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Randomized algorithms:
simulated annealing

It is often the case that we optimize against a
non-convex objective function. In these cases we often
use heuristics such as gradient descent, but they can
become stuck in a local minimum. Simulated annealing
allows our search to "bounce"” out of such a point, by
including some randomization in its search. We present
here the Metropolis algorithm for simulated annealing.
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Star-like networks

m earlier, we considered designing a hub-spoke
(star-like) network

m cost based on link length
m equivalent to Be 0 de and, 0 =0

m as before (e.g. for Prim), this is only
construction costs

m can we include a load based cost a.?
m desigh a star where the costs will be

C(f) = e; Oefe

m set 3. = 0 this time

Communications Network Design: lecture 14 — p.3/31



Star-like networks

m approach: simple case 0. =1

m find the hub node which maximizes the flows
which go-to, or leave from the star, i.e.,

hub = ar pQH”{ %tpq}

m this minimizes the traffic which has to take two
hops

m we can consider all [N| possibilities in O(|N|)
time, with O(|N|) operations per case, so O(|N|?)

m generalizes to 0¢ # congt, by finding the hub node

hub = ar%mln ZV Ol ph q%tpq
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Star-like networks

m no-one designs star-like networks like this
m they do use stars, but not designed as above
meg. WAN
when we decide the “hub”, we put all of our
servers there (e.g. web and email servers)
most traffic in enterprise WANSs is local, or

from client to server
if the servers are put somewhere, the traffic

will go there anyway
so the traffic pattern depends on our design!

®m Broadcast network
traffic all originates at the hub

m for more complex (better) designs, the problem is
NP-hard
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Some problems are too hard

m some problems are two big o solve
m even polynomial time algorithms can run out of

puff
m NP-hard problems are a problem

m rounding errors in computations
m |lead to incorrect or meaningless solutions
m ill-posedness

m sometimes we can't write down the cost
m "T don't know much about art, but I know what I
like"
m we can work out the cost for a solution, but we
don't know what the cost function looks like

m hence we can't exploit problem specifics
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Heuristic methods

m for hard problems we sometimes use heuristics
m for instance, greedy heuristic
® try to reduce cost at each step
m can get stuck in a local minimum
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Random search methods

m allow steps that make cost worse
m normally we always take C(x+ Ax) < C(x)
m random methods sometimes take step Ax such
that C(x+ Ax) > C(X)
m examples
m Simulated annealing today [1, 2]
m Genetic algorithms next lecture

6

global™inimum
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Randomized algorithm

m "divide and conquer” is another approach
m problem needs to separate into subproblems
m requires detailed insight into the problem

m greedy method gets stuck in a local minimum

m clever heuristic might be better, but too
complex, or we don't know enough about the
particulars of the system

= allow some "random moves"”, away from improved
cost

m these might just get us out of the local minimum

m we might just scale that next hill, and go into
the deeper valley
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Notation

m X; is the solution after i iterations

m C(x) is the cost function

X 1— X =AX

m so the cost after i+ 1 steps is given by C(x; + Ax)
m the change in cost is AC = C(x; + Ax) — C(Xj)

m T will refer to "temperature”
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Simulated annealing

Based on an analogy:

m in Statistical Mechanics and Chemistry Annealing is a
process for obtaining low energy states of a solid

m heat a material until it melts
m reduce temperature gradually, (the process has to be
slow enough when near freezing point)
m Temperature reduction too quick
m the system will be out of equilibrium
= flawed crystals in solid (not lowest energy state)
m analogous to a local minimum
m reduce temperature slowly
m substance takes structure with least potential energy
m analogous to optimization (we want least cost)
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Details of the analogy

A simple overview to explain how the annealing works:

An atom in a heat bath is given a small
random displacement, with a resultant
change AE in energy.

If AE <0, accept displacement and
start again

If AE > 0, sometimes accept/ some-
times reject the new displacement on
the basis of some probability measure.

Either reiterate at this temp. or drop
temp.

A solution to the optimisation problem
is changed slightly to give a neighbour-
ing solution, with a change in the cost
function of AC=new cost-old cost

If AC < 0, accept new solution and
start again.

If AC > 0, sometimes accept/ some-
times reject the new solution on the
basis of some probability measure.

Either reiterate at this cost or drop
cost.
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Simulated annealing applications

This sort of method has proved successful in many
applications of Optimisation e.g.

m TSP
m Job Shop Scheduling

m Graph Partitioning
B minimum spanning trees in communications networks

m scheduling of 4th year exams
m efc.
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Simulated annealing components

Components
m description of system: x in a form we can work with
m cost function: C(x)

m random move generator: rearrangement of
existing configuration, to get a neighbouring one.

m annealing schedule: The concept of temperature is
included via a control parameter to simulate the
temperature changes in the annealing process.

m give femperatures T
m length of time at a given temperature

m acceptance function: when should we (randomly)
accept a new solution, given the change in cost
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Acceptance function

A greedy acceptance function looks like

AC < 0 accept
AC > 0 reject

We can rewrite this in terms of probability of
acceptance, P(AC), which in this case would be given by

1. AC<O0
P(AC)_{ 0. AC>0

But we want an acceptance function that will sometimes
allow cost-increasing solutions.
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Acceptance function

Desirable properties for acceptance function:
mP(AC)=1forAC<O

mfor AC >0

m P(AC) should decrease as AC increase
make big increases in cost less likely

m P(AC) should decrease as T decreases
A PO

Temperature Ty

P

AC
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Acceptance function

A commonly used acceptance function
m incorporate the Boltzman factor, derived from
statistical mechanics

—E(x)
eXp< KT >
which describes the relative likelihood of

configurations x with energies E(x)
m k is Boltzman's constant

m use a new acceptance function

1 AC <0
P(AC) ={ =
(AC) {exp(kATC), AC >0

In optimization, the temperature is arbitrary, so we

may omit the constant k
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Acceptance function

Concise way of writing acceptance function

P(AC) = min{l, exp(%AC> }

m incorporate in solution by generating a new
neighbouring solution

m compute the difference in cost AC
m generate a uniform random number p € [0, 1]
m solution is accepted if p < P(AC)
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Example of one step

Minimum Spanning Tree Problem minC(f) = S ocg Oefe

m current solution: a spanning tree

m choose initially tree where parent of node i is
nodei—1

m generate a heighbouring tree by
m adding a link e
m this creates a cycle
m so remove a link to break the cycle
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Example of one step

m randomly generate nodesi,j € {1,...,N} and j #1i
m make sure e= (i, ]) is not already in E
minserte=(i,j) info E

m now choose a random link € from the cycle we have
created

® tree won't become disconnected if we remove a
link from the cycle
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Example of one step

m in example, graph G(N,E), where N={1,2,3,4,5}

m initially E = {(1,2),(2,3),(3,4), (4,5)}
assume it has cost C =425

m randomly generate two nodes, e.g. 1 and 4
e=(1,4) ¢ E so we add the link
now we have a cycle 1—2—3—4—1with 4 links
randomly choose one link from the 3 old links
of the cycle, e.g. the third link (3,4)
remove this link from the tree to get E’

m if C(E') <C(E) accept the new tree, otherwise
given current femperature T = 150
randomly generate p~ U(0,1)
say C(E’) =500, so AC =75
then we would accept E’ if p < e /%150 =0.607
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Annealing schedule

m in the physical analogy, temperature is reduced
slowly over time

m allows system to stay approximately in
equilibrium as the temperature decreases
m we need to do something analogous here

m two methods

= homogeneous: run the above algorithm for a
while, and then reduce the temperature, and
then repeat.

m inhomogeneous: decrease the temperature at
each step.

m also we need a schedule of temperature reductions
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Annealing schedule

Two parts of annealing schedule
m initial temperature

m has to be high enough for "melting"

m varying proposals as to how hot this should be
P(AC) = 0.5 for initial neighbours
P(AC) = 0.8 for initial neighbours
could initially test all neighbours to see what
temperature is needed

m temperature reductions
m could give a table of temperature reductions
® more commonly use geometric decrease
Tiri=af;

where a is usually between [0.75,0.95
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Metropolis algorithm

Idea in Physics/Chemistry [1]
Optimization algorithm first proposed in [2]

m start with random solution x, and temp Tg

m while not "frozen”
mforj=1,...,J
generate a random neighbouring solution
X + AX
find the cost of this solution C(x + Ax), and
the change in cost, e.g. AC = C(x+ Ax) —C(X)
generate a random variable p~U(0,1)

if p<P(AC) =min {1, exp(%AiC) } accept the
solution, i.e. X +— X+ AX
m T =0T
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TSP Example [2]

Travelling Salesman Problem (TSP) from Lecture 12

m state is the z. (do we use link €)

m moves to neighbours by

m reversing the direction in which a part of the
tour is traversed [3]

m this move preserves constraints
m other possibilities exist

m initial T = O(NY2), where moves flow around freely

m in 1983, sim.annealing could (approximately) solve a
6000 node problem

m best exact solution for 318 nodes
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TSP Example

m the above uses a clever move to make sure
constraints remain satisfied by a neighbour

m what if we don't know a “clever move"
m transform the problem to an unconstrained one

m construct an augmented objective function
incorporating any violated constraints as large
penalty functions

e.g. minimize cost C(x) subject to x >0
fransform to
min [C(x) +10° x | (x < 0)]

where | (-) is an indicator function

m solutions which violate the constraints will have
very high cost
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Applet Example

Some nice examples from the web.
http://appsrv. cse. cuhk. edu. hk/ ~csc6200/ y99/ appl et/ SA/ anneal i ng. ht m
http://ww. mat h. uu. nl / peopl e/ beuker s/ anneal / anneal . ht
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Algorithm issues

m initialization
m start with a random solution
m start with a "good" solution, from a heuristic
might be faster
might also get stuck in a local minima
¢ if the femperature doesn't start hot
enough
¢ but if the temperature is hot enough, why
bother?

m if we start with To = 0 we get a greedy algorithm
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Algorithm issues

m homogeneous approach

® how many times should we run the inner-loop
before changing the temperature

® long enough to explore the regions of search
space that should be reasonably populated

m actually might need a bit of trial and error to
get a number
can be problem dependent
large problems have a larger solution space

m fermination
m when T =0 things are "frozen" in place

m or when nothing changes for several outer-loop
Iterations
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Final

Many much more sophisticated modifications of the
approach in the literature, e.g. [4]
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