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In this le
ture we 
ontinue the study of randomized algorithms, in parti
ular geneti
 algorithmsare presented.
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Randomized algorithms:

geneti
 algorithms

Geneti
 algorithms (sometimes 
alled evolutionary
omputing) work by analogy to Darwin's theory ofevolution. We generate populations of solutions, andallow them to �evolve� towards �t solutions (solutionsthat minimize our obje
tive). GAs have advantages in�exibility: they 
an even be applied when the obje
tivefun
tion isn't known.
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Randomized algorithms

◮ saw simulated annealing

◮ similar 
ontext today

⊲ non-
onvex sear
h spa
e, with lo
al minima
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◮ different approa
h: Geneti
 algorithms (GAs)
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Geneti
 algorithms

A set of randomized algorithms whi
h derive theirbehavior from a metaphor of the pro
esses of evolutionin nature.

◮ inspired by Darwin's theory of evolution
⊲ survival of the �ttest

◮ pioneered by John Holland in the 60s (see [1℄).

◮ lots of appli
ations, e.g. [2, 3℄
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More information (at various levels) on GAs 
an be obtained from

http://cs.felk.cvut.cz/~xobitko/ga/
http://www.scs.carleton.ca/~csgrads/resources/gaal.html
http://www.rennard.org/alife/english/gavintrgb.html
http://www.cs.cmu.edu/Groups/AI/html/faqs/ai/genetic/top.html
http://www.aaai.org/AITopics/html/genalg.html
http://www.genetic-programming.com/published/scientificamerican1096.html
http://www.trnmag.com/Stories/2003/060403/Artificial_beings_evolve_
realistically_060403.html

http://www.discover.com/issues/aug-03/departments/feattech/Matlab 
ode for GAs:

http://www.csc.fi/math_topics/Movies/GA.htmlDesigning networks with GAs

http://csdl.computer.org/comp/mags/co/1997/08/r8056abs.htm
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Advantages GAs

◮ ease with whi
h it 
an handle arbitrary kinds of
onstraints and obje
tives

⊲ only have to be able to 
ompute them

⊲ don't even need to be able to express (as math)

◮ makes them highly appli
able where

⊲ sear
h spa
e is 
omplex or poorly understood

⊲ expert knowledge is dif�
ult to en
ode tonarrow the sear
h spa
e

⊲ mathemati
al analysis is not available

Communications Network Design: lecture 15 – p.5/33

Communications Network Design: lecture 15 – p.5/33

Used in many areas, even in art
◮ exemplar appli
ation: � I don't know mu
h about art,but I know what I like�

http://www.geneticart.org/
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Terminology

◮ living things are built using a plan des
ribed in our
hromosomes

◮ 
hromosomes are strings of DNA and serve as amodel for the whole organism

◮ a 
hromosome's DNA is grouped into blo
ks 
alledgenes, whi
h have a lo
ation 
alled a lo
us

◮ notionally, a gene 
odes for a parti
ular trait

⊲ e.g. blue, or brown eyes

⊲ possible settings for a trait are 
alled alleles

◮ a 
omplete set of geneti
 material (all
hromosomes) is 
alled a genotype

◮ expression produ
es a phenotype (the organism)from the genotype

Communications Network Design: lecture 15 – p.7/33

Communications Network Design: lecture 15 – p.7/33

Biologi
al evolution

◮ during reprodu
tion, re
ombination o

urs
⊲ in this 
ontext we 
all it 
rossover
⊲ genes from parents 
ombine to give genes foroffspring

◮ mutation also happens

⊲ it means that the elements of DNA are a little
hanged (randomly)
◮ �tness of an organism is measured by su

ess ofthe organism in its reprodu
tion

⊲ �tter organisms reprodu
e more, and sopropagate their genes further

⊲ => the theory of evolution

⊲ all sorts of interesting variations here
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Algorithm1. initialization: 
reate (randomly) an initial set of Nsolutions 
alled the population, P2. while not �nished(a) evaluate �tness: f (x) of ea
h x ∈ P(b) generate a new population: the offspringi. sele
tion: sele
t two parents from populationa

ording to their �tness (better �tnessmakes them more likely to be sele
ted)ii. 
rossover: With a 
rossover probability p
ross over the parents to form new offspring,otherwise dire
t 
opy of the parents.iii. mutation: With a mutation probability qmutate new offspring at ea
h lo
us(
) repla
e old population:
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Comments

◮ very general

◮ every bit 
an be implemented in different ways
◮ key 
omponents

⊲ 
hromosome en
oding
⊲ 
rossover method
⊲ mutation method
⊲ sele
tion method
⊲ �tness 
riteria

◮ don't need expli
it �tness fun
tion

⊲ 
ould be the result of winners of a game

⊲ e.g. 
ompetition between population
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Chromosome En
oding

◮ Binary En
oding:

Chromosome A 1101100100110110

⊲ ea
h bit represents some 
hara
teristi


⋆ e.g. ze in budget 
onstraint problem

⊲ string 
an represent a number: using Gray 
ode

◮ Permutation En
oding:

Chromosome A 1 5 3 2 6 4 7 9 8
Chromosome B 8 5 6 7 2 3 1 4 9

⊲ ea
h 
hromosome is a permutation

◮ Value En
oding: en
ode values dire
tly

◮ Tree En
oding: used for programs
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Gray Code [4, 5℄

◮ represents ea
h number in the sequen
e of integers
{0...2N−1} as a binary string of length N

◮ in an order su
h that adja
ent integers have Gray
ode representations that differ in only one bitposition

◮ mar
hing through the integer sequen
e thereforerequires �ipping just one bit at a time
◮ Example N = 3 (of a binary-re�e
ted Gray 
ode)The binary 
oding of {0...7}numbers 0 1 2 3 4 5 6 7binary 
oding 000 001 010 011 100 101 110 111Gray 
oding 000 001 011 010 110 111 101 100
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Crossover

◮ operate on sele
ted genes from parents'
hromosomes to 
reate offspring's genes

◮ simplest way is single 
rossover point

⊲ randomly 
hoose a 
rossover point

⊲ 
opy �rst 
hromosome up to the 
rossover point

⊲ 
opy se
ond 
hromosome after the 
rossoverpointSingle 
rossover point example

Parent 1: 1101100100110110
Parent 2: 1111111000011110

Offspring: 1101111000011110

⇑
rossover
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Crossover (
ontinued)

There are other ways how to make 
rossover
◮ multiple 
rossover points: more than one random
rossover point is 
hosen

◮ random 
rossover: randomly sele
t genes fromea
h parent

◮ arithmeti
 
rossover: some arithmeti
 operation isperformed to make a new offspringDifferent types of 
rossovers work better fordifferent problems.
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Crossover for permutation en
oding

◮ 
rossover for permutation 
oding is a littledifferent

◮ Single point 
rossover

⊲ one 
rossover point is sele
ted

⊲ 
opy from the �rst parent to the 
rossover

⊲ then the other parent is s
anned and if thenumber is not yet in the offspring, it is addedExample:

Parent 1: 1 2 3 4 5 6 7 8 9
Parent 2: 4 5 3 6 8 9 7 2 1

Offspring: 1 2 3 4 5 6 8 9 7

⇑
rossover
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Ni
e illustrations of en
oding and 
rossover:

http://cs.felk.cvut.cz/~xobitko/ga/cromu.html
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Mutation

◮ intended to prevent all solutions in the populationfalling into a lo
al optimum (so 
rossover 
an'tes
ape)

◮ randomly 
hanges the offspring
◮ binary en
oding: swit
h a few randomly 
hosen bitsBitwise mutation example
Original offspring: 1101100100110110
Mutated offspring: 1101000100111110
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Mutation for permutation en
oding

◮ as with 
rossover, lots of possibilities

⊲ if a group of bits en
ode a gene, we 
ouldmutate whole genes at ea
h step

⊲ random mutation, but only allow solutions within
reased �tness

◮ for permutation en
oding, need different approa
h

⊲ e.g., swap a randomly 
hosen pairPermutation mutation example

Original offspring: 1 2 3 4 5 6 8 9 7
Mutated offspring: 1 8 3 4 5 6 2 9 7
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Sele
tion algorithms

◮ Roulette Wheel Sele
tion: sele
t randomly basedon �tness fun
tion. Probability of sele
tion of xi is
pi =

f (xi)

∑i∈P f (xi)

◮ Rank Sele
tion: rank the population in order, sothat f (x(1)) ≤ f (x(2)) ≤ ·· · ≤ f (x(N)). The probabilityof sele
tion of x(i) is
pi =

i

∑i∈P i
=

2i
N(N +1)

◮ Elitism: we automati
ally keep the best one fromea
h generation.
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Roulette Wheel Sele
tion

◮ Parents are sele
ted a

ording to their �tness

◮ The better the genotype is, the more 
han
es it hasto be sele
ted

◮ Imagine a roulette wheel where all the genotypes inthe population are pla
ed.

◮ The size of the se
tion in the roulette wheel for anindividual is proportional to its �tness fun
tion

⊲ the bigger the value is, the larger the se
tion is
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Rank Sele
tion

◮ Roulette Wheel Sele
tion has problems when thereare big differen
es in �tness values
⊲ one individual may 
ompletely dominate
⊲ other parents have little 
hange to be sele
ted

◮ Rank sele
tion ranks the population from 1, . . . ,N

⊲ sele
tion with probability determined by ranking

⊲ worst will have probability 2/[N(N +1)]

⊲ best will have probability 2N/[N(N +1)]
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Elitism

◮ 
reate new population by 
rossover and mutation

⊲ parents don't appear in new population

⊲ likely that we will loose the best parent

◮ elitism

⊲ keep a few of the best 
urrent generation

⊲ rest of new population 
onstru
ted as above

◮ elitism 
an rapidly in
rease the performan
e of GA

⊲ prevents a loss of the 
urrent best solution

⊲ algorithm never goes 
ompletely ba
kwards
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TSP example

◮ we 
ould en
ode by putting ze into the 
hromosome
⊲ this doesn't in
lude 
onstraint that we visit ea
h
ity on
e, in a 
ir
uit

⊲ we would have to in
lude this 
onstraint in the�tness fun
tion

⊲ mu
h larger sear
h spa
e
◮ easier en
oding is the permutation en
oding

⊲ gives the order of the 
ities we visit

⊲ automati
ally in
ludes the 
onstraint

◮ if we have N 
ities, the 
hromosome has length N
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TSP exampleMany possible s
hemes

◮ Crossover

⊲ One point

⊲ Two point

⊲ None

◮ Mutation

⊲ Normal random - a few 
ities are 
hosen andex
hanged

⊲ Random, only improving - a few 
ities arerandomly 
hosen and ex
hanged only if theyimprove solution (in
rease �tness)

⊲ None - no mutation
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Travelling salesman problem implementation notes:

http://cs.felk.cvut.cz/~xobitko/ga/tspexample.html
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TSP example

crossover

chromosome=(1 2 5 3 4)

chromosome=(1 2 4 3 5)
chromosome=(1 2 4 5 3)
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m
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TSP example

Web applet illustration:

http://www-cse.uta.edu/%7Ecook/ai1/lectures/applets/gatsp/TSP.html
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Parameters of GAs

◮ 
rossover probability

◮ mutation probability

◮ population size
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Parameters: 
rossover probability

◮ If there is no 
rossover, offspring are exa
t 
opiesof parents

⊲ but this doesn't mean the population is the same

◮ If there is 
rossover, offspring are made fromparts of both parent's genotype (often just one
hromosome)

◮ Crossover is made in hope that new 
hromosomeswill 
ontain good parts of old 
hromosomes andtherefore the new 
hromosomes will be better.However, it is good to leave some part of oldpopulation survive to next generation.

◮ Crossover rate should be high generally, about80%-95% (though it 
an vary)
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Parameters: mutation probability
◮ if there 0% mutation, offspring are generatedimmediately after 
rossover

◮ if mutation probability is 100%, whole 
hromosomeis 
hanged

◮ mutation prevents the GA from falling into lo
alextrema

⊲ similar to simulated annealing
◮ mutation should not o

ur very often, be
ause thenGA will just be a random sear
h.

⊲ mutation rate should be very low. Best ratesseems to be about 0.5%-1%
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Parameters: population size

◮ too small a population there are

⊲ few possibilities to perform 
rossovers

⊲ too small part of sear
h spa
e 
overed

◮ too large a population

⊲ GA slows down

⊲ at some point hit diminishing returns

◮ Good population size is about 20-30, howeversometimes sizes 50-100 are reported as the best

⊲ Some resear
h also shows, that the bestpopulation size depends on the size of
hromosomes, e.g. for 
hromosomes with 32bits, the population should be higher than for
hromosomes with 16 bits.
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Note

◮ even though simulated annealing and geneti
algorithms are 
alled random algorithms they arenot 
ompletely random

◮ it's not just randomly testing solutions
◮ we use a sto
hasti
 pro
ess
◮ however the result is highly non-random
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Pretty example movies

GAs have often been used in generating arti�
ial life

◮ Karl Sims

http://www.genarts.com/karl/evolved-virtual-creatures.html

http://alife.ccp14.ac.uk/ftp-mirror/alife/zooland/pub/

research/ci/Alife/karl-sims/Example of evolved arti�
ial life

◮ Torsten Rei: realisti
 animations of sti
k �gures, byadding �mus
les� to them, and using distan
e walkedas �tness.

http://cognews.com/1060458741/index_htmlExample of evolved arti�
ial lifeExample of evolved arti�
ial lifeExample of evolved arti�
ial life

◮ te
hniques like these used in LoTR animations
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Karl Sims papers:

◮ �Evolving virtual 
reatures�, Pro
eedings of the 21st annual 
onferen
e on Computergraphi
s and intera
tive te
hniques, 1994,

http://portal.acm.org/citation.cfm?id=192167

◮ �Arti�
ial evolution for 
omputer graphi
s�, Pro
eedings of the 18th annual
onferen
e on Computer graphi
s and intera
tive te
hniques, 1991,

http://portal.acm.org/citation.cfm?id=122752
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Other randomized algorithms

There are other randomized algorithms
◮ ants: metaphor is a 
olony of ants (simple agents)running simple rules, to a
hieve highly organized
olle
tive behaviour (also 
alled Swarm Intelligen
e)

http://www.merlotti.com/EngHome/Computing/AntsSim/ants.htm

http://www.codeproject.com/cpp/GeneticandAntAlgorithms.asp

◮ tabu sear
h: iteratively try to �nd solutions to theproblem, but to keep a short list of previously foundsolutions and to avoid 're-�nding' those solutions insubsequent iterations. Basi
ally, if you try asolution, it be
omes tabu in future tries [6℄.
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