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Tree-like networks

Tree-like networks, and algorithms for their design:
minimum spanning tree problem, spanning trees and
spanning tree protocol, greedy methods (Kruskal's and
Prim's methods).
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This lecture covers tree-like networks, and algorithms for their design.
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Tree-like networks

A Tree
» connected
» does not contain any cycles (loops)
> A graph contains no cycles if there is no path of
non-zero length {vi}¥_; through the graph such
that vop = w
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Spanning Tree

Spanning tree, alternative definitions
» a tree that connects all nodes in the graph

» connected graph where the number of links in
G(N,T)is |T| =|N—1]

» the graph is connected, but if we ommit a single
link, it becomes disconnected

» every pair of vertices is connected along one and
only one path

Given |N| nodes,
» there are as many as |N|NI=2 such trees
» more even than the number of paths
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Spanning Tree

» example application: cable TV network

> need to get a broadcast TV signal from one
(root) to many (leaves)

> maybe we want to do this as cheaply as possible?

» example application: Ethernet
> Spanning Tree Protocol

» example application: Fibre-To-The-Node (FTTN)
> proposed design for Australian broadband
> hybrid fibre/copper network

* use copper telephone lines from home

% run fibre out to "nodes”
* result is a tree-like network

>_where should nodes be?
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Spanning Tree Protocol

» an Ethernet can have multiple possible switching paths
> for reliability

» but Ethernet effectively broadcasts some messages
> e.g. ARP
> route loops could be REALLY bad

> looping broadcasts would take up all available
bandwidth

> no mechanism at the IP layer can stop this, as it is
happening at layer 2

» Spanning Tree Protocol (STP) intended to create a tree
> hence avoid loops

» Is the STP optimizing anything we care about?
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Alternatives to FTTN are
» fibre to the curb (FTTC)
» fibre to the premises (FTTP)

The closer optical fibre gets to your home, the more the network costs, but the better the
speeds.
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More information on the spanning tree protocol:

http://ww. ci sco. com uni vercd/ cc/td/doc/ product/rtrngnt/sw_ntman/
cwsi mai n/ cwsi 2/ cwsi ug2/ vl an2/ st papp. ht m

http://ww.javvin. com protocol STP. ht m

http://searchnetworki ng.techtarget.conf sDefinition/O,, sid7_gci 214602,
00. htm
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Spanning Tree Protocol

» Two versions of STP
> DEC and IEEE (not compatible) we will look at IEEE

» switches are assigned numerical priority

» Ethernet switch with lowest priority is root
> tie break is lowest MAC address
* MAC addresses are unique
* combination of priority and MAC is called node ID

» each Ethernet switch port is given a cost
> based on bandwidth of the link
* see next slide
> like a link weight (in Dijkstra)
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Port costs

» default costs based on bandwith
> old version based on 1 Gbps/(link bandwidth)
> nhew version arbitrary table
x port cost has to be integer > 0
* new costs account for link speeds > 1 Gbps

Media new cost old cost
10 Mbps 100 100
100 Mbps 19 10
1 Gbps 4 1
10 Gbps 2 1

» gives port ID
> MAC address is used as a tie break again

Communications Network Design: lecture 16 — p.8/41

IEEE Spanning tree standards:
http://ww.ieee802. org/ 1/ pages/ 802. 1D- 2003. ht m
http://standards. i eee. org/ geti eee802/ downl oad/ 802. 1D- 2004. pdf
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http://www.ieee802.org/1/pages/802.1D-2003.html
http://standards.ieee.org/getieee802/download/802.1D-2004.pdf

Spanning Tree Protocol

» Ethernet switches send Bridge Protocol Data Unit (BPDU)
> e.g. Cisco default is every 2 seconds
> contains information above, and state
> flooded through network
» switches try to find cheapest path to the root switch
» closest port to the root on a switch is called the root port
» each Ethernet segment chooses the port advertizing the
shortest path fo the root
> label the switch on this path the designated switch
» ports not on the designated switch are blocked
> put into backup mode
> they still listen to BPDUs, but don't forward packets
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Spanning Tree Protocol Example

To router

10 Mbps
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Algorhyme

Algorhyme
I think that I shall never see
A graph as lovely as a tree.
A tree which must be sure to span.
So packets can reach every LAN.
First the root must be selected.
By ID, it is elected.
Least cost paths from Root are traced.
In the tree these paths are placed.
A mesh is made by folks like me.
Then bridges find a spanning tree.

STP is attributed to Radia Perlman as is the poem above.
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Minimum Spanning Trees

STP is doing an optimization:
» it is minimizing the path length for each leaf to get
to the root
» using somewhat arbitrary link weights!

» effectively it is trying to minimize congestion by
switching traffic on higher bandwidth paths

Another standard optimization is to minimize the total
cost of the tree

» the exact problem depends on what we mean by
“costs"”

» often referred to as Minimum Spanning Tree (MSP)
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Note that the STP does NOT solve the MSP problem!

More information on MSPs can be sound at

http://ww.ics.uci.edu/ ~eppstein/161/960206. ht n

http://ww. csse. nonash. edu. au/ ~l | oyd/ ti | deAl gDS/ G aph/ Undi r ect ed/
http://ww- b2.is.tokushi nma-u. ac.jp/ ~i keda/ suuri/kruskal / Kruskal . sht m
http://portal.acmorg/citation.cfnPi d=52357

http://ww. cs. sunysb. edu/ ~al gorith/files/m ni mum spanni ng-tree. shtm
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http://www.ics.uci.edu/~eppstein/161/960206.html
http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/Graph/Undirected/
http://www-b2.is.tokushima-u.ac.jp/~ikeda/suuri/kruskal/Kruskal.shtml
http://portal.acm.org/citation.cfm?id=52357
http://www.cs.sunysb.edu/~algorith/files/minimum-spanning-tree.shtml

Minimum Spanning Trees

Take a general linear cost model

C(f) = El(aefe‘f‘ Be)

ec

» various subcases exist
» minimum weight spanning tree (MWST)

0a.=0
C(f) = eZLBe
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Forests

A collection of sub-trees is called a forest

links in G

links in the forest

Communications Network Design: lecture 16 — p.14/41

Communications Network Design: lecture 16 — p.13/41

Communications Network Design: lecture 16 — p.14/41




Properties of importance

Proposition 1: If ¥, G are two forests for a network and
|F| > |G|, then 3 link e ¥ such that GU{e} is a forest.

Proof: Suppose the sub-trees in the forest G are
denoted G;,Gy,... Gk (so each is a connected component
of G and each has no cycles). Let F be the set of links in
F which have both endpoints in component G; of G. Now
since ¥ is a forest,and K C ¥, each F, is a forest, so

number of linksinF < (# of nodesinF)—1
< (#of nodesinG)—1
= # links in G

(because G; is a tree)
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Properties of importance

Proposition 2: Given a fragment F of an MWST, let e be
a link of minimum weight with one node in F and the
other not inF. i.e. eis such that Be=min{Bi; |i € F,j ¢F}
Then FU{e} is a fragment of an MWST

Proof: If Ze, then all nodes of G are in F, and therefore
F is an MWST.

Suppose Je= (i, ]) such that Be=min{Bi; |i € F,j ¢ F}.
Denote by T the minimum weight spanning tree of which
F is a fragment. If ec T, we are done, so assume e¢ T.
Then TU{e} has a cycle. Since node j ¢ F, there is a link
€ # ewhich is on the cycle and on T, and has one node on
F (see diagram).
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Properties of importance

Proof: (of prop. 1 continued)

R < |G

YIRS S G =16] < | 7]
Therefore there is a link in F which does not have both
endpoints in the same component (G;) of G. Hence

G U{e} will not contain a cycle. Therefore GU{e} isa
forest.O
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Properties of importance

Proof: (of prop. 2 continued)

Delete € from T and add e to T. We still have |N| nodes

and [N|—1links. -.  we still have a spanning tree, T* say.
But Be < Be by definition of e. So T* has a cost < that of
T. Therefore T* is an MWST, and therefore FU{e} is a
fragment of an MWST.O
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Greedy methods

» at each step we make the best choice
> don't ever go back

» e.g. Dijkstra, Minoux’'s greedy method

» advantage
> generally pretty simple

» disadvantage

> doesn't reach true optimum in many cases
* results are still sometimes quite good

> Dijkstra does find an optimum

» two new examples foday

> Kruskal and Prim’'s methods
>_both are optimal
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Kruskal's method [1]

Input a connected network G(N,E) with link weights
Be>0,VecE

1. Initialize: list the links in increasing order of f,
e.g.
Be, <PBe, <+ < Beg
2. While not a spanning tree
» choose the next link in the list

> if it doesn't form a cycle, add it to the tree
> if it does, then discard the link

Alternative step 2: fori=1,2,...,|E]|

» if adding link & would not create a cycle, add it to
the tree, otherwise discard it
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Kruskal's method example

Input graph with link weights (e
10
5 2 O,
20
25 30

315<5>

Obviously, the links in order of increasing Be are:

link (2,4) (3,5 (3,4 (2,3) (45 (1,2) (1,3
Be= 10 15 20 25 30 35 40

40
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Kruskal's method example
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Step 1: consider link (2,4)

10
e 2 (2
20

25 30

D15 ®

Add the link to the forest.

40
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Kruskal's method example

Step 2: consider link (3,5)

10
2 4
20

25 30

315<5>

Add the link to the forest.

40
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Kruskal's method example

Step 4: consider link (2,3)

Discard the link as it would create a cycle
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Kruskal's method example

Step 3: consider link (3,4)

10
v 2 (4
20

25 30

IO

Add the link to the forest.

40
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Kruskal's method example

Step 5: consider link (4,5)

Discard the link as it would create a cycle
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Kruskal's method example

Step 6: consider link (1,2)

Add the link to the forest.
We have a spanning tree now, so we could stop here, and
discard (1,3), but we will continue until the end.
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Kruskal's method proof

Sketch proof that Kruskal's method produces a MWST
» begin with a forest consisting of all nodes, separate
» at each stage, we have a forest (no cycles)

> from prop.1, we can find such a forest
> the algorithm itself prohibits new cycles forming
» subtrees in the forest are fragments of the MWST
> we always add least weight links (without cycles)
> new subtrees must be fragment of the MWSTs
by prop.2
» final result must be the MWST

For full proofs see [2, Section 44, Part IT],
or[3. Thm 6.3]
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Kruskal's method example

Step 7: consider link (1,3)

> 10

20,

35

5

Discard the link as it would create a cycle
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Kruskal's method's complexity

» we start by sorting which takes O(|E|log|E|)
> for a completely connected network (the worst
case) O(|E|) = O(|N|?)
> so O(|E|log|E|) = O(|E[log|N|?) = O(|E|log|N])
» go through all of the edges in turn so O(|E|) steps

» in each step, we need to test for cycles
> for e=(i,j) check whether nodes i and j are in
the same connected sub-tree
> varies with the method used
> simple method is O(|N|)
> careful method (see [3, Thm 6.4]) is O(log|N|)

» Total complexity O(|E|log|N|)
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Prim's Method [4]

>

Rather than add links with increasing weights,
Prim’'s method fans out from a single arbitrary node.

maintain a sub-tree (SL)
> SCN

> L C E such that L is a spanning tree on S
% connects S
* has no cycles

at each step, add the "nearest neighbour” to S
> add the cheapest link from Sto S\N

using ideas from proposition 1 and 2
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Prim's Method [4]

Input a connected network G(N,E) with link weights
Be>0,VecE

1. Initialize: L=¢ S={1}
2. While (SL) not a spanning tree (|L| < [N|—1)
» take (i’,]j’) such that
By = min{Bi[(i,]) €E,i€ S¢S}
» add (i’,j') fo the list Land j’ to S
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Prim's method example

Input graph with link weights Be (same as above)

Choose an arbitrary start node (we choose node 1)

10
= @ (2
20

25 30

D15 ©®

40

S= {1}7 L=¢
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Prim's method example

10
2 4
) (@
35 20
25 30

D15 ®

40

S= {172}’ L= {(172)}
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Prim's method example

s ———®

20
25 30

315@)

S=1{1,2,4}, L={(1,2),(2,4)}

40
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Prim's method example

s ———

20
25 30

=0

S=1{1,2,4,3,5}, L={(1,2),(2,4),(3,4),(3,5)}

40
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Prim's method example

5 ——D

20
25 30

OO

S={1,2,4,3}, L=4{(1,2),(2,4),(3,4)}

40
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Prim's method details

» proof is straight from prop. 1 and prop. 2 again

» complexity of simple approach
> need one step per node, so O(|N|) steps
> each step requires choice of min over the edges
which takes time O(|E|) = O(|N|) for a dense
graph
> total complexity is O(|N|?)
» better approach, using a Fibonacci heap [3, p.121]
> for a sparse graph this is O(|E|+ [N|log|N|)
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Relationship to other algorithms

» greedy tree search algorithms are all similar
> like Dijkstra, but unlike arbitrary greedy methods,
these are all optimal
> difference between Dijkstra and Prim
* Dijkstra looks for next node to be closest to root

* Prim looks for next node to be closest to current
MWST
x STP is really doing Dijkstra to get SPF tree

» A tour (minus a link) is a special case of a MWST
> TSP results in a special case of a MWST
> TSP is a cost minimization over a strictly smaller set

> So in general the MWST cost is less than the TSP
cost
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Miscellany

» if each link has a distinct edge weight, there will be
a unique MWST

> in general the MWST is not unique

» The first algorithm for finding a minimum spanning
tree was developed by Otakar Boruvka in 1926 [5].

» The fastest minimum spanning tree algorithm to
date was developed by Bernard Chazelle, running
time O(|E|a(|E[,|N|)) where a is the classical
functional inverse of an Ackermann function
(effectively a constant here) [6].
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