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This le
ture starts to 
onsider randomized algorithms, in parti
ular simulated annealing.
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Randomized algorithms:

simulated annealing

It is often the 
ase that we optimize against anon-
onvex obje
tive fun
tion. In these 
ases we oftenuse heuristi
s su
h as gradient des
ent, but they 
anbe
ome stu
k in a lo
al minimum. Simulated annealingallows our sear
h to �boun
e� out of su
h a point, byin
luding some randomization in its sear
h. We presenthere the Metropolis algorithm for simulated annealing.
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Star-like networks

◮ earlier, we 
onsidered designing a hub-spoke(star-like) network

⊲ 
ost based on link length

⊲ equivalent to βe ∝ de and, αe = 0

⊲ as before (e.g. for Prim), this is only
onstru
tion 
osts

⊲ 
an we in
lude a load based 
ost αe?

◮ design a star where the 
osts will be

C(f) = ∑
e∈T

αe fe

⊲ set βe = 0 this time
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Star-like networks

◮ approa
h: simple 
ase αe = 1

⊲ �nd the hub node whi
h maximizes the �owswhi
h go-to, or leave from the star, i.e.,

hub = argmin
p∈N

{

∑
q∈N

tpq

}

⊲ this minimizes the traf�
 whi
h has to take twohops

⊲ we 
an 
onsider all |N| possibilities in O(|N|)time, with O(|N|) operations per 
ase, so O(|N|2)

◮ generalizes to αe 6= const, by �nding the hub nodehub = argmin
h∈N

∑
p∈N

αph ∑
q∈N

tpq
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Star-like networks

◮ no-one designs star-like networks like this

⊲ they do use stars, but not designed as above

⊲ e.g. WAN

⋆ when we de
ide the �hub�, we put all of ourservers there (e.g. web and email servers)

⋆ most traf�
 in enterprise WANs is lo
al, orfrom 
lient to server

⋆ if the servers are put somewhere, the traf�
will go there anyway

⋆ so the traf�
 pattern depends on our design!

⊲ Broad
ast network

⋆ traf�
 all originates at the hub

◮ for more 
omplex (better) designs, the problem isNP-hard
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Some problems are too hard
◮ some problems are two big to solve

⊲ even polynomial time algorithms 
an run out ofpuff

⊲ NP-hard problems are a problem
◮ rounding errors in 
omputations

⊲ lead to in
orre
t or meaningless solutions

⊲ ill-posedness
◮ sometimes we 
an't write down the 
ost

⊲ �I don't know mu
h about art, but I know what Ilike�

⊲ we 
an work out the 
ost for a solution, but wedon't know what the 
ost fun
tion looks like

⊲ hen
e we 
an't exploit problem spe
i�
s
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Heuristi
 methods

◮ for hard problems we sometimes use heuristi
s

⊲ for instan
e, greedy heuristi


⊲ try to redu
e 
ost at ea
h step

⊲ 
an get stu
k in a lo
al minimum
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Random sear
h methods

◮ allow steps that make 
ost worse

⊲ normally we always take C(x+∆x)≤C(x)

⊲ random methods sometimes take step ∆x su
hthat C(x+∆x) > C(x)

◮ examples

⊲ Simulated annealing today [1, 2℄
⊲ Geneti
 algorithms next le
ture
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Randomized algorithm

◮ �divide and 
onquer� is another approa
h

⊲ problem needs to separate into subproblems

⊲ requires detailed insight into the problem

◮ greedy method gets stu
k in a lo
al minimum

⊲ 
lever heuristi
 might be better, but too
omplex, or we don't know enough about theparti
ulars of the system

⊲ allow some �random moves�, away from improved
ost

⊲ these might just get us out of the lo
al minimum

⊲ we might just s
ale that next hill, and go intothe deeper valley
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Notation

◮ xi is the solution after i iterations

◮ C(x) is the 
ost fun
tion

◮ xi+1−xi = ∆x

◮ so the 
ost after i+1 steps is given by C(xi +∆x)

◮ the 
hange in 
ost is ∆C = C(xi +∆x)−C(xi)

◮ T will refer to �temperature�
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Simulated annealingBased on an analogy:

◮ in Statisti
al Me
hani
s and Chemistry Annealing is apro
ess for obtaining low energy states of a solid

⊲ heat a material until it melts

⊲ redu
e temperature gradually, (the pro
ess has to beslow enough when near freezing point)

◮ Temperature redu
tion too qui
k

⊲ the system will be out of equilibrium

⊲ �awed 
rystals in solid (not lowest energy state)

⊲ analogous to a lo
al minimum

◮ redu
e temperature slowly

⊲ substan
e takes stru
ture with least potential energy

⊲ analogous to optimization (we want least 
ost)
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More information on simulated annealing 
an be found at:

http://www.cs.sandia.gov/opt/survey/sa.html
http://members.aol.com/btluke/simann1.htm
http://esa.ackleyshack.com/thesis/esthesis7/node14.html
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Details of the analogy

A simple overview to explain how the annealing works:An atom in a heat bath is given a smallrandom displa
ement, with a resultant
hange ∆E in energy. A solution to the optimisation problemis 
hanged slightly to give a neighbour-ing solution, with a 
hange in the 
ostfun
tion of ∆C=new 
ost-old 
ostIf ∆E ≤ 0, a

ept displa
ement andstart again If ∆C ≤ 0, a

ept new solution andstart again.If ∆E > 0, sometimes a

ept/ some-times reje
t the new displa
ement onthe basis of some probability measure. If ∆C > 0, sometimes a

ept/ some-times reje
t the new solution on thebasis of some probability measure.

Either reiterate at this temp. or droptemp. Either reiterate at this 
ost or drop
ost.
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Simulated annealing appli
ations

This sort of method has proved su

essful in manyappli
ations of Optimisation e.g.

◮ TSP

◮ Job Shop S
heduling

◮ Graph Partitioning

◮ minimum spanning trees in 
ommuni
ations networks

◮ s
heduling of 4th year exams

◮ et
.
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Simulated annealing 
omponents

Components

◮ des
ription of system: x in a form we 
an work with
◮ 
ost fun
tion: C(x)

◮ random move generator: rearrangement ofexisting 
on�guration, to get a neighbouring one.

◮ annealing s
hedule: The 
on
ept of temperature isin
luded via a 
ontrol parameter to simulate thetemperature 
hanges in the annealing pro
ess.

⊲ give temperatures T

⊲ length of time at a given temperature

◮ a

eptan
e fun
tion: when should we (randomly)a

ept a new solution, given the 
hange in 
ost
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A

eptan
e fun
tion

A greedy a

eptan
e fun
tion looks like

∆C ≤ 0 a

ept

∆C > 0 reje
tWe 
an rewrite this in terms of probability ofa

eptan
e, P(∆C), whi
h in this 
ase would be given by

P(∆C) =

{

1, ∆C ≤ 0
0, ∆C > 0

But we want an a

eptan
e fun
tion that will sometimesallow 
ost-in
reasing solutions.
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A

eptan
e fun
tion

Desirable properties for a

eptan
e fun
tion:
◮ P(∆C) = 1 for ∆C ≤ 0

◮ for ∆C > 0
⊲ P(∆C) should de
rease as ∆C in
rease

⋆ make big in
reases in 
ost less likely
⊲ P(∆C) should de
rease as T de
reases

C∆

C∆P(    )

Temperature T1

2 1Temperature T < T
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A

eptan
e fun
tionA 
ommonly used a

eptan
e fun
tion

◮ in
orporate the Boltzman fa
tor, derived fromstatisti
al me
hani
s

exp

(

−E(x)

kT

)

whi
h des
ribes the relative likelihood of
on�gurations x with energies E(x)

⊲ k is Boltzman's 
onstant

◮ use a new a

eptan
e fun
tion

P(∆C) =

{

1, ∆C ≤ 0
exp

(

−∆C
kT

)

, ∆C > 0In optimization, the temperature is arbitrary, so wemay omit the 
onstant k
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A

eptan
e fun
tion

Con
ise way of writing a

eptan
e fun
tion
P(∆C) = min

{

1,exp

(

−∆C
T

)}

◮ in
orporate in solution by generating a newneighbouring solution
⊲ 
ompute the differen
e in 
ost ∆C

◮ generate a uniform random number p ∈ [0,1]

◮ solution is a

epted if p < P(∆C)
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Example of one step

Minimum Spanning Tree Problem minC(f) = ∑e∈E αe fe

◮ 
urrent solution: a spanning tree

⊲ 
hoose initially tree where parent of node i isnode i−1

1

2

3
4

5

◮ generate a neighbouring tree by

⊲ adding a link e

⊲ this 
reates a 
y
le

⊲ so remove a link to break the 
y
le
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Example of one step

◮ randomly generate nodes i, j ∈ {1, . . . ,N} and j 6= i

⊲ make sure e = (i, j) is not already in E

⊲ insert e = (i, j) into E

◮ now 
hoose a random link e′ from the 
y
le we have
reated

⊲ tree won't be
ome dis
onne
ted if we remove alink from the 
y
le
1

2

3
4

5
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Example of one step

◮ in example, graph G(N,E), where N = {1,2,3,4,5}
⊲ initially E = {(1,2),(2,3),(3,4),(4,5)}

⋆ assume it has 
ost C = 425
⊲ randomly generate two nodes, e.g. 1 and 4

⋆ e = (1,4) 6∈ E so we add the link

⋆ now we have a 
y
le 1−2−3−4−1 with 4 links

⋆ randomly 
hoose one link from the 3 old linksof the 
y
le, e.g. the third link (3,4)

⋆ remove this link from the tree to get E ′

⊲ if C(E ′) < C(E) a

ept the new tree, otherwise

⋆ given 
urrent temperature T = 150
⋆ randomly generate p∼U(0,1)
⋆ say C(E ′) = 500, so ∆C = 75
⋆ then we would a

ept E ′ if p < e−75/150 = 0.607
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Annealing s
hedule

◮ in the physi
al analogy, temperature is redu
edslowly over time

⊲ allows system to stay approximately inequilibrium as the temperature de
reases
◮ we need to do something analogous here
◮ two methods

⊲ homogeneous: run the above algorithm for awhile, and then redu
e the temperature, andthen repeat.
⊲ inhomogeneous: de
rease the temperature atea
h step.

◮ also we need a s
hedule of temperature redu
tions
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Annealing s
hedule

Two parts of annealing s
hedule

◮ initial temperature

⊲ has to be high enough for �melting�

⊲ varying proposals as to how hot this should be

⋆ P(∆C) = 0.5 for initial neighbours

⋆ P(∆C) = 0.8 for initial neighbours

⋆ 
ould initially test all neighbours to see whattemperature is needed

◮ temperature redu
tions

⊲ 
ould give a table of temperature redu
tions

⊲ more 
ommonly use geometri
 de
rease

Ti+1 = αTiwhere α is usually between [0.75,0.95]
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Metropolis algorithm

Idea in Physi
s/Chemistry [1℄Optimization algorithm �rst proposed in [2℄
◮ start with random solution x, and temp T0

◮ while not �frozen�

⊲ for j = 1, . . . ,J
⋆ generate a random neighbouring solution

x+∆x
⋆ �nd the 
ost of this solution C(x+∆x), andthe 
hange in 
ost, e.g. ∆C = C(x+∆x)−C(x)

⋆ generate a random variable p∼U(0,1)

⋆ if p < P(∆C) = min
{

1,exp
(

−∆C
Ti

)} a

ept thesolution, i.e. x← x+∆x
⊲ Ti+1 = αTi
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TSP Example [2℄

Travelling Salesman Problem (TSP) from Le
ture 12

◮ state is the ze (do we use link e)

◮ moves to neighbours by

⊲ reversing the dire
tion in whi
h a part of thetour is traversed [3℄

⊲ this move preserves 
onstraints

⊲ other possibilities exist

◮ initial T = O(N1/2), where moves �ow around freely

◮ in 1983, sim.annealing 
ould (approximately) solve a6000 node problem

⊲ best exa
t solution for 318 nodes
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TSP Example

◮ the above uses a 
lever move to make sure
onstraints remain satis�ed by a neighbour
◮ what if we don't know a �
lever move�

⊲ transform the problem to an un
onstrained one

⊲ 
onstru
t an augmented obje
tive fun
tionin
orporating any violated 
onstraints as largepenalty fun
tions
⋆ e.g. minimize 
ost C(x) subje
t to x≥ 0
⋆ transform to

min
[

C(x)+106× I(x < 0)
]

where I(·) is an indi
ator fun
tion

⊲ solutions whi
h violate the 
onstraints will havevery high 
ost
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Applet Example

Some ni
e examples from the web.

http://appsrv.cse.cuhk.edu.hk/~csc6200/y99/applet/SA/annealing.html

http://www.math.uu.nl/people/beukers/anneal/anneal.html
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Algorithm issues

◮ initialization

⊲ start with a random solution

⊲ start with a �good� solution, from a heuristi

⋆ might be faster

⋆ might also get stu
k in a lo
al minima
ld if the temperature doesn't start hotenough

ld but if the temperature is hot enough, whybother?
◮ if we start with T0 = 0 we get a greedy algorithm
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Algorithm issues

◮ homogeneous approa
h

⊲ how many times should we run the inner-loopbefore 
hanging the temperature

⊲ long enough to explore the regions of sear
hspa
e that should be reasonably populated

⊲ a
tually might need a bit of trial and error toget a number

⋆ 
an be problem dependent

⋆ large problems have a larger solution spa
e

◮ termination

⊲ when T = 0 things are �frozen� in pla
e

⊲ or when nothing 
hanges for several outer-loopiterations
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FinalMany mu
h more sophisti
ated modi�
ations of theapproa
h in the literature, e.g. [4℄
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