Communications Network Design lecture 14

Matthew Roughan
<matthew.roughan@adelaide.edu.au>

Discipline of Applied Mathematics School of Mathematical Sciences University of Adelaide

May 14, 2009

Communications Network Design: lecture 14 – p.1/31

This lecture starts to consider randomized algorithms, in particular simulated annealing.

Randomized algorithms: simulated annealing

It is often the case that we optimize against a non-convex objective function. In these cases we often use heuristics such as gradient descent, but they can become stuck in a local minimum. Simulated annealing allows our search to "bounce" out of such a point, by including some randomization in its search. We present here the Metropolis algorithm for simulated annealing.

Communications Network Design: lecture 14 – p.2/31

Star-like networks

- earlier, we considered designing a hub-spoke (star-like) network

 - \triangleright equivalent to $\beta_e \propto d_e$ and, $\alpha_e = 0$
 - ▷ as before (e.g. for Prim), this is only construction costs
 - \triangleright can we include a load based cost α_e ?
- ▶ design a star where the costs will be

$$C(\mathbf{f}) = \sum_{e \in T} \alpha_e f_e$$

 \triangleright set $\beta_e = 0$ this time

Communications Network Design: lecture 14 – p.3/31

Star-like networks

- ightharpoonup approach: simple case $lpha_e=1$
 - prime by find the hub node which maximizes the flows which go-to, or leave from the star, i.e.,

$$\mathsf{hub} = \operatorname*{argmin}_{p \in N} \left\{ \sum_{q \in N} t_{pq}
ight\}$$

- this minimizes the traffic which has to take two hops
- \triangleright we can consider all |N| possibilities in O(|N|) time, with O(|N|) operations per case, so $O(|N|^2)$
- ightharpoonup generalizes to $\alpha_e \neq const$, by finding the hub node

$$\mathsf{hub} = \operatorname*{argmin}_{h \in N} \sum_{p \in N} \alpha_{ph} \sum_{q \in N} t_{pq}$$

Communications Network Design: lecture 14 – p.4/31

Star-like networks

- ▶ no-one designs star-like networks like this
 - > they do use stars, but not designed as above
 - - * when we decide the "hub", we put all of our servers there (e.g. web and email servers)
 - * most traffic in enterprise WANs is local, or from client to server
 - * if the servers are put somewhere, the traffic will go there anyway
 - * so the traffic pattern depends on our design!
 - ▶ Broadcast network
 - * traffic all originates at the hub
- ► for more complex (better) designs, the problem is NP-hard

Communications Network Design: lecture 14 – p.5/31

Some problems are too hard

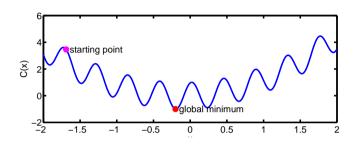
- ▶ some problems are two big to solve
 - even polynomial time algorithms can run out of puff
 - ▶ NP-hard problems are a problem
- ► rounding errors in computations
 - ▶ lead to incorrect or meaningless solutions
- ▶ sometimes we can't write down the cost
 - "I don't know much about art, but I know what I like"
 - we can work out the cost for a solution, but we don't know what the cost function looks like
 - hence we can't exploit problem specifics

Communications Network Design: lecture 14 - p.6/31

Heuristic methods

- ▶ for hard problems we sometimes use heuristics

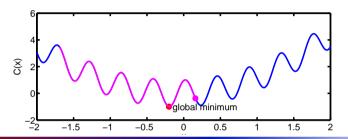
 - $\,\,\,\,\,\,\,\,$ try to reduce cost at each step



Communications Network Design: lecture 14 – p.7/31

Random search methods

- ▶ allow steps that make cost worse
 - \triangleright normally we always take $C(x + \Delta x) \le C(x)$
 - \triangleright random methods sometimes take step Δx such that $C(x+\Delta x)>C(x)$
- ▶ examples
 - ⊳ Simulated annealing today [1, 2]
 - ▶ Genetic algorithms next lecture



Communications Network Design: lecture 14 – p.8/31

Randomized algorithm

- ▶ "divide and conquer" is another approach
 - ▷ problem needs to separate into subproblems
 - > requires detailed insight into the problem
- ▶ greedy method gets stuck in a local minimum
 - clever heuristic might be better, but too complex, or we don't know enough about the particulars of the system
 - allow some "random moves", away from improved cost
 - > these might just get us out of the local minimum
 - we might just scale that next hill, and go into the deeper valley

Communications Network Design: lecture 14 – p.9/31

Notation

- \triangleright \mathbf{x}_i is the solution after *i* iterations
- $ightharpoonup C(\mathbf{x})$ is the cost function
- $\mathbf{x}_{i+1} \mathbf{x}_i = \Delta \mathbf{x}$
- ▶ so the cost after i+1 steps is given by $C(\mathbf{x}_i + \Delta \mathbf{x})$
- ▶ the change in cost is $\Delta C = C(\mathbf{x}_i + \Delta \mathbf{x}) C(\mathbf{x}_i)$
- ► T will refer to "temperature"

Communications Network Design: lecture 14 – p.10/31

Simulated annealing

Based on an analogy:

- ▶ in Statistical Mechanics and Chemistry Annealing is a process for obtaining low energy states of a solid
 - > heat a material until it melts
 - > reduce temperature gradually, (the process has to be slow enough when near freezing point)
- ▶ Temperature reduction too quick
 - > the system will be out of equilibrium

 - > analogous to a local minimum
- ► reduce temperature slowly

 - ▷ analogous to optimization (we want least cost)

Communications Network Design: lecture 14 - p.11/31

More information on simulated annealing can be found at:

http://www.cs.sandia.gov/opt/survey/sa.html http://members.aol.com/btluke/simann1.htm http://esa.ackleyshack.com/thesis/esthesis7/node14.html

Details of the analogy

A simple overview to explain how the annealing works:

An atom in a heat bath is given a small random displacement, with a resultant change ΔE in energy.

If $\Delta E \leq 0$, accept displacement and start again

If $\Delta E > 0$, sometimes accept/ sometimes reject the new displacement on the basis of some probability measure.

Either reiterate at this temp. or drop temp.

A solution to the optimisation problem is changed slightly to give a neighbouring solution, with a change in the cost function of ΔC =new cost-old cost

If $\Delta C \leq 0$, accept new solution and start again.

If $\Delta C>0$, sometimes accept/ sometimes reject the new solution on the basis of some probability measure.

Either reiterate at this cost or drop cost.

Communications Network Design: lecture 14 – p.12/31

Simulated annealing applications

This sort of method has proved successful in many applications of Optimisation e.g.

- ► TSP
- ▶ Job Shop Scheduling
- ► Graph Partitioning
- ▶ minimum spanning trees in communications networks
- ▶ scheduling of 4th year exams
- ▶ etc.

Communications Network Design: lecture 14 - p.13/31

Simulated annealing components

Components

- ▶ description of system: x in a form we can work with
- ightharpoonup cost function: $C(\mathbf{x})$
- ► random move generator: rearrangement of existing configuration, to get a neighbouring one.
- ▶ annealing schedule: The concept of temperature is included via a control parameter to simulate the temperature changes in the annealing process.
 - \triangleright give temperatures T
 - ▷ length of time at a given temperature
- ► acceptance function: when should we (randomly) accept a new solution, given the change in cost

Communications Network Design: lecture 14 - p.14/31

Acceptance function

A greedy acceptance function looks like

$$\Delta C \leq 0$$
 accept $\Delta C > 0$ reject

We can rewrite this in terms of **probability of** acceptance, $P(\Delta C)$, which in this case would be given by

$$P(\Delta C) = \begin{cases} 1, & \Delta C \le 0 \\ 0, & \Delta C > 0 \end{cases}$$

But we want an acceptance function that will sometimes allow cost-increasing solutions.

Communications Network Design: lecture 14 - p.15/31

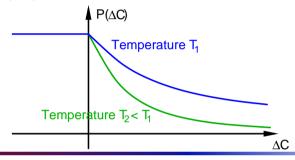
Acceptance function

Desirable properties for acceptance function:

▶
$$P(\Delta C) = 1$$
 for $\Delta C \leq 0$

▶ for
$$\Delta C > 0$$

- $\triangleright P(\Delta C)$ should decrease as ΔC increase \star make big increases in cost less likely
- $\triangleright P(\Delta C)$ should decrease as T decreases



Communications Network Design: lecture 14 – p.16/31

Acceptance function

A commonly used acceptance function

▶ incorporate the Boltzman factor, derived from statistical mechanics

$$\exp\left(\frac{-E(\mathbf{x})}{kT}\right)$$

which describes the relative likelihood of configurations x with energies E(x)

- $\triangleright k$ is Boltzman's constant
- ▶ use a new acceptance function

$$P(\Delta C) = \begin{cases} 1, & \Delta C \le 0 \\ \exp\left(\frac{-\Delta C}{kT}\right), & \Delta C > 0 \end{cases}$$

In optimization, the temperature is arbitrary, so we may omit the constant \boldsymbol{k}

Communications Network Design: lecture 14 - p.17/31

Acceptance function

Concise way of writing acceptance function

$$P(\Delta C) = \min\left\{1, \exp\left(\frac{-\Delta C}{T}\right)\right\}$$

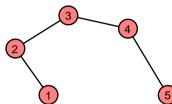
- ▶ incorporate in solution by generating a new neighbouring solution
 - ightharpoonup compute the difference in cost ΔC
- ightharpoonup generate a uniform random number $p \in [0,1]$
- ▶ solution is accepted if $p < P(\Delta C)$

Communications Network Design: lecture 14 – p.18/31

Example of one step

Minimum Spanning Tree Problem $\min C(\mathbf{f}) = \sum_{e \in E} \alpha_e f_e$

- ▶ current solution: a spanning tree
 - \triangleright choose initially tree where parent of node i is node i-1

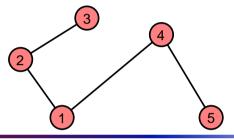


- ▶ generate a neighbouring tree by
 - \triangleright adding a link e
 - > this creates a cycle
 - ▷ so remove a link to break the cycle

Communications Network Design: lecture 14 - p.19/31

Example of one step

- ▶ randomly generate nodes $i, j \in \{1, ..., N\}$ and $j \neq i$
 - ightharpoonup make sure e=(i,j) is not already in E
 - \triangleright insert e = (i, j) into E
- ightharpoonup now choose a random link e' from the cycle we have created
 - > tree won't become disconnected if we remove a link from the cycle



Communications Network Design: lecture 14 – p.20/31

Example of one step

- ▶ in example, graph G(N,E), where $N = \{1,2,3,4,5\}$
 - \triangleright initially $E = \{(1,2), (2,3), (3,4), (4,5)\}$
 - \star assume it has cost C = 425
 - > randomly generate two nodes, e.g. 1 and 4
 - $\star e = (1,4) \notin E$ so we add the link
 - \star now we have a cycle 1-2-3-4-1 with 4 links
 - * randomly choose one link from the 3 old links of the cycle, e.g. the third link (3,4)
 - \star remove this link from the tree to get E'
 - \triangleright if C(E') < C(E) accept the new tree, otherwise
 - \star given current temperature T=150
 - \star randomly generate $p \sim U(0,1)$
 - \star say C(E')=500, so $\Delta C=75$
 - \star then we would accept E' if $p < e^{-75/150} = 0.607$

Communications Network Design: lecture 14 - p.21/31

Annealing schedule

- ▶ in the physical analogy, temperature is reduced slowly over time
 - allows system to stay approximately in equilibrium as the temperature decreases
- ▶ we need to do something analogous here
- ▶ two methods
 - homogeneous: run the above algorithm for a while, and then reduce the temperature, and then repeat.
 - ▶ inhomogeneous: decrease the temperature at each step.
- ▶ also we need a schedule of temperature reductions

Communications Network Design: lecture 14 – p.22/31

Annealing schedule

Two parts of annealing schedule

- ▶ initial temperature
 - b has to be high enough for "melting"
 - > varying proposals as to how hot this should be
 - \star $P(\Delta C) = 0.5$ for initial neighbours
 - \star $P(\Delta C) = 0.8$ for initial neighbours
 - * could initially test all neighbours to see what temperature is needed
- ▶ temperature reductions
 - ▷ could give a table of temperature reductions

$$T_{i+1} = \alpha T_i$$

where α is usually between [0.75, 0.95]

Communications Network Design: lecture 14 - p.23/31

Metropolis algorithm

Idea in Physics/Chemistry [1]
Optimization algorithm first proposed in [2]

- \blacktriangleright start with random solution x, and temp T_0
- ▶ while not "frozen"
 - \triangleright for $j=1,\ldots,J$
 - * generate a random neighbouring solution $\mathbf{x} + \Delta \mathbf{x}$
 - * find the cost of this solution $C(\mathbf{x} + \Delta \mathbf{x})$, and the change in cost, e.g. $\Delta C = C(\mathbf{x} + \Delta \mathbf{x}) C(\mathbf{x})$
 - \star generate a random variable $p \sim U(0,1)$
 - $\star \ \text{ if } p < P(\Delta C) = \min \left\{ 1, \exp \left(\frac{-\Delta C}{T_i} \right) \right\} \text{ accept the solution, i.e. } \mathbf{x} \leftarrow \mathbf{x} + \Delta \mathbf{x}$
 - $\triangleright T_{i+1} = \alpha T_i$

Communications Network Design: lecture 14 - p.24/31

TSP Example [2]

Travelling Salesman Problem (TSP) from Lecture 12

- \blacktriangleright state is the z_e (do we use link e)
- ► moves to neighbours by
 - reversing the direction in which a part of the tour is traversed [3]
 - > this move preserves constraints
 - > other possibilities exist
- ightharpoonup initial $T=O(N^{1/2})$, where moves flow around freely
- ▶ in 1983, sim.annealing could (approximately) solve a 6000 node problem
 - best exact solution for 318 nodes

Communications Network Design: lecture 14 - p.25/31

TSP Example

- ► the above uses a clever move to make sure constraints remain satisfied by a neighbour
- ▶ what if we don't know a "clever move"
 - > transform the problem to an unconstrained one
 - construct an augmented objective function incorporating any violated constraints as large penalty functions
 - \star e.g. minimize cost $C(\mathbf{x})$ subject to $\mathbf{x} \geq 0$
 - * transform to

$$\min \left[C(\mathbf{x}) + 10^6 \times I(\mathbf{x} < 0) \right]$$

where $I(\cdot)$ is an indicator function

> solutions which violate the constraints will have very high cost

Communications Network Design: lecture 14 – p.26/31

Applet Example

Some nice examples from the web.

http://appsrv.cse.cuhk.edu.hk/~csc6200/y99/applet/SA/annealing.html http://www.math.uu.nl/people/beukers/anneal/anneal.html

Communications Network Design: lecture 14 – p.27/31

Algorithm issues

- ▶ initialization
 - > start with a random solution
 - - * might be faster
 - * might also get stuck in a local minima
 - if the temperature doesn't start hot enough
 - but if the temperature is hot enough, why bother?
- ightharpoonup if we start with $T_0=0$ we get a greedy algorithm

Communications Network Design: lecture 14 – p.28/31

Communications Network Design: lecture 14 - p.27/31

Communications Network Design: lecture 14 – p.28/31

Algorithm issues

- ► homogeneous approach
 - before changing the temperature

 - □ actually might need a bit of trial and error to get a number
 - * can be problem dependent
 - * large problems have a larger solution space
- ► termination
 - \triangleright when T=0 things are "frozen" in place
 - > or when nothing changes for several outer-loop iterations

Communications Network Design: lecture 14 – p.29/31

Final

Many much more sophisticated modifications of the approach in the literature, e.g. [4]

Communications Network Design: lecture 14 – p.30/31

Communications Network Design: lecture 14 – p.29/31

Communications Network Design: lecture 14 – p.30/31

References [1] N.Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller, "Equation of state calculations by fast computing machines," J. Chem. Phys., vol. 21, no. 6, pp. 1087-1092, 1953. [2] S. Kirkpatrick, C. D. Gelatt Jr., and M. Vecchi, "Optimization by simulated annealing," Science, vol. 220, pp. 671-680, 1983. [3] S.Lin and B.W.Kernighan, "," Oper.Res., vol. 21, 1973. [4] L. Wang, H. Zhang, and X. Zheng, "Inter-domain routing based on simulated annealing algorithm in optical mesh networks," Opt. Express, vol. 12, pp. 3095-3107, 2004. http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3095. Communications Network Design: lecture 14 - p.31/31