Communications Network Design lecture 11

Matthew Roughan

<matthew.roughan@adelaide.edu.au>

Discipline of Applied Mathematics School of Mathematical Sciences University of Adelaide

March 23, 2009

Multicommodity flow problems

In this section we consider a special case of the network design with linear separable costs, but note that this is still NP-hard, so we need a heursitic solution. The first we try is Minoux's greedy method.

Notation recap

Mostly as before

- A network is a graph G(N,E), with nodes $N = \{1,2,...n\}$ and links $E \subseteq N \times N$
- Offered traffic between O-D pair (p,q) is t_{pq}
- lacksquare The set of all paths in G(N,E) is $P=\cup_{[p,q]\in K}P_{pq}$
- **Each** link $e \in E$ has
 - \blacksquare a capacity, denoted by $r_e(\ge 0)$
 - lacksquare a distance $d_e(\geq 0)$
 - \blacksquare a load $f_e(\geq 0)$
- The vector $\mathbf{x} = (x_{\mu} : \mu \in P)$ is called the routing

$$f_e = \sum_{\mu \in P: e \in \mu} x_{\mu}$$

A simplified problem

- There are some interesting special cases of the minimum cost, multicommodity flow problem, which we now consider.
 - lets us start a little simpler
 - similar to earlier presentation
- choose capacities to carry required loads with overhead
 - $ightharpoonup r_e = \gamma f_e$ for some $\gamma > 1$
- separable linear cost model (with two components)
 - lacksquare a fixed cost for provision of the link eta_e
 - \blacksquare a cost proportional to the capacity r_e (i.e. $\alpha_e f_e$)
 - \blacksquare distances come in through β_e and α_e

Separable linear cost model

$$c_e(f_e) = \left\{ egin{array}{ll} 0 & ext{if } f_e = 0 \ eta_e + lpha_e f_e & ext{if } f_e > 0 \end{array}
ight.$$

Note that $C(\mathbf{f}) = \sum_{e:f_e>0} (\beta_e + \alpha_e f_e)$ is concave:

Complete topology

For a given node set N, the completely connected topology has

$$|E| = \frac{|N|(|N|-1)}{2}$$

possible links and $2^{|E|}$ possible networks.

Only those links with $f_e > 0$ will be included in the final design, so put

$$L(\mathbf{f}) = \{ e \in E : f_e > 0 \}$$

 $L(\mathbf{f})$ is the set of links used in the network design.

Problem formulation

Formal optimization problem

(P) min.
$$C(\mathbf{f}) = \sum_{e \in L(\mathbf{f})} (\beta_e + \alpha_e f_e)$$
s.t. $f_e = \sum_{\mu \in P: e \in \mu} x_\mu \qquad \forall e \in E.$
 $x_\mu \geq 0 \qquad \forall \mu \in P$
 $\sum_{\mu \in P_k} x_\mu = t_k \qquad \forall k \in K$

where $\beta_e, \alpha_e, t_k, N$ are all givens, and the link capacities will be $r_e = \gamma f_e$.

An aside

Recall (from SPF routing) that

$$\sum_{e} \alpha_{e} f_{e} = \sum_{e} \alpha_{e} \left(\sum_{\mu \in P: e \in \mu} x_{\mu} \right)$$

$$= \sum_{\mu \in P: e \in \mu} \left(\sum_{e \in \mu} \alpha_{e} \right) x_{\mu}$$

$$= \sum_{\mu \in P} l_{\mu} x_{\mu}$$

where $l_{\mu} = \sum_{e \in \mu} lpha_e$ is the length of path μ , so

$$C(\mathbf{f}) = \sum_{e \in L(\mathbf{f})} (\beta_e + \alpha_e f_e) = \sum_{e \in L(\mathbf{f})} \beta_e + \sum_{\mu \in P} l_{\mu}(L(\mathbf{f})) x_{\mu}$$

Simplification

For a given set of links L, we can solve this problem by routing the traffic t_{pq} on a shortest path in the network which has link set L, for all O-D pairs, $k \in K$. So

$$C(\mathbf{f}) = \sum_{k \in K} \hat{l}_k(L)t_k + \sum_{e \in L} \beta_e = v(L)$$

where $\hat{l}_k(L)$ represents the length of the shortest path for O-D pair k, in the network with link set L.

- lacktriangle cost of the network only depends on the choice of L
- becomes integer programming problem: choose which links to include or exclude
- always using SPF routing (linear cost is also convex)

Heuristic Methods

Problem we wish to solve is minimise $\{v(L): L \subseteq E\}$ Decision variables

$$z_e = \begin{cases} 1 & \text{if link } e \in L \text{ (i.e. we use } e) \\ 0 & \text{if link } e \notin L \text{ (i.e. we don't use } e) \end{cases}$$

- difficult problem
 - each link can be in one of two states
 - lacktriangle there are $2^{|E|}$ possible choices for L
 - NP-hard (see travelling salesman problem)
- \blacksquare NP-hard \Rightarrow heuristic methods
 - Minoux's greedy method [1]
 - branch and bound (next lectures)

Greedy Methods

heuristic = a rule of thumb (unprovable, but reasonable)
Greedy heuristic

- at each step we make the best choice
 - don't ever go back
- e.g. Dijkstra, Minoux's greedy method
- advantage
 - generally pretty simple
- disadvantage
 - doesn't reach true optimum in many cases
 - results are still sometimes quite good
 - Dijkstra does find an optimum

Minoux's Greedy Method

- (a) Initialise: k=0, $L^{(0)}=E$, and $\mathbf{f}^{(0)}$ is the initial load
- (b) For each link $e=(i,j)\in L^{(k)}$ such that $f_e^{(k)}>0$,
 - lacktriangle determine $\hat{l}_{\mu_{ij}}(L-e)$, the length of the shortest path μ_{ij} from i to j, in the network with link e removed from L
 - lacksquare compute $\Delta_e = \hat{l}_{\mu_{ij}}(L-e)f_e^{(k)} (\alpha_e f_e^{(k)} + eta_e)$
 - Δ_e is the increase in cost of rerouting load on link e to the shortest path μ_{ij} , when link e is removed.
 - By convention, $\Delta_e = \infty$ if there is no path from p to q, for e = (p,q).

Minoux's Greedy Method (cont)

(c) If there exists e such that $\Delta_e < 0$ we can improve the network. Let

$$\Delta_e = \min\{\Delta_g : \Delta_g < 0, g \in L^{(k)}\}, \quad L^{(k+1)} = L^{(k)} - \{e\}$$

For all
$$g \in L^{(k)}$$
,
$$f_g^{(k+1)} = \begin{cases} f_g^{(k)} & \text{if} \quad g \not\in \mu_{ij}, g \neq e \\ f_g^{(k)} + f_e^{(k)} & \text{if} \quad g \in \mu_{ij} \\ 0 & \text{if} \quad g = e \end{cases}$$
 $k \leftarrow k+1$. Goto (b)

Else (
$$\Delta_e \geq 0$$
 for all $e \in L^{(k)}$) STOP

Minoux's Greedy Method

- When it finishes, the greedy solution has been found
 - cannot be bettered by this method.
 - might not be optimal
- Recall the proposition: Use only ONE path at (c), because costs are concave.
- Costs linear, so also convex, so shortest path routing is minimal (for a given network).

The network G(N,E) and data for the fixed charge model (α_e, β_e) and offered traffic, t_{pq}

$$C(\mathbf{f}) = \sum_{e \in L} c_e(f_e)$$
 $c_e(f_e) = \alpha_e f_e + \beta_e.$

$$C(\mathbf{f}) = \sum_{e \in L} c_e(f_e) = \sum_{e \in L} lpha_e f_e + eta_e$$
 , where $L \subseteq E$

Assume initially direct routing i.e. $f_e = t_{pq}$ for all e = (p,q), and $L^{(0)} = E$.

Total cost initially is 55 units.

Iteration 1: Calculate all Δ_e

$$\Delta_{e} = l_{\hat{\mu}}(\mathbf{f}) - (\alpha_{e}f_{e} + \beta_{e})$$

$$= \sum_{e' \in \hat{\mu}} \alpha_{e'} f_{e'} - \alpha_{e}f_{e} - \beta_{e}$$

For example Δ_{12} is the change in cost, if link (1,2) is removed, and f_{12} is rerouted onto the remaining shortest path, here 1-4-2.

$$\Delta_{12} = (\alpha_{14} + \alpha_{42} - \alpha_{12})f_{12} - \beta_{12}$$

$$= (1+1-1) \times 4 - 3$$

$$= 1$$

Iteration 1: Calculate all Δ_e

$$\Delta_{12} = (\alpha_{14} + \alpha_{42} - \alpha_{12})f_{12} - \beta_{12} = (1+1-1) \times 4 - 3 = 1$$

$$\Delta_{13} = (\alpha_{14} + \alpha_{34} - \alpha_{13})f_{13} - \beta_{13} = (1+1-2) \times 4 - 6 = -6$$

$$\Delta_{14} = (\alpha_{12} + \alpha_{42} - \alpha_{14})f_{14} - \beta_{14} = (1+1-1) \times 3 - 5 = -2$$

$$\Delta_{23} = (\alpha_{24} + \alpha_{34} - \alpha_{23})f_{23} - \beta_{23} = (1+1-2) \times 5 - 3 = -3$$

$$\Delta_{24} = (\alpha_{12} + \alpha_{14} - \alpha_{24})f_{24} - \beta_{24} = (1+1-1) \times 2 - 6 = -4$$

$$\Delta_{34} = (\alpha_{23} + \alpha_{24} - \alpha_{34})f_{34} - \beta_{34} = (1+2-1) \times 2 - 3 = 1$$

Therefore min Δ_e =-6, for e=(1,3).

Iteration 1: Remove link (1,3) from the network, e.g. put $L^{(1)} = L^{(0)} \setminus \{(1,3)\}$ Reroute f_{13} onto the path 1-4-3. The new network and loads are:

The new cost is old cost $+\Delta_{13}$ =55-6=49 units.

Iteration 1: Remove link (1,3) from the network,

e.g. put $L^{(1)} = L^{(0)} \setminus \{(1,3)\}$

Reroute f_{13} onto the path 1-4-3.

The new network and loads are:

The new cost is old cost $+\Delta_{13}$ =55-6=49 units.

Iteration 2: Working with this latest network $L^{(1)}$, re-calculate all Δ_e

$$\Delta_{12} = (\alpha_{14} + \alpha_{42} - \alpha_{12})f_{12} - \beta_{12} = (1+1-1) \times 4 - 3 = 1$$

$$\Delta_{14} = (\alpha_{12} + \alpha_{42} - \alpha_{14})f_{14} - \beta_{13} = (1+1-1) \times 7 - 5 = 2$$

$$\Delta_{23} = (\alpha_{24} + \alpha_{34} - \alpha_{23})f_{23} - \beta_{23} = (1+1-2) \times 5 - 3 = -3$$

$$\Delta_{24} = (\alpha_{12} + \alpha_{14} - \alpha_{24})f_{24} - \beta_{24} = (1+1-1) \times 2 - 6 = -4$$

$$\Delta_{34} = (\alpha_{23} + \alpha_{24} - \alpha_{34})f_{34} - \beta_{34} = (1+2-1) \times 6 - 3 = 9$$

Therefore $min\Delta_e = -4$, for e = (2,4).

Iteration 2: Put $L^{(2)} = L^{(1)} \setminus \{(2,4)\}$; reroute f_{24} onto the path 2-1-4.

The new network and loads are:

The new cost is 49-4=45 units.

Iteration 2: Put $L^{(2)} = L^{(1)} \setminus \{(2,4)\}$; reroute f_{24} onto the path 2-1-4.

The new network and loads are:

The new cost is 49-4=45 units.

Iteration 3: Working with this latest network $L^{(2)}$, re-calculate all Δ_e

$$\Delta_{12} = (\alpha_{14} + \alpha_{34} + \alpha_{24} - \alpha_{12})f_{12} - \beta_{12} = (1+1+2-1) \times 6 - 3 > 0
\Delta_{14} = (\alpha_{12} + \alpha_{23} + \alpha_{34} - \alpha_{14})f_{14} - \beta_{13} = (1+2+1-1) \times 9 - 5 > 0
\Delta_{23} = (\alpha_{21} + \alpha_{14} + \alpha_{34} - \alpha_{23})f_{23} - \beta_{23} = (1+1+1-2) \times 5 - 3 > 0
\Delta_{34} = (\alpha_{14} + \alpha_{12} + \alpha_{23} - \alpha_{34})f_{34} - \beta_{34} = (1+1+2-1) \times 6 - 3 > 0$$

Therefore $\Delta_e > 0$, $\forall e \in L^{(2)}$ so STOP.

So the final network design and loads are (as in interation 2):

O-D	t_{pq}	routing
1-2	4	1-2
1-3	4	1-4-3
1-4	3	1-4
2-3	5	2-3
2-4	2	2-1-4
3-4	2	3-4

The cost is still 45 units.

This is actually the optimal design for the network with the given data, but obviously the method itself has a flaw in that once a link is deleted, it is deleted for good: there is never a chance for it to be reinstated.

Minoux's Method: Example 2 (i)

The network G(N,E) and relevant data for the fixed charge model (α_e, β_e) and offered traffic, t_{pq} , are as given in the figure below.

$$c_e(f_e) = \alpha_e f_e + \beta_e$$
.

Initially, assume direct routing i.e. $f_e = t_{pq}$ for all e = (p,q), and L = E.

Minoux's Method: Example 2 (ii)

$$\Delta_e = l_{\hat{\mu}}(\mathbf{f}) - (\alpha_e f_e + \beta_e) = \sum_{e' \in \hat{\mu}} \alpha_{e'} f_e - \alpha_e f_e - \beta_e.$$

Iteration 1 Calculate all $\Delta_e s$:

e	l	$(l-\alpha)f-\beta$	> 0?
$\boxed{(1,2)}$	2	(2-1)4-3	>0
(1,3)	3	(3-1)4-6	>0
(1,4)	2	(2-1)3-5	-2
(2,3)	2	(2-2)5-3	-3
(2,4)	2	(2-1)2-6	_4
(3,4)	2	(2-2)2-6	-6

Therefore min Δ_e =-6, for e=(3,4).

So delete link (3,4) and reroute its load onto the shortest path, 3-1-4.

Minoux's Method: Example 2 (iii)

Iteration 2: New loads are and Δ_e are

e	l	$(l-\alpha)f-\beta$	> 0?
$\boxed{(1,2)}$	2	(2-1)4-3	>0
(1,3)	3	(3-1)6-6	>0
(1,4)	2	(2-1)5-5	=0
(2,3)	2	(2-2)5-3	-3
(2,4)	2	(2-1)2-6	-4

Therefore min Δ_e =-4, for e=(2,4).

So delete link (2,4) and reroute its load onto the shortest path, 2-1-4.

Minoux's Method: Example 2 (iv)

Iteration 3: New loads are and Δ_e are

e	l	$(l-\alpha)f-\beta$	> 0?
$\boxed{(1,2)}$	3	(3-1)6-3	>0
(1,3)	3	(3-1)6-6	>0
(1,4)	∞		
(2,3)	2	(2-2)5-3	-3

Therefore $\min \Delta_e$ =-3, for e=(2,3).

So delete link (2,3) and reroute its load onto the shortest path, 2-1-3.

Minoux's Method: Example 2 (v)

Iteration 4: New loads are

No further links can be deleted without disconnecting the network. Cost is 22+9+12=43.

Question: Is this optimal?

References

[1] M.Minoux, "Network synthesis and optimum network design problems: Models, solution methods and applications," in Networks, vol. 19, pp. 313-360, 1989.