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Bran
h and bound (
ont)The simple bran
h and bound solution shown previously israther naive. It doesn't take advantage of the stru
tureof the problem. We show how bran
h and bound 
an beapplied to the budget 
onstraint model, by showing therelationship with the knapsa
k problem. The usefulresult we get is the Dionne-Florian lower bound, whi
h
an be used in bounding.
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Bran
h and BoundBran
h and bound subsumes many spe
i�
approa
hes, and allows for a variety ofimplementations.partition, sampling, and subsequent lower and upperbounding pro
edures: these operations are appliediteratively to the 
olle
tion of a
tive ('
andidate')subsets within the feasible set DBran
h and bound methods typi
ally rely on some apriori stru
tural knowledge about the problem.
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Budget Constraint Model

(P') min C(f) = ∑
e∈L

αe fes.t. fe = ∑
µ:e∈µ

xµ ∀e∈ E

∑
µ:µ∈Pk

xµ = tk ∀k∈ K

∑
e∈E

βeze ≤ B

xµ ≥ 0 ∀µ∈ P
ze = 0, or 1 ∀e∈ E

ze =

{

1 if link e∈ L (i.e. we use e)

0 if link e 6∈ L (i.e. we don't use e)
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Budget Constraint Model

The 
ost is now C(f) = ∑
e∈L

αe fe = ∑
k∈K

tkl̂k(L) = v(L)

The network design is determined by the 
hoi
e of
L, the links we will use, whi
h in turn determines theroutes and then the link loads, so that the 
ost isreally a fun
tion of L, whi
h we write v(L) here.The 
heapest possible network will have all linkspresent, i.e., v(E) is the lowest 
ostlink 
reation 
osts have been shifted into(budget) 
onstraintany missing links might 
ause rerouting, whi
h
ould in turn in
rease the 
ost
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Budget Constraint Model Bounds
v(E) is the lowest 
ostwhat happens if we remove link e= (i, j)the traf�
 ti, j must be rerouted on a non-dire
troutehen
e, higher 
ost (or at least no lower)take d(i, j) to be the 
ost of rerouting traf�
 ti, jbe
ause link e= (i, j) is removed from the link set

d(i, j) =
[

l̂(i, j)
(

E \ (i, j)
)

−α(i, j)

]

ti, j

So for any link set L ⊆ E,
v(L) ≥ v(E)+ ∑

e/∈L

de
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Budget Constraint Model Bounds
v(L) ≥ v(E)+ ∑

e/∈L

defor feasible networks, i.e. ∑
e∈L

βe ≤ B

thus we 
an get a lower bound on the 
ost of allfeasible networksNote, in B&B on simple LPs, we were �nding upperbounds for maximization from relaxationshere we are �nding minimums (
osts)hen
e we get lower bounds from our relaxationsso the above is doing the right thing for arelaxation
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Budget Constraint Model Bounds
v(L) ≥ v(E)+ ∑

e/∈L

de

= v(E)+ ∑
e∈E

(1−ze)de

≥ v(E)+ ∑
e∈E

de−wfor all feasible solutions L su
h that ∑
e∈L

βe ≤ B and where

w = ∑e∈E dezethe lower bound on v(L) will be smallest when w islargest.we need to look for the maximum value of w, e.g.

max{∑e∈E deze|∑eβeze ≤ B,ze = 0 or 1}
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Budget Constraint Model Bounds

so we have a new IP to solve

max{∑e∈E deze|∑eβeze ≤ B,ze = 0 or 1}this is a knapsa
k problem [1℄we 
an do the standard relaxation to a LP, to getthe problem
LP











maximize wR = ∑e∈E dezesubje
t to ∑eβeze ≤ B
0≤ ze ≤ 1remember that it is a relaxation of the IP, so

wR ≥ wso it is an upper bound on w, and so gives us a lowerbound on v(L)
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Knapsa
k problem

Integral knapsa
k problemwe have a knapsa
k (ba
kpa
k) with �nite volume Bwe want to �t as mu
h useful stuff into it aspossiblemaximize the value of the items 
ontainedea
h item ehas a volume βehas a value deif we in
lude the item, we say ze = 1otherwise ze = 0maximum value is obtained when we �nd

max{∑e∈E deze|∑eβeze ≤ B,ze = 0 or 1}
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Knapsa
k problem

Fra
tional knapsa
k problemas noted earlier, the integral knapsa
k problem isNP-hardso we relax the problem to a linear program
max{∑e∈E deze|∑eβeze ≤ B,0≤ ze ≤ 1}
all this the fra
tional knapsa
k problembe
ause we are allowed to break items up intofra
tions (given by ze)this problem is easier to solve than even many otherLPs [2℄
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Fra
tional knapsa
k solution

rank all links e∈ E in order su
h that
de1

βe1

≥
de2

βe2

≥ . . .
de|E|

βe|E|

de
βe


an be thought of as the unit worth of eremember analogy of de as value, and βe as volume�nd the largest integer k su
h that
k

∑
i=1

βei ≤ B

�ll the knapsa
k with items of most unit worth �rst.until we rea
h kthen we use a fra
tion of the next item
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Fra
tional knapsa
k solution

the solution is

zei =



























1 for i = 1,2. . . ,k

B−
k

∑
i=1

βei

βek+1

for i = k+1

0 for i ≥ k+2


omplexity of the solution is
O(|E| log|E|) for the sorting operationit 
an be done faster by a weighted mediansear
h [1, p.398℄ whi
h takes time O(|E|)
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Dionne-Florian lower boundNow, the lower bound on the 
ost for a feasible design Lwill be

v(L) ≥ v(E)+ ∑
e/∈L

de

= v(E)+ ∑
e∈E

(1−ze)de

= v(E)+
|E|

∑
i=k+2

dei +dek+1

{

1−

[

B−∑k
i=1 βei zei

βek+1

]}

= v(E)+
|E|

∑
i=k+1

dei −
dek+1

βek+1

{

B−
k

∑
i=1

βei zei

}

This is 
alled the Dionne-Florian lower bound
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Bran
h and Bound: setup

Let z̄(m) be a partial solution for z.
z̄(m) is a 0-1 ve
tor of m 
omponents, m≤ |E|Entries z̄(m)

e in z̄(m) give the status of linksalready de
ided in the design being 
onsideredThat is

z̄(m)
e =

{

1 ⇒ link e is in
luded the design

0 ⇒ link e is not in
luded the design
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Bran
h and Bound: setup

Let D(z̄(m)) ⊆ E be the design 
orresponding to z̄(m)it already 
ontains the links 
orresponding tothe 1's of z̄(m)it omits links 
orresponding to the 0's of z̄(m)other links are unde
idedSo D(z̄(m)) ⊆ E and z̄(m)
e = 0,1 for all e∈ D(z̄(m)).Obviously, if e 6∈ D(z̄(m)), then the status of link e hasnot yet been determined, so we need to determine

ze for all e 6∈ D(z̄(m)).This will give a 
ompletion z of z̄(m)
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Bran
h and BoundWe 
an use the D-F lower bound in B&B as follows:we are doing a minimization, so we need alower-bound at ea
h subproblem
al
ulate lower bounds on the 
ost of a design D(z̄)as follows:given z̄, determine a 
ompletion of z̄ using theknapsa
k problem approa
h aboveSuppose for ease of referen
e,
ei 6∈ D(z̄(m)), for i = 1,2, . . . , |E|−mand the ei are listed by de
reasing relative worth.Then a lower bound on the 
ost of D(z̄(m)) is b(z̄(m))
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Bran
h and Bound
b(z̄(m)) =











original
ost withall linksi.e. v(E)











+∑






















hanges in 
ostfor reroutingloads on linksdetermined to NOTbe in the designi.e. z̄(m)
e = 0





















+















dek+1 −
dek+1

βek+1















leftoverbit ofbudget Bfromknapsa
k prob.



























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Bran
h and BoundThe last part 
orresponds to rerouting a fra
tion of loadfrom ek+1 be
ause a fra
tion of the link is �missing� (zek+1is fra
tional!). So

b(z̄(m)) = v(E)+



 ∑
e:z̄(m)

e =0

de+
|E|−m

∑
i=k+2

dei





+

[

dek+1 −

{

B− ∑
e∈D(z̄)

βeze−
k

∑
i=1

βei

}

dek+1

βek+1

]

Then we just apply bran
h and bound as before, usingthis bound.
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Bran
h and Bound outlineIf ∑
e∈E

βe ≤ B, then STOP

the optimal design is the fully meshed network

Otherwise,Initialise:list all links in E in order of de
reasing relativeweights, dei

βei

.
L = IP0;
D(z̄) = /0;best-to-date 
ost C = ∞
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Bran
h and Bound outlineAt any stage: given a list L of partial solutions {z̄} andtheir 
orresponding lower bounds, b(z̄), sele
t one z̄ ∈ Land attempt to fathom it. That is, remove it from L and(a) solve the fra
tional knapsa
k problem and 
omputethe D-F lower-bound b(z̄)If this has an integer feasible part solution, it isfathomed. If the 
ost of the integer solution

C′ < C then this be
omes the best-to-date 
ostand we update C to C′.we 
an prune any solutions with b(z̄) > Cif the solution has lower bound z̄ greater thanthe best-to-date 
ost C, then it is fathomed,and we 
an prune it.if infeasible then it is fathomed
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Bran
h and Bound outline(b) If not fathomed 
onstru
t two new partial solutionsby sele
ting a link e not determined in z̄ and putting(i) z̄e = 1(ii) z̄e = 0Note: Sele
t e in order of de
reasing de/βeContinue until all partial solutions have been fathomed
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Bran
h and Bound example

The network G(N,E) and data for (αe,βe) and offeredtraf�
, tpq (as in Minoux's method example, Le
ture 14)

1,5

1,3

1,6

2,3

2,6

1,3

1,

1,

2,

2,

1,

1,
eβeα ,

1 2Link
costs

4 3

C(f) = ∑
e∈L

ce( fe)

ce( fe) = αe fe+βe

∑eβeze ≤ B = 14

3

2

2

4

4

5
te

1 2Offered
traffic

4 3
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Bran
h and Bound example

Assume all routing is dire
t i.e. fe = tkNow v(E) = ∑eαe fe = 4+3+8+2+10+2= 29Sin
e de =
[

l̂µ(E−e)−αe
]

fe, we have the table:
e= (i, j) αe µ̂i j (E−e) l̂ i j (E−e) de de/βe rank

(1,2) 1 1−4−2 2 (2−1).4 = 4 4/3 1
(1,3) 2 1−4−3 2 (2−2).4 = 0 0 5
(1,4) 1 1−2−4 2 (2−1).3 = 3 3/5 3
(2,3) 2 2−4−3 2 (2−2).5 = 0 0 6
(2,4) 1 2−1−4 2 (2−1).2 = 2 1/3 4
(3,4) 1 3−1−4 3 (3−1).2 = 4 4/3 2

Communications Network Design: lecture 13 – p.24/49



Bran
h and Bound example

Rank all links in order of de
reasing dei

βei

edge
(1,2) (3,4) (1,4) (2,4) (1,3) (2,3)

de 4 4 3 2 0 0

βe 3 3 5 6 6 3

de

βe

4
3

4
3

3
5

1
3

0 0

Table 1We will use Table 1 repeatedly in this example.
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Bran
h and Bound example
∑
e∈E

βe = 26> B = 14, so 
an't just use E

Table 1 lists links in order of de
reasing dei

βeiInitialise:

L = IP0;

D(z̄) = /0;best-to-date 
ost C = ∞
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Bran
h and Bound example

Problem 0: z̄ = ()Knapsa
k problem:
ount a
ross βe row until ∑k
i=1 βei ≤ B and ∑k+1

i=1 βei > B

β12+β34+β14= 11< 14; β12+β34+β14+β24= 17> 14.

k = 3, and z= (1,1,1,1/2,0,0)solution is not integer feasibleD-F lower bound:
b(z̄) = v(E)+ [d13+d23]+ (1− 1

2)d24

= 29+(0+0)+ 1
2.2

= 30
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Bran
h and Bound example

P0 relaxation solution

ze

1/2
1

1

1

0
0

1 2

4 3
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Bran
h and Bound example

Note that b(z̄) > v(E) as expe
ted: if you deletelinks from E, and have to reroute then theoperating 
osts should in
rease.the solution was not integer feasible, so we have tobran
h into two subproblemsP1: z̄ = (1) (we add the 
onstraint z12 = 1)P2: z̄ = (0) (we add the 
onstraint z12 = 0)our list of outstanding subproblems be
omes

L = {P1
,P2

}

Communications Network Design: lecture 13 – p.29/49



Bran
h and Bound example
Rz  =(1,1,1,1/2,0,0)

b(z) = 30P0

z=(1) z=(0)

P1 P2
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Bran
h and Bound example

Problem 1: z̄ = (1)Knapsa
k problem: exa
tly the same as problem 0solution for P0 had z12 = 1, so z̄ = (1) doesn't 
hangethe solution at all

k = 3, and z= (1,1,1,1/2,0,0)solution is not integer feasibleD-F lower bound: b(z̄) = 30 (the same as P0)the solution was not integer feasible, so we have tobran
h into two subproblemsP3: z̄ = (1,1) (we add the 
onstraint z34 = 1)P4: z̄ = (1,0) (we add the 
onstraint z34 = 0)
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Bran
h and Bound example

Problem 2: z̄ = (0)Knapsa
k problem:

β12 is ex
luded, so only 
onsider 
olumns 2-6
ount a
ross βe row until ∑k
i=2 βei ≤ B and ∑k+1

i=2 βei > B

β34+β14+β24 = 14

k = 4, and z= (0,1,1,1,0,0)solution is integer feasible, so it is fathomedD-F lower bound:
b(z̄) = v(E)+d12+(d13+d23)+0.d13

= 29+4+0+0
= 33The 
urrent value C = ∞ > 33 so let C = 33
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Bran
h and Bound example

P2 relaxation solution

ze
1

1

1

0

0
0

1 2

4 3
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Bran
h and Bound example
Rz  =(1,1,1,1/2,0,0)

b(z) = 30P0

Rz  =(1,1,1,1/2,0,0)
b(z) = 30P1

z=(1) z=(0)

z=(1,1) z=(1,0)

Rz  =(0,1,1,1,0,0)
b(z) = 33P2

integer feasible

P4P3 C=33
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Bran
h and Bound example

Problem 3: z̄ = (1,1)Knapsa
k problem: exa
tly the same as problem 0 and 1solution for P0 had z12 = z34 = 1, so z̄ = (1,1) doesn't
hange the solution at all
k = 3, and z= (1,1,1,1/2,0,0)solution is not integer feasibleD-F lower bound: b(z̄) = 30 (the same as P0 and P1)the solution was not integer feasible, so we have tobran
h into two subproblemsP5: z̄ = (1,1,1) (we add the 
onstraint z14 = 1)P6: z̄ = (1,1,0) (we add the 
onstraint z14 = 0)
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Bran
h and Bound example

Problem 4: z̄ = (1,0)Knapsa
k problem:

β12 is de�nitely in
luded and β34 is ex
luded,so only 
onsider 
olumns 3-6,and remainder of B is B−β12 = 11

∑k
i=3 βei ≤ 11 and ∑k+1

i=3 βei > 11

β14+β24 = 11

k = 4, and z= (1,0,1,1,0,0)D-F lower bound:
b(z̄) = v(E)+ [d34+d13+d23]+0

= 29+4 = 33solution is integer feasible, so it is fathomed

b(z̄) is too high to be useful though (already C = 33)
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Bran
h and Bound example

P4 relaxation solution

ze
1

1

0
0

0

1

1 2

4 3Node 3 is NOT 
onne
ted!
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Bran
h and Bound example
Rz  =(1,1,1,1/2,0,0)

b(z) = 30P0

Rz  =(1,1,1,1/2,0,0)
b(z) = 30P1

Rz  =(1,1,1,1/2,0,0)
b(z) = 30P3 Rz  =(1,0,1,1,0,0)

b(z) = 33P4

z=(1) z=(0)

z=(1,1,1) z=(1,1,0)

z=(1,1) z=(1,0)
C=33

b(z) >= C=33

Rz  =(0,1,1,1,0,0)
b(z) = 33P2

integer feasible

unconnected

P5 P6
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Bran
h and Bound example

Problem 5: z̄ = (1,1,1)Knapsa
k problem: exa
tly the same as problem 0,1 and 3solution for P0 had z12 = z34 = z14 = 1, so z̄ = (1,1,1)doesn't 
hange the solution at all
k = 3, and z= (1,1,1,1/2,0,0)solution is not integer feasibleD-F lower bound: b(z̄) = 30 (the same as P0, P1 and P3)the solution was not integer feasible, so we have tobran
h into two subproblemsP7: z̄ = (1,1,1,1) (we add the 
onstraint z24 = 1)P8: z̄ = (1,1,1,0) (we add the 
onstraint z24 = 0)
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Bran
h and Bound example

Problem 6: z̄ = (1,1,0)Knapsa
k problem:

β12,β34 are de�nitely in
luded and β14 is ex
luded,so only 
onsider 
olumns 4-6,and remainder of B is B−β12−β34 = 8

∑k
i=4 βei ≤ 8 and ∑k+1

i=4 βei > 8

β24 = 6 β24+β13 = 12

k = 4, and z= (1,1,0,1,1/3,0)D-F lower bound: b(z̄) = 29+(3+0)+(1−1/3).0= 32solution is not integer feasible, so it is not fathomedwe should bran
h on thislets delay bran
hing for a moment
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Bran
h and Bound example
Rz  =(1,1,1,1/2,0,0)

b(z) = 30P0

Rz  =(1,1,1,1/2,0,0)
b(z) = 30P1

Rz  =(1,1,1,1/2,0,0)
b(z) = 30P3

Rz  =(1,1,1,1/2,0,0)
b(z) = 30P5

Rz  =(1,0,1,1,0,0)
b(z) = 33P4

Rz  =(1,1,0,1,1/3,0)
b(z) = 32P6

z=(1) z=(0)

z=(1,1,1,1)

z=(1,1,1)

z=(1,1,1,0)

z=(1,1,0)

z=(1,1) z=(1,0)
C=33

b(z) >= C=33

Rz  =(0,1,1,1,0,0)
b(z) = 33P2

P7

integer feasible

unconnected

P8
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Bran
h and Bound example

Problem 7: z̄ = (1,1,1,1)Sin
e z̄ = (1,1,1,1), we in
lude the �rst four links, so the
ost will be at least

4

∑
i=1

βei = 3+3+5+6> 14

hen
e there is no feasible solutionhen
e the solution is fathomed
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Bran
h and Bound example

Problem 8: z̄ = (1,1,1,0)Knapsa
k problem:

β12,β34,β14 are de�nitely in
luded and β24 isex
luded,so only 
onsider 
olumns 5-6,and remainder of B is B−β12−β34−β14 = 3

∑k
i=5 βei ≤ 3 and ∑k+1

i=5 βei > 3

β13 = 6 > 3

k = 4, and z= (1,1,1,0,1/2,0)D-F lower bound: b(z̄) = 29+(2+0)+(1−1/2).0= 31solution is not integer feasible, so it is not fathomedwe bran
h on this to get P9 and P10
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Bran
h and Bound example
Rz  =(1,1,1,1/2,0,0)

b(z) = 30P0

Rz  =(1,1,1,1/2,0,0)
b(z) = 30P1

Rz  =(1,1,1,1/2,0,0)
b(z) = 30P3

Rz  =(1,1,1,1/2,0,0)
b(z) = 30P5

Rz  =(1,0,1,1,0,0)
b(z) = 33P4

Rz  =(1,1,0,1,1/3,0)
b(z) = 32P6

Rz  =(1,1,1,0,1/2,0)
b(z) = 31P8

z=(1) z=(0)

z=(1,1,1,0,1)

z=(1,1,1,1)

z=(1,1,1)

z=(1,1,1,0)

z=(1,1,0)

z=(1,1) z=(1,0)

z=(1,1,1,0,0)

C=33

b(z) >= C=33

Rz  =(0,1,1,1,0,0)
b(z) = 33P2

infeasibleP7

P9 P10

integer feasible

unconnected
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Bran
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Problem 9: z̄ = (1,1,1,0,1)Sin
e z̄ = (1,1,1,0,1), so the 
ost will be at least
5

∑
i=1

z̄iβei = 3+3+5+6> 14

hen
e there is no feasible solutionhen
e the solution is fathomed
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Problem 10: z̄ = (1,1,1,0,0)Knapsa
k problem:

β12,β34,β14 are de�nitely in
luded and β24,β13 areex
luded,so only 
onsider 
olumns 6,and remainder of B is B−β12−β34−β14 = 3

β23 = 3

k = 6, and z= (1,1,1,0,0,1)D-F lower bound: b(z̄) = 29+(2+0)+(1−1).d24 = 31solution is integer feasible, so it is fathomedthis gives us a new best bound, so C = 31, (dit
h P2)we 
an prune P6 whi
h has b(z̄) = 32> C
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Rz  =(1,1,1,1/2,0,0)

b(z) = 30P0

Rz  =(1,1,1,1/2,0,0)
b(z) = 30P1

Rz  =(1,1,1,1/2,0,0)
b(z) = 30P3

Rz  =(1,1,1,1/2,0,0)
b(z) = 30P5

Rz  =(1,0,1,1,0,0)
b(z) = 33P4

Rz  =(1,1,0,1,1/3,0)
b(z) = 32P6

Rz  =(1,1,1,0,1/2,0)
b(z) = 31P8

z=(1) z=(0)

z=(1,1,1,0,1)

z=(1,1,1,1)

z=(1,1,1)

z=(1,1,1,0)

z=(1,1,0)

z=(1,1) z=(1,0)

z=(1,1,1,0,0)

b(z) = 31

b(z) > C=31

b(z) >= C=33

Rz  =(0,1,1,1,0,0)
b(z) = 33P2

infeasibleP7

infeasibleP9 P10

integer feasible

integer feasible

unconnected

optimal solution, C=31

Rz  =(1,1,1,0,0,1)
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P10 solution (and �nal solution)

ze
1

00

1

1

1
1 2

4 3

Note this is the same as theresult of Minoux's algorithmInvestment 
ost for thisnetwork expenditure ∑eβe = 14We 
an work out a
tualoperations 
ost (rather thanD-F lower bound)

∑
e

ce( fe) = ∑
e

αe fe = 31

Question: what would happen if I made B = 9?Question: what would happen if I made B = 1000?

Communications Network Design: lecture 13 – p.48/49



References[1℄ B. Korte and J. Vygen, Combinatorial Optimization. Springer, 2000.[2℄ G. Dantzig, �Dis
rete variable extremum problems,� Operations Resear
h, vol. 5,pp. 266�277, 1957.
Communications Network Design: lecture 13 – p.49/49


	
	Branch and Bound
	Budget Constraint Model
	Budget Constraint Model
	Budget Constraint Model Bounds
	Budget Constraint Model Bounds
	Budget Constraint Model Bounds
	Budget Constraint Model Bounds
	Knapsack problem
	Knapsack problem
	Fractional knapsack solution
	Fractional knapsack solution
	Dionne-Florian lower bound
	Branch and Bound: setup
	Branch and Bound: setup
	Branch and Bound
	Branch and Bound
	Branch and Bound
	Branch and Bound outline
	Branch and Bound outline
	Branch and Bound outline
	Branch and Bound example
	Branch and Bound example
	Branch and Bound example
	Branch and Bound example
	Branch and Bound example
	Branch and Bound example
	Branch and Bound example
	Branch and Bound example
	Branch and Bound example
	Branch and Bound example
	Branch and Bound example
	Branch and Bound example
	Branch and Bound example
	Branch and Bound example
	Branch and Bound example
	Branch and Bound example
	Branch and Bound example
	Branch and Bound example
	Branch and Bound example
	Branch and Bound example
	Branch and Bound example
	Branch and Bound example
	Branch and Bound example
	Branch and Bound example
	Branch and Bound example
	Branch and Bound example
	

