Communications Network Design
lecture 16

Matthew Roughan
<mat t hew. r oughan@del ai de. edu. au>

Discipline of Applied Mathematics
School of Mathematical Sciences
University of Adelaide

May 20, 2009

Communications Network Design: lecture 16 — p.1/41

Tree-like networks

Tree-like networks, and algorithms for their design:
minimum spanning tree problem, spanning trees and
spanning tree protocol, greedy methods (Kruskal's and
Prim's methods).

Communications Network Design: lecture 16 — p.2/41

This lecture covers tree-like networks, and algorithms for their design.

Communications Network Design: lecture 16 — p.1/41

Communications Network Design: lecture 16 — p.2/41

Tree-like networks

A Tree
» connected
» does not contain any cycles (loops)
> A graph contains no cycles if there is no path of
non-zero length {vi}¥_; through the graph such
that vop = w

Communications Network Design: lecture 16 — p.3/41

Spanning Tree

Spanning tree, alternative definitions
» a tree that connects all nodes in the graph

» connected graph where the number of links in
G(N,T)is |T| =|N—1]

» the graph is connected, but if we ommit a single
link, it becomes disconnected

» every pair of vertices is connected along one and
only one path

Given |N| nodes,
» there are as many as |N|NI=2 such trees
» more even than the number of paths

Communications Network Design: lecture 16 — p.4/41

Communications Network Design: lecture 16 — p.3/41

Communications Network Design: lecture 16 — p.4/41

Spanning Tree

» example application: cable TV network

> need to get a broadcast TV signal from one
(root) to many (leaves)

> maybe we want to do this as cheaply as possible?

» example application: Ethernet
> Spanning Tree Protocol

» example application: Fibre-To-The-Node (FTTN)
> proposed design for Australian broadband
> hybrid fibre/copper network

* use copper telephone lines from home

% run fibre out to "nodes”
* result is a tree-like network

>_where should nodes be?

Communications Network Design: lecture 16 — p.5/41

Spanning Tree Protocol

» an Ethernet can have multiple possible switching paths
> for reliability

» but Ethernet effectively broadcasts some messages
> e.g. ARP
> route loops could be REALLY bad

> looping broadcasts would take up all available
bandwidth

> no mechanism at the IP layer can stop this, as it is
happening at layer 2

» Spanning Tree Protocol (STP) intended to create a tree
> hence avoid loops

» Is the STP optimizing anything we care about?

Communications Network Design: lecture 16 — p.6/41

Alternatives to FTTN are
» fibre to the curb (FTTC)
» fibre to the premises (FTTP)

The closer optical fibre gets to your home, the more the network costs, but the better the
speeds.

Communications Network Design: lecture 16 — p.5/41

More information on the spanning tree protocol:

http://ww. ci sco. com uni vercd/ cc/td/doc/ product/rtrngnt/sw_ntman/
cwsi mai n/ cwsi 2/ cwsi ug2/ vl an2/ st papp. ht m

http://ww.javvin. com protocol STP. ht m

http://searchnetworki ng.techtarget.conf sDefinition/O,, sid7_gci 214602,
00. htm

Communications Network Design: lecture 16 — p.6/41

Spanning Tree Protocol

» Two versions of STP
> DEC and IEEE (not compatible) we will look at IEEE

» switches are assigned numerical priority

» Ethernet switch with lowest priority is root
> tie break is lowest MAC address
* MAC addresses are unique
* combination of priority and MAC is called node ID

» each Ethernet switch port is given a cost
> based on bandwidth of the link
* see next slide
> like a link weight (in Dijkstra)

Communications Network Design: lecture 16 — p.7/41

Port costs

» default costs based on bandwith
> old version based on 1 Gbps/(link bandwidth)
> nhew version arbitrary table
x port cost has to be integer > 0
* new costs account for link speeds > 1 Gbps

Media new cost old cost
10 Mbps 100 100
100 Mbps 19 10
1 Gbps 4 1
10 Gbps 2 1

» gives port ID
> MAC address is used as a tie break again

Communications Network Design: lecture 16 — p.8/41

IEEE Spanning tree standards:
http://ww.ieee802. org/ 1/ pages/ 802. 1D- 2003. ht m
http://standards. i eee. org/ geti eee802/ downl oad/ 802. 1D- 2004. pdf

Communications Network Design: lecture 16 — p.7/41

Communications Network Design: lecture 16 — p.8/41

http://www.ieee802.org/1/pages/802.1D-2003.html
http://standards.ieee.org/getieee802/download/802.1D-2004.pdf

Spanning Tree Protocol

» Ethernet switches send Bridge Protocol Data Unit (BPDU)
> e.g. Cisco default is every 2 seconds
> contains information above, and state
> flooded through network
» switches try to find cheapest path to the root switch
» closest port to the root on a switch is called the root port
» each Ethernet segment chooses the port advertizing the
shortest path fo the root
> label the switch on this path the designated switch
» ports not on the designated switch are blocked
> put into backup mode
> they still listen to BPDUs, but don't forward packets

Communications Network Design: lecture 16 — p.9/41

Spanning Tree Protocol Example

To router

10 Mbps

Communications Network Design: lecture 16 — p.10/41

Communications Network Design: lecture 16 — p.9/41

Communications Network Design: lecture 16 — p.10/41

Algorhyme

Algorhyme
I think that I shall never see
A graph as lovely as a tree.
A tree which must be sure to span.
So packets can reach every LAN.
First the root must be selected.
By ID, it is elected.
Least cost paths from Root are traced.
In the tree these paths are placed.
A mesh is made by folks like me.
Then bridges find a spanning tree.

STP is attributed to Radia Perlman as is the poem above.

Communications Network Design: lecture 16 — p.11/41

Minimum Spanning Trees

STP is doing an optimization:
» it is minimizing the path length for each leaf to get
to the root
» using somewhat arbitrary link weights!

» effectively it is trying to minimize congestion by
switching traffic on higher bandwidth paths

Another standard optimization is to minimize the total
cost of the tree

» the exact problem depends on what we mean by
“costs"”

» often referred to as Minimum Spanning Tree (MSP)

Communications Network Design: lecture 16 — p.12/41

Communications Network Design: lecture 16 — p.11/41

Note that the STP does NOT solve the MSP problem!

More information on MSPs can be sound at

http://ww.ics.uci.edu/ ~eppstein/161/960206. ht n

http://ww. csse. nonash. edu. au/ ~l | oyd/ ti | deAl gDS/ G aph/ Undi r ect ed/
http://ww- b2.is.tokushi nma-u. ac.jp/ ~i keda/ suuri/kruskal / Kruskal . sht m
http://portal.acmorg/citation.cfnPi d=52357

http://ww. cs. sunysb. edu/ ~al gorith/files/m ni mum spanni ng-tree. shtm

Communications Network Design: lecture 16 — p.12/41

http://www.ics.uci.edu/~eppstein/161/960206.html
http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/Graph/Undirected/
http://www-b2.is.tokushima-u.ac.jp/~ikeda/suuri/kruskal/Kruskal.shtml
http://portal.acm.org/citation.cfm?id=52357
http://www.cs.sunysb.edu/~algorith/files/minimum-spanning-tree.shtml

Minimum Spanning Trees

Take a general linear cost model

C(f) = El(aefe‘f‘ Be)

ec

» various subcases exist
» minimum weight spanning tree (MWST)

0a.=0
C(f) = eZLBe

Communications Network Design: lecture 16 — p.13/41

Forests

A collection of sub-trees is called a forest

links in G

links in the forest

Communications Network Design: lecture 16 — p.14/41

Communications Network Design: lecture 16 — p.13/41

Communications Network Design: lecture 16 — p.14/41

Properties of importance

Proposition 1: If ¥, G are two forests for a network and
|F| > |G|, then 3 link e ¥ such that GU{e} is a forest.

Proof: Suppose the sub-trees in the forest G are
denoted G;,Gy,... Gk (so each is a connected component
of G and each has no cycles). Let F be the set of links in
F which have both endpoints in component G; of G. Now
since ¥ is a forest,and K C ¥, each F, is a forest, so

number of linksinF < (# of nodesinF)—1
< (#of nodesinG)—1
= # links in G

(because G; is a tree)

Communications Network Design: lecture 16 — p.15/41

Properties of importance

Proposition 2: Given a fragment F of an MWST, let e be
a link of minimum weight with one node in F and the
other not inF. i.e. eis such that Be=min{Bi; |i € F,j ¢F}
Then FU{e} is a fragment of an MWST

Proof: If Ze, then all nodes of G are in F, and therefore
F is an MWST.

Suppose Je= (i,]) such that Be=min{Bi; |i € F,j ¢ F}.
Denote by T the minimum weight spanning tree of which
F is a fragment. If ec T, we are done, so assume e¢ T.
Then TU{e} has a cycle. Since node j ¢ F, there is a link
€ # ewhich is on the cycle and on T, and has one node on
F (see diagram).

Communications Network Design: lecture 16 — p.17/41

Properties of importance

Proof: (of prop. 1 continued)

R < |G

YIRS S G =16] < | 7]
Therefore there is a link in F which does not have both
endpoints in the same component (G;) of G. Hence

G U{e} will not contain a cycle. Therefore GU{e} isa
forest.O

Communications Network Design: lecture 16 — p.16/41

Communications Network Design: lecture 16 — p.17/41

Properties of importance

Proof: (of prop. 2 continued)

Delete € from T and add e to T. We still have |N| nodes

and [N|—1links. -. we still have a spanning tree, T* say.
But Be < Be by definition of e. So T* has a cost < that of
T. Therefore T* is an MWST, and therefore FU{e} is a
fragment of an MWST.O

Communications Network Design: lecture 16 — p.18/41

Greedy methods

» at each step we make the best choice
> don't ever go back

» e.g. Dijkstra, Minoux’'s greedy method

» advantage
> generally pretty simple

» disadvantage

> doesn't reach true optimum in many cases
* results are still sometimes quite good

> Dijkstra does find an optimum

» two new examples foday

> Kruskal and Prim’'s methods
>_both are optimal

Communications Network Design: lecture 16 — p.19/41

Communications Network Design: lecture 16 — p.18/41

Communications Network Design: lecture 16 — p.19/41

Kruskal's method [1]

Input a connected network G(N,E) with link weights
Be>0,VecE

1. Initialize: list the links in increasing order of f,
e.g.
Be, <PBe, <+ < Beg
2. While not a spanning tree
» choose the next link in the list

> if it doesn't form a cycle, add it to the tree
> if it does, then discard the link

Alternative step 2: fori=1,2,...,|E]|

» if adding link & would not create a cycle, add it to
the tree, otherwise discard it

Communications Network Design: lecture 16 — p.20/41

Kruskal's method example

Input graph with link weights (e
10
5 2 O,
20
25 30

315<5>

Obviously, the links in order of increasing Be are:

link (2,4) (3,5 (3,4 (2,3) (45 (1,2) (1,3
Be= 10 15 20 25 30 35 40

40

Communications Network Design: lecture 16 — p.21/41

Kruskal's method example

Communications Network Design: lecture 16 — p.20/41

Step 1: consider link (2,4)

10
e 2 (2
20

25 30

D15 ®

Add the link to the forest.

40

Communications Network Design: lecture 16 — p.22/41

Kruskal's method example

Step 2: consider link (3,5)

10
2 4
20

25 30

315<5>

Add the link to the forest.

40

Communications Network Design: lecture 16 — p.23/41

Kruskal's method example

Step 4: consider link (2,3)

Discard the link as it would create a cycle

Communications Network Design: lecture 16 — p.25/41

Kruskal's method example

Step 3: consider link (3,4)

10
v 2 (4
20

25 30

IO

Add the link to the forest.

40

Communications Network Design: lecture 16 — p.24/41

Kruskal's method example

Step 5: consider link (4,5)

Discard the link as it would create a cycle

Communications Network Design: lecture 16 — p.26/41

Kruskal's method example

Step 6: consider link (1,2)

Add the link to the forest.
We have a spanning tree now, so we could stop here, and
discard (1,3), but we will continue until the end.

Communications Network Design: lecture 16 — p.27/41

Kruskal's method proof

Sketch proof that Kruskal's method produces a MWST
» begin with a forest consisting of all nodes, separate
» at each stage, we have a forest (no cycles)

> from prop.1, we can find such a forest
> the algorithm itself prohibits new cycles forming
» subtrees in the forest are fragments of the MWST
> we always add least weight links (without cycles)
> new subtrees must be fragment of the MWSTs
by prop.2
» final result must be the MWST

For full proofs see [2, Section 44, Part IT],
or[3. Thm 6.3]

Communications Network Design: lecture 16 — p.29/41

Kruskal's method example

Step 7: consider link (1,3)

> 10

20,

35

5

Discard the link as it would create a cycle

Communications Network Design: lecture 16 — p.28/41

Communications Network Design: lecture 16 — p.29/41

Kruskal's method's complexity

» we start by sorting which takes O(|E|log|E|)
> for a completely connected network (the worst
case) O(|E|) = O(|N|?)
> so O(|E|log|E|) = O(|E[log|N|?) = O(|E|log|N])
» go through all of the edges in turn so O(|E|) steps

» in each step, we need to test for cycles
> for e=(i,j) check whether nodes i and j are in
the same connected sub-tree
> varies with the method used
> simple method is O(|N|)
> careful method (see [3, Thm 6.4]) is O(log|N|)

» Total complexity O(|E|log|N|)

Communications Network Design: lecture 16 — p.30/41

Prim's Method [4]

>

Rather than add links with increasing weights,
Prim’'s method fans out from a single arbitrary node.

maintain a sub-tree (SL)
> SCN

> L C E such that L is a spanning tree on S
% connects S
* has no cycles

at each step, add the "nearest neighbour” to S
> add the cheapest link from Sto S\N

using ideas from proposition 1 and 2

Communications Network Design: lecture 16 — p.31/41

Communications Network Design: lecture 16 — p.30/41

Communications Network Design: lecture 16 — p.31/41

Prim's Method [4]

Input a connected network G(N,E) with link weights
Be>0,VecE

1. Initialize: L=¢ S={1}
2. While (SL) not a spanning tree (|L| < [N|—1)
» take (i’,]j’) such that
By = min{Bi[(i,]) €E,i€ S¢S}
» add (i’,j') fo the list Land j’ to S

Communications Network Design: lecture 16 — p.32/41

Prim's method example

Input graph with link weights Be (same as above)

Choose an arbitrary start node (we choose node 1)

10
= @ (2
20

25 30

D15 ©®

40

S= {1}7 L=¢

Communications Network Design: lecture 16 — p.33/41

Communications Network Design: lecture 16 — p.32/41

Prim's method example

10
2 4
) (@
35 20
25 30

D15 ®

40

S= {172}’ L= {(172)}

Communications Network Design: lecture 16 — p.34/41

Prim's method example

s ———®

20
25 30

315@)

S=1{1,2,4}, L={(1,2),(2,4)}

40

Communications Network Design: lecture 16 — p.35/41

Prim's method example

s ———

20
25 30

=0

S=1{1,2,4,3,5}, L={(1,2),(2,4),(3,4),(3,5)}

40

Communications Network Design: lecture 16 — p.37/41

Prim's method example

5 ——D

20
25 30

OO

S={1,2,4,3}, L=4{(1,2),(2,4),(3,4)}

40

Communications Network Design: lecture 16 — p.36/41

Communications Network Design: lecture 16 — p.37/41

Prim's method details

» proof is straight from prop. 1 and prop. 2 again

» complexity of simple approach
> need one step per node, so O(|N|) steps
> each step requires choice of min over the edges
which takes time O(|E|) = O(|N|) for a dense
graph
> total complexity is O(|N|?)
» better approach, using a Fibonacci heap [3, p.121]
> for a sparse graph this is O(|E|+ [N|log|N|)

Communications Network Design: lecture 16 — p.38/41

Relationship to other algorithms

» greedy tree search algorithms are all similar
> like Dijkstra, but unlike arbitrary greedy methods,
these are all optimal
> difference between Dijkstra and Prim
* Dijkstra looks for next node to be closest to root

* Prim looks for next node to be closest to current
MWST
x STP is really doing Dijkstra to get SPF tree

» A tour (minus a link) is a special case of a MWST
> TSP results in a special case of a MWST
> TSP is a cost minimization over a strictly smaller set

> So in general the MWST cost is less than the TSP
cost

Communications Network Design: lecture 16 — p.39/41

Communications Network Design: lecture 16 — p.38/41

Communications Network Design: lecture 16 — p.39/41

Miscellany

» if each link has a distinct edge weight, there will be
a unique MWST

> in general the MWST is not unique

» The first algorithm for finding a minimum spanning
tree was developed by Otakar Boruvka in 1926 [5].

» The fastest minimum spanning tree algorithm to
date was developed by Bernard Chazelle, running
time O(|E|a(|E[,|N|)) where a is the classical
functional inverse of an Ackermann function
(effectively a constant here) [6].

Communications Network Design: lecture 16 — p.40/41

References

[1] J. B. Kruskal, "On the shortest spanning subtree of a graph and the traveling
salesman problem,” Proc. Amer. Math. Soc., vol. 7, pp. 48-50, 1956.

[2] A.Kaufmann, Graphs, Dynamic Programming, and Finite Games. Academic Press,
1967.

[3] B. Korte and J. Vygen, Combinatorial Optimization. Springer, 2000.

[4] R. C. Prim, "Shortest connection networks and some generalizations,” Bell System
Tech. J., vol. 36, pp. 1389-1401, 1957.

[5] O. Boruvka, "On minimum spanning tree problem,” Discrete Mathematics, vol. 233,
2001. (translation by Jaroslav Nesetril, Eva Milkod, Helena Nesetrilovd).

[6] B. Chazelle, "A minimum spanning tree algorithm with inverse-ackermann type
complexity,” J. ACM, vol. 47, no. 6, pp. 1028-1047, 2000.

Communications Network Design: lecture 16 — p.41/41

	
	
	
	Tree-like networks
	
	Spanning Tree
	
	Spanning Tree
	
	Spanning Tree Protocol
	
	Spanning Tree Protocol
	
	Port costs
	
	Spanning Tree Protocol
	
	Spanning Tree Protocol Example
	
	Algorhyme
	
	Minimum Spanning Trees
	
	Minimum Spanning Trees
	
	Forests
	
	Properties of importance
	Properties of importance
	Properties of importance
	
	Properties of importance
	
	Greedy methods
	
	Kruskal's method cite {kruskal56}
	
	Kruskal's method example
	Kruskal's method example
	Kruskal's method example
	Kruskal's method example
	Kruskal's method example
	Kruskal's method example
	Kruskal's method example
	Kruskal's method example
	Kruskal's method proof
	
	Kruskal's method's complexity
	
	Prim's Method cite {prim57}
	
	Prim's Method cite {prim57}
	
	Prim's method example
	Prim's method example
	Prim's method example
	Prim's method example
	Prim's method example
	
	Prim's method details
	
	Relationship to other algorithms
	
	Miscellany
	

