for a network and
|F | > |G |, then ∃ link e ∈ F su
h that G ∪{e} is a forest.Proof: Suppose the sub-trees in the forest G aredenoted G1,G2, . . .Gk (so ea
h is a 
onne
ted 
omponentof G and ea
h has no 
y
les). Let Fi be the set of links in

F whi
h have both endpoints in 
omponent Gi of G . Nowsin
e F is a forest, and Fi ⊆ F , ea
h Fi is a forest, sonumber of links in Fi ≤ (# of nodes in Fi)−1
≤ (# of nodes in Gi)−1
= # links in Gi

(be
ause Gi is a tree)
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Properties of importan
e

Proof: (of prop. 1 
ontinued)

∴ |Fi| ≤ |Gi|

∴ ∑k
i=1 |Fi| ≤ ∑k

i=1 |Gi| = |G | < |F |Therefore there is a link in F whi
h does not have bothendpoints in the same 
omponent (Gi) of G . Hen
e

G ∪{e} will not 
ontain a 
y
le. Therefore G ∪{e} is aforest.2
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Properties of importan
e

Proposition 2: Given a fragment F of an MWST, let e bea link of minimum weight with one node in F and theother not in F . i.e. e is su
h that βe = min{βi j | i ∈ F, j 6∈ F}Then F ∪{e} is a fragment of an MWSTProof: If 6 ∃e, then all nodes of G are in F , and therefore

F is an MWST.Suppose ∃e = (i, j) su
h that βe = min{βi j | i ∈ F, j 6∈ F}.Denote by T the minimum weight spanning tree of whi
h

F is a fragment. If e ∈ T , we are done, so assume e 6∈ T .Then T ∪{e} has a 
y
le. Sin
e node j 6∈ F, there is a link

e′ 6= e whi
h is on the 
y
le and on T , and has one node on

F (see diagram).
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Properties of importan
e

Proof: (of prop. 2 
ontinued)

i

j

G(N,E)

Delete e′ from T and add e to T . We still have |N| nodesand |N|−1 links. ∴ we still have a spanning tree, T ∗ say.But βe ≤ βe′ by de�nition of e. So T ∗ has a 
ost ≤ that of

T . Therefore T ∗ is an MWST, and therefore F ∪{e} is afragment of an MWST.2
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Properties of importan
e
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ontinued)
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Properties of importan
e

Proof: (of prop. 2 
ontinued)
F

T
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Properties of importan
e

Proof: (of prop. 2 
ontinued)
F

T
e

e’
i

jDelete e′ from T and add e to T . We still have |N| nodesand |N|−1 links. ∴ we still have a spanning tree, T ∗ say.But βe ≤ βe′ by de�nition of e. So T ∗ has a 
ost ≤ that of

T . Therefore T ∗ is an MWST, and therefore F ∪{e} is afragment of an MWST.2
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Greedy methods

at ea
h step we make the best 
hoi
edon't ever go ba
ke.g. Dijkstra, Minoux's greedy methodadvantagegenerally pretty simpledisadvantagedoesn't rea
h true optimum in many 
asesresults are still sometimes quite goodDijkstra does �nd an optimumtwo new examples todayKruskal and Prim's methodsboth are optimal
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Kruskal's method [1℄

Input a 
onne
ted network G(N,E) with link weights
βe ≥ 0,∀e ∈ E1. Initialize: list the links in in
reasing order of βe,e.g.

βe1 ≤ βe2 ≤ ·· · ≤ βe|E|2. While not a spanning tree
hoose the next link in the listif it doesn't form a 
y
le, add it to the treeif it does, then dis
ard the linkAlternative step 2: for i = 1,2, . . . , |E|if adding link ei would not 
reate a 
y
le, add it tothe tree, otherwise dis
ard it
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Kruskal's method example

Input graph with link weights βe

25
40

30

20

15

10
35

1

2 4

3 5

Obviously, the links in order of in
reasing βe are:link (2,4) (3,5) (3,4) (2,3) (4,5) (1,2) (1,3)

βe = 10 15 20 25 30 35 40

Communications Network Design: lecture 16 – p.21/41



Kruskal's method example

Step 1: 
onsider link (2,4)
25

40
30

20

15

10
35

1

2 4

53

Add the link to the forest.
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Kruskal's method example

Step 2: 
onsider link (3,5)
25

40
30

20

15

10
35

1

2 4

53

Add the link to the forest.
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Kruskal's method example

Step 3: 
onsider link (3,4)
25

40
30

20

15

10
35

1

2 4

53

Add the link to the forest.
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Kruskal's method example

Step 4: 
onsider link (2,3)
40

30

20

15

10
35

251

2 4

53

Dis
ard the link as it would 
reate a 
y
le
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Kruskal's method example

Step 5: 
onsider link (4,5)
40

20

15

10
35

25 301

2 4

53

Dis
ard the link as it would 
reate a 
y
le
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Kruskal's method example

Step 6: 
onsider link (1,2)
40

20

15

10
35

25 301

2 4

53

Add the link to the forest.We have a spanning tree now, so we 
ould stop here, anddis
ard (1,3), but we will 
ontinue until the end.
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Kruskal's method example

Step 7: 
onsider link (1,3)

20

15

10
35

40
25 301

2 4

53

Dis
ard the link as it would 
reate a 
y
le

Communications Network Design: lecture 16 – p.28/41



Kruskal's method proof

Sket
h proof that Kruskal's method produ
es a MWSTbegin with a forest 
onsisting of all nodes, separateat ea
h stage, we have a forest (no 
y
les)from prop.1, we 
an �nd su
h a forestthe algorithm itself prohibits new 
y
les formingsubtrees in the forest are fragments of the MWSTwe always add least weight links (without 
y
les)new subtrees must be fragment of the MWSTsby prop.2�nal result must be the MWSTFor full proofs see [2, Se
tion 44, Part II℄,or [3, Thm 6.3℄
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Kruskal's method's 
omplexity

we start by sorting whi
h takes O(|E| log|E|)for a 
ompletely 
onne
ted network (the worst
ase) O(|E|) = O(|N|2)so O(|E| log|E|) = O(|E| log|N|2) = O(|E| log|N|)go through all of the edges in turn so O(|E|) stepsin ea
h step, we need to test for 
y
lesfor e = (i, j) 
he
k whether nodes i and j are inthe same 
onne
ted sub-treevaries with the method usedsimple method is O(|N|)
areful method (see [3, Thm 6.4℄) is O(log|N|)Total 
omplexity O(|E| log|N|)
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Prim's Method [4℄

Rather than add links with in
reasing weights,Prim's method fans out from a single arbitrary node.maintain a sub-tree (S,L)

S ⊂ N
L ⊂ E su
h that L is a spanning tree on S
onne
ts Shas no 
y
lesat ea
h step, add the �nearest neighbour� to Sadd the 
heapest link from S to S\Nusing ideas from proposition 1 and 2
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Prim's Method [4℄

Input a 
onne
ted network G(N,E) with link weights
βe ≥ 0,∀e ∈ E1. Initialize: L = φ, S = {1}2. While (S,L) not a spanning tree (|L| < |N|−1)take (i′, j′) su
h that

βi′ j′ = min{βi, j|(i, j) ∈ E, i ∈ S, j /∈ S}add (i′, j′) to the list L and j′ to S
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Prim's method example

Input graph with link weights βe (same as above)Choose an arbitrary start node (we 
hoose node 1)

25
40

30

20

15

10
35

1

2

3 5

4

S = {1}, L = φ
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Prim's method example
25

40
30

20

15

10
35

1

2

3 5

4

S = {1,2}, L = {(1,2)}
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Prim's method example
25

40
30

20

15

10
35

1

2

3 5

4

S = {1,2,4}, L = {(1,2),(2,4)}
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Prim's method example
25

40
30

20

15

10
35

1

2

3 5

4

S = {1,2,4,3}, L = {(1,2),(2,4),(3,4)}
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Prim's method example
25

40
30

20

15

10
35

1

2

5

4

3

S = {1,2,4,3,5}, L = {(1,2),(2,4),(3,4),(3,5)}
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Prim's method detailsproof is straight from prop. 1 and prop. 2 again
omplexity of simple approa
hneed one step per node, so O(|N|) stepsea
h step requires 
hoi
e of min over the edgeswhi
h takes time O(|E|) = O(|N|) for a densegraphtotal 
omplexity is O(|N|2)better approa
h, using a Fibona

i heap [3, p.121℄for a sparse graph this is O(|E|+ |N| log|N|)

Communications Network Design: lecture 16 – p.38/41



Relationship to other algorithms

greedy tree sear
h algorithms are all similarlike Dijkstra, but unlike arbitrary greedy methods,these are all optimaldifferen
e between Dijkstra and PrimDijkstra looks for next node to be 
losest to rootPrim looks for next node to be 
losest to 
urrentMWSTSTP is really doing Dijkstra to get SPF treeA tour (minus a link) is a spe
ial 
ase of a MWSTTSP results in a spe
ial 
ase of a MWSTTSP is a 
ost minimization over a stri
tly smaller setSo in general the MWST 
ost is less than the TSP
ost
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Mis
ellany
if ea
h link has a distin
t edge weight, there will bea unique MWSTin general the MWST is not uniqueThe �rst algorithm for �nding a minimum spanningtree was developed by Otakar Boruvka in 1926 [5℄.The fastest minimum spanning tree algorithm todate was developed by Bernard Chazelle, runningtime O(|E|α(|E|, |N|)) where α is the 
lassi
alfun
tional inverse of an A
kermann fun
tion(effe
tively a 
onstant here) [6℄.
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