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Branch and bound (cont)

The simple branch and bound solution shown previously is
rather naive. It doesn't take advantage of the structure
of the problem. We show how branch and bound can be
applied to the budget constraint model, by showing the
relationship with the knapsack problem. The useful
result we get is the Dionne-Florian lower bound, which
can be used in bounding.

Communications Network Design: lecture 13 — p.2/49

The lecture continues the discussion of branch and bound by showing how it may be applied
to the budget constraint model.
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Branch and Bound

» Branch and bound subsumes many specific
approaches, and allows for a variety of
implementations.

» partition, sampling, and subsequent lower and upper
bounding procedures: these operations are applied
iteratively to the collection of active (‘candidate’)
subsets within the feasible set D

» Branch and bound methods typically rely on some a
priori structural knowledge about the problem.
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Budget Constraint Model

(P) min C(f) :Elaefe

s.t. fe =5 x VecE
==t
Xy =1 Vke K
Wwpe
eZe <B
eZEB
Xy >0 YueP

Z =0,0orl VecE

_J 1 iflinkeelL (i.e. weuse€)
] 0 iflinke¢L (i.e. we don't use €)
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Budget Constraint Model

The cost is now C(f) = Zaefe = 3 k(L) = v(L)
ec kekK

» The network design is determined by the choice of
L, the links we will use, which in turn determines the
routes and then the link loads, so that the cost is
really a function of L, which we write v(L) here.

» The cheapest possible network will have all links
present, i.e., V(E) is the lowest cost

> link creation costs have been shifted into
(budget) constraint

> any missing links might cause rerouting, which
could in turn increase the cost
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Budget Constraint Model Bounds

» V(E) is the lowest cost

» what happens if we remove link e= (i, )

> the traffic t; j must be rerouted on a non-direct
route

> hence, higher cost (or at least no lower)
> take d j) To be the cost of rerouting traffic t; |
because link e= (i, j) is removed from the link set

o = [l (EVED) a1

» So for any link set L CE,

V(L) =V(E)+ 5 de
ezl

Communications Network Design: lecture 13 — p.6/49

Although L = E is the cheapest (operational) cost network, it may not satisfy the budget
constraints, so it is not a feasible design. Our goal is to find the minimum cost, feasible
network.
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Note that we don’t have equality in

(L) > Vv(E) +; de
L

because when we remove a second link (and so on) we may also end up rerouting indirect
traffic as well as tj j for (i,j) = e

Note also that
E\ (i, j) = { all possible links except the link (i, j)}

and that IA(i,j)(L) is the length of the shortest path from i to j in the network with links L.

Communications Network Design: lecture 13 — p.6/49




Budget Constraint Model Bounds

V(L) = V(E)+ 5 de
ezl
for feasible networks, i.e. ZBe <B
ec

» thus we can get a lower bound on the cost of all
feasible networks

» Note, in B&B on simple LPs, we were finding upper
bounds for maximization from relaxations
> here we are finding minimums (costs)
> hence we get lower bounds from our relaxations

> so the above is doing the right thing for a
relaxation
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Budget Constraint Model Bounds

v(L) > v(E)%—;de
efL
= V(E)+ Z;(l_ze)de
> v(E)+e§Ede—w

for all feasible solutions L such that § Be < B and where

W =73 eck UeZe e
» the lower bound on v(L) will be smallest when w is
largest.

» we need to look for the maximum value of w, e.g.
MaX{y ecg deZe| 5 e BeZe < B,Ze =0 or 1}
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Remember that
dij) = {r(i,j) (E\(i7j)> 7G(i7j):| tij
or more simply
de = [le(E\ €) — 0] &

where k= (i, j) =e. We can compute the d. at the start of our problem simply by removing
each link from the network, and calculating shortest paths through the reduced network.
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Budget Constraint Model Bounds

» so we have a new IP to solve
Max{y ecg deZe| 5 eBeZe < B,Ze=0or 1}

» this is a knapsack problem [1]

» we can do the standard relaxation to a LP, to get
the problem

maximize WR= Y. pdeze
LP< subject to YeBeze <B
0<z<1

» remember that it is a relaxation of the IP, so
wR > w
so it is an upper bound on w, and so gives us a lower
bound on v(L)
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Knapsack problem

Integral knapsack problem
» we have a knapsack (backpack) with finite volume B

» we want to fit as much useful stuff into it as
possible

> maximize the value of the items contained
» eachiteme

> has a volume Be

> has a value de
» if we include the item, we say zz=1

> otherwise zz=0

» maximum value is obtained when we find
MaxX{y ecg deZe| S e BeZe < B,Ze =0 or 1}
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For more on the knapsack problem see

http://en.w ki pedi a. org/ wi ki / Knapsack_pr obl em

http://mat. gsia.cmu. edu/ orcl ass/ i nt eger/ node6. ht m

http://wwv. ifors.ns.uninelb. edu. au/tutorial/knapsack/index. htm
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http://en.wikipedia.org/wiki/Knapsack_problem
http://mat.gsia.cmu.edu/orclass/integer/node6.html
http://www.ifors.ms.unimelb.edu.au/tutorial/knapsack/index.html

Knapsack problem

Fractional knapsack problem

» as noted earlier, the integral knapsack problem is
NP-hard

» so we relax the problem to a linear program
MaxX{ ¥ ece JeZe| S eBeZe < B,0< 2 < 1}
» call this the fractional knapsack problem
> because we are allowed to break items up into
fractions (given by z)

» this problem is easier to solve than even many other
LPs [2]
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Fractional knapsack solution

» rank all links e€ E in order such that
do O, e

Bel B Bez - BE\E|
£ can be thought of as the unit worth of e

>
> remember analogy of d. as value, and B¢ as volume
» find the largest integer k such that

S

» fill the knapsack with items of most unit worth first.
> until we reach k
> then we use a fraction of the next item
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Fractional knapsack solution

» the solution is

(

1 fori=12...k
k
_ ) B=>Be
Zg = .
S+1
0 fori>k+2

\
» complexity of the solution is
> O(|E|log|E|) for the sorting operation

» it can be done faster by a weighted median
search [1, p.398] which takes time O(|E|)
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Dionne-Florian lower bound

Now, the lower bound on the cost for a feasible design L
will be

V(L) = V(E)+ ) de
efl
= V(E)+ Z;(l_ze)de
_ < B— 5 1BeZ
SO 3 v i [P

E IE‘d decs | g k
SO 3 e e e

This is called the Dionne-Florian lower bound
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Branch and Bound: setup

» Let Z™M be a partial solution for z.
> Z™ is a 0-1 vector of m components, m< |E|

> Entries Z" in Z™ give the status of links
already decided in the design being considered

> That is

~m _ J 1 = link eis included the design
~ | 0 = link eis not included the design
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Branch and Bound: setup

» Let D(Z™) C E be the design corresponding to z™
> it already contains the links corresponding to
the 1's of Z™
> it omits links corresponding to the O's of Z™
> other links are undecided

» SoD(Z™)CE and Z" = 0,1 for all ec D(Z™).

» Obviously, if e¢Z D(zZ™), then the status of link e has
not yet been determined, so we need to determine
. for all e¢ D(ZM).

» This will give a completion z of Z™
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Branch and Bound

We can use the D-F lower bound in B&B as follows:

» we are doing a minimization, so we need a
lower-bound at each subproblem

» calculate lower bounds on the cost of a design D(2)
as follows:

> given z, determine a completion of z using the
knapsack problem approach above

» Suppose for ease of reference,
e ¢DZ™), fori=1,2,...,|E/—m

and the g are listed by decreasing relative worth.
Then a lower bound on the cost of D(Z™) is b(z™)
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Branch and Bound

[ changes in cost |
original for rerouting
cost with N loads on links
all links | "2 | determined to NOT
i.e. V(E) be in the design
b(z™) = ie. 2" =0
“leftover )
q bit of
+ | dgy, — 2 budget B
BQ<+1 fr'om
| knapsack prob. |

Communications Network Design: lecture 13 — p.18/49

Communications Network Design: lecture 13 — p.17/49

Communications Network Design: lecture 13 — p.18/49




Branch and Bound

The last part corresponds to rerouting a fraction of load
from ec.1 because a fraction of the link is "missing" (z,.,
is fractional!). So

i—k1-2

< dek+l
de.., — {B— eeg@ Beze — ;Ba } gﬂ]

Then we just apply branch and bound as before, using
this bound.

|[E|—m
ezm—0

_|_
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Branch and Bound outline

If Z; Be < B, then STOP
ec

» the optimal design is the fully meshed network

Otherwise,
Initialise:
» list all links in E in order of decreasing relative
weights, d—a.
Be
» L=TIP"
» D(2)=0;

» best-to-date cost C =
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Branch and Bound outline

At any stage: given alist L of partial solutions {z} and
their corresponding lower bounds, b(z), select one z€ L
and attempt to fathom it. That is, remove it from £ and
(a) solve the fractional knapsack problem and compute
the D-F lower-bound b(z)
» If this has an integer feasible part solution, it is
fathomed. If the cost of the integer solution

C' < C then this becomes the best-to-date cost
and we update C to C.

> we can prune any solutions with b(z) >C
» if the solution has lower bound z greater than

the best-to-date cost C, then it is fathomed,
and we can prune it.

» if infeasible then it is fathomed
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Branch and Bound outline

(b) If not fathomed construct two new partial solutions
by selecting a link e not determined in z and putting
(i) =1
(i)z=0
Note: Select ein order of decreasing de/Pe

Continue until all partial solutions have been fathomed
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Branch and Bound example

The network G(N,E) and data for (ae,Be) and of fered
traffic, tyq (as in Minoux's method example, Lecture 14)

Link 13

costs v

Oe, Be 4
23 Offered

a ’ trtelffic v 5
Clf) = 3 elfo

Ce( fe) = defe+Be
SoBeze <B=14
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Branch and Bound example

» Assume all routing is direct i.e. fo =t
» Now V(E) = S.0efe=4+3+8+2+10+2=29

» Since de = [Iu(E —€) —a¢] fe, we have the table:

e=(i,j) |ae|[ij(E—e) | lij(E—e) de de/Be | rank
(1,2) | 1]1-4-2 2 |(2-1.4=4]4/3] 1
(1L,3) |2]1-4-3 2 |(2-2.4=0] 0 | 5
(1,4) |1|1-2-4 2 |(2-1).3=3| 3/5| 3
(23) | 2| 2-4-3 2 |(2-2)5=0| 0 | 6
(24) |1|2-1-4 2  |(2-1).2=2| 1/3| 4
(34) |1|3-1-4 3 |(3-1).2=4| 4/3 | 2

Communications Network Design: lecture 13 — p.24/49

Communications Network Design: lecture 13 — p.23/49

Communications Network Design: lecture 13 — p.24/49




Branch and Bound example

Rank all links in order of decreasing g—e‘
€

edge
(1,2) (34) (1,4) (24) (1.3) (23)
de 3 2 0
Be| 3 3 5 6 6 3
de | 4 4 3 1
— | = = — = 0 0
Be| 3 3 5 3
Table 1

We will use Table 1 repeatedly in this example.
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Branch and Bound example

Z;Be = 26> B =14, so can't just use E
ec

Table 1 lists links in order of decreasing g—a
Initialise: )
> £—=TIP%
» D(z)=0;
» best-to-date cost C =
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Branch and Bound example

Problem 0: z= ()
Knapsack problem:

» count across B row until ¥ ,B, <Band 1B, >B

Bio+Baa+Pra=11< 14, B2+ PBsa+PratPa=17> 14
» k=3,and z=(1,1,1,1/2,0,0)
» solution is not integer feasible
D-F lower bound:

b(Z) =V(E)+ [dia+dog + (1 —3)dos
=29+ (0+0)+3.2
=30
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Branch and Bound example

PO relaxation solution

O——0

@—O
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Branch and Bound example

» Note that b(z) > v(E) as expected: if you delete
links from E, and have to reroute then the
operating costs should increase.

» the solution was not integer feasible, so we have to
branch into two subproblems
> Pl Z= (1) (we add the constraint z;, = 1)
> P2 Z= (0) (we add the constraint z, = 0)
» our list of outstanding subproblems becomes
£={P'P}
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Branch and Bound example

0 zR=(1,1,1,1/2,0,0
s

7=(1) / \z:(o)
2

& J[°
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Branch and Bound example

Problem 1: z= (1)
Knapsack problem: exactly the same as problem O

» solution for P° had z, =1, so Z= (1) doesn't change
the solution at all

» k=3,and z=(1,1,1,1/2,0,0)
» solution is not integer feasible
D-F lower bound: b(z) =30 (the same as P°)

» the solution was not integer feasible, so we have to
branch into two subproblems

> P3: Z=(1,1) (we add the constraint zz;, = 1)
> P% Z=(1,0) (we add the constraint z34 = 0)
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Branch and Bound example

Problem 2: z=(0)
Knapsack problem:

» P12 is excluded, so only consider columns 2-6

» count across B row until ¥ ,B, <Band K13, >B
Bas+PBra+Bosa= 14

» k=4,and z=(0,1,1,1,0,0)

» solution is intfeger feasible, so it is fathomed
D-F lower bound:

b(z) =V(E)+di2+ (d13+ d23) +0.d13
=29+4+4+0+0
=33
The current value C =« > 3350 let C =33
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Branch and Bound example

P2 relaxation solution
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Branch and Bound example

0 zR=(1,1,1,1/2,0,0
e

=)  \Z=(0)

1 zR=(1,1,1,1/2,0,0 R=(0,1,1,1,0,0
[Plipettwee) ERiE R

z:(1,1/ \22(170) integgr_?gsible
> J (¢ _
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Branch and Bound example Branch and Bound example

Problem 3: z=(1,1)

Problem 4: z=(1,0)
Knapsack problem: exactly the same as problem O and 1 Knapsack problem:
» P12 is definitely included and Bz4 is excluded,

> so only consider columns 3-6,

» solution for P® had z1, = 734 =1, so z= (1,1) doesn't
change the solution at all

> k=3, and z= (1,1,1,1/2,0,0) i and r‘emamder'kol‘ BisB-—B=11
solution is not integer feasible > isPa = 1land 5% B > 11
> SO
9 Bra+Poa=11
D-F lower bound: b(z) =30 (the same as P° and P') » k=4, and z= (1,0,1,1,0,0)
» the solution was not integer feasible, so we have to D-F lower bound:
branch into two subproblems b(z) =V(E)+[dss+diz+da3+0
> P% Z=(1,1,1) (we add the constraint zj4 = 1) =29+4=33

> P8 z=(1,1,0) (we add the constraint z;4 = 0) » solution is integer feasible, so it is fathomed

» b(zZ) is too high to be useful though (already C = 33)

Communications Network Design: lecture 13 — p.35/49

Communications Network Design: lecture 13 — p.36/49

Communications Network Design: lecture 13 — p.35/49

Communications Network Design: lecture 13 — p.36/49



Branch and Bound example

P relaxation solution

Node 3 is NOT connected!
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Branch and Bound example

0 zR=(1,1,1,1/2,0,0
e

=)  \Z=(0)

1 zR=(1,1,1,1/2,0,0 R=(0,1,1,1,0,0
[Plipettwee) ERiE R

=007 N\az=(1,0) integer feasible

C=33
R=(1,1,1,1/2,0,0 R=(1,0,1,1,0,0
[Pt
=117 NZ=(1.1,0) uncbo(%nfftgg%

& J [~
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Branch and Bound example

Problem 5: z=(1,1,1)
Knapsack problem: exactly the same as problem 0,1 and 3

» solution for P had zio =734 =214=1,50z=(1,1,1)
doesn't change the solution at all

» k=3,and z= (1,1,1,1/2,0,0)
» solution is not integer feasible
D-F lower bound: b(z) =30 (the same as P°, P! and P3)

» the solution was not integer feasible, so we have to
branch into two subproblems
> Pt Z=(1,1,1,1) (we add the constraint z4 = 1)

> P8: Z=(1,1,1,0) (we add the constraint z4 = 0)
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Branch and Bound example

Problem 6: z= (1,1,0)
Knapsack problem:
» 12,34 are definitely included and P14 is excluded,
> so only consider columns 4-6,
> and remainder of B is B— BlZ— [334 =8
> Yi4Be <8and 3% B: > 8
B2a=6  Pasa+Piz=12
» k=4,and z=(1,1,0,1,1/3,0)
D-F lower bound: b(z) =29+ (3+0)+(1—-1/3).0=32
» solution is not integer feasible, so it is not fathomed
» we should branch on this

» lets delay branching for a moment
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Branch and Bound example

0 zR=(1,1,1,1/2,0,0
S )

=(1)”  \Z=(0)

[Pl ZR:(1,1,1,1/2,0,0)] [pz tz)'(*;)(g,%g,l,0,0) ]

b(z) = 30
2:(1,1M/ \2:(1,0) integer feasible
[ps zR:(1,1,1,1/2,o,0)] [pA 7R=(1,0,1,1,0,0) ] C=33
b(z) = 30 b(z) = 33

2:(1,1,1)4/ \2:(1,1,0) unconnected

R=(1.1,1.1/2,0,0)) (6 2R=(1,1,0.1,1/3.0) (z) >= C=33
z™=(1,1,1, A0 zR=(1,1,0,1, ’
[Psb(mso ][P ok ]

[ 72:(1,1,1,1)/] [8\;:(1,1,1,0) PR
P P
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Branch and Bound example

Problem 7: z=(1,1,1,1)

Since z= (1,1,1,1), we include the first four links, so the
cost will be at least

4
ZBQ —=3+3+5+6>14
i=

» hence there is no feasible solution
» hence the solution is fathomed
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Branch and Bound example

Problem 8: z=(1,1,1,0)
Knapsack problem:

» [i2,B34, P14 are definitely included and By is
excluded,

> so only consider columns 5-6,
> and remainder of B is B— [312— [334— [314 =3
> i sBe <3and 3 %iBe >3

Biz=6>3
» k=4,andz=(1,1,1,0,1/2,0)
D-F lower bound: b(z) =29+ (2+0)+(1-1/2).0=31
» solution is not integer feasible, so it is not fathomed
» we branch on this to get P° and P*°
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Branch and Bound example

0 zR=(1,1,1,1/2,0,0
e

=)  \Z=(0)
1 zR=(1,1,1,1/2,0,0 R=(0,1,1,1,0,0
[P 25tig 1209 [P g0 La100) |
7=(1 1)!/ \2:(1 0) integer feasible
’ : C=33
R=(1,1,1,1/2,0,0 R=(1,0,1,1,0,0
[Pt (el

7=(1,1.14” 7=(1,1,0) unconnected. ,
[p5 zR:(l,1,1,1/2,0,0)] [PG zR=(1,1,o,1,1/3,0)J
b(z) = 30 b@) =32

7=(1,1,11)«”7  Saz=(1,1,1,0)

%'A ,,,,,,,,,,,,,,,,
7 infeasible zR=(1,1,1,0,1/2,0
G ] [P gatorzo)
7=(1,1,1,0,1)4” 7=(1,1,1,0,0)

F P
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Branch and Bound example

Problem 9: z=(1,1,1,0,1)
Since z=(1,1,1,0,1), so the cost will be at least

5
=

» hence there is no feasible solution
» hence the solution is fathomed
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Branch and Bound example

Problem 10: z=(1,1,1,0,0)
Knapsack problem:

» [Bi2,B34, P14 are definitely included and B4, P13 are
excluded,

> so only consider columns 6,

> and remainder of B is B— [312— [334— B14 =3
> B3=3

» k=6,and z=(1,1,1,0,0,1)
D-F lower bound: b(z) =29+ (24 0)+ (1 —1).dp4= 31
» solution is integer feasible, so it is fathomed
» this gives us a hew best bound, so C = 31, (ditch P?)
» we can prune P® which has b(z) =32>C
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Branch and Bound example

0 zR=(1,1,1,1/2,0,0
[P gdigv200)]

=(1)”  \Z=(0)

1 zR=(1,1,1,1/2,0,0 R=(0,1,1,1,0,0
[P 25tia 1200 [P e Lato0 |

7=(1,1”  Naz=(1,0) _ integer feasible

[P agEa?>o0) (P5eeeo )

2:(1,1,1)4/ \z:(1,1,0) uncbonnected

R=(1.1,1,1/2,0,0)| P8 zR=(1,1,0,1,1/3.,0) (z) >=C=33
[P L3200 (PP =11011730))

=111« Saz=(1,1,1,0) b(z) > C=31

[p7 infeasible ] [p8 E?;)(i,%f,O,l/ZO)]

7=(1,1,1,0047  N\z=(1,1,1,0,0)
9 infeasible 10 zR=(1,1,1,0,0,1
z ] [P gtaioon)
integer feasible
optimal solution, C=31
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Branch and Bound example

P10 solution (and final solution)

» Note this is the same as the
result of Minoux’s algorithm

» Investment cost for this
network expenditure S .B. =14

» We can work out actual
operations cost (rather than

D-F lower bound)
zce(fe) = Zaefe: 31

» Question: what would happen if I made B =9?
» Question: what would happen if T made B = 100
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