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Concave costs

When costs are concave, the network design problem
has properties like single path routing. A common
example is linear costs. Also we present a simple
heursitic approach.

Communications Network Design: lecture 10 — p.2/24

The lecture considers some generic issues regarding concave costs, and the resultant multi-
commodity flow optimization problem, which is a general form of the network design problem.

Communications Network Design: lecture 10 — p.1/24

Communications Network Design: lecture 10 — p.2/24




Notation recap

Mostly as before (lecture 6)
» A network is a graph G(N,E), with nodes
N={1,2,...n} and links EC NxN
» Offered traffic between O-D pair (p,q) is tyq
» The set of all paths in G(N,E) is P = Upp g ek Pog
» Each link ec E has
> a capacity, denoted by re(> 0)
> a distance de(> 0)
> aload fo(>0)

» The vector x = (x,: p€ P) is called the routing

fe — Z XIJ
perPecu
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Multicommodity flow problem

Completely general case

» objective: minimize some cost function
> construction costs based on capacities re

> performance costs (e.g. delays, reliability, ...)
based on re and fe

» input:
> a set of nodes N
> forecast traffic demands ty,
» constraints are flow based (as before)
> loads on links are implied by routing of traffic
> link loads < capacities

Call it the multicommodity flow problem
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A simplified problem

» in general costs depend on re and fe
> lets us start a little simpler
> only include construction costs
* not performance costs
» assume we choose re = fe
> choose capacities o carry required loads
% could include some overhead,
e.g. re=Yfe for somey>1
» problem simplifies to choosing which links we need in
our network

> it becomes an integer programming problem

> it has a direct relationship to least-cost routing
on a complete graph
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Formal problem specification

Formal problem specification:

(P) min. C(f) = che(fe)
ec
s.t. fo = X, VeeckE.
) ueZeeu "
Xy >0 VueP
Xy =1tpq V(p,q € K.
HEPpq

Where we then take re=vyf., Vec E

This looks the same as for routing, but the set E is the
set of all possible links, rather than a given set, and the
cost function C will be different (though still separable).
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Typical cost function

» assume the cost function is continuous on [0,) and
differentiable on (0, )

» assume the cost function nondecreasing
» assume the cost function is separable

C(f) = 3 calfe)

» assume the cost function is concave
C(f) is concave over Q if for all A € [0,1], and all
feasible loads f1,f, € Q,

CM1+ (1= Mfz) > AC(f1) + (1— A)C(F2)

> chords lie below the function

Communications Network Design: lecture 10 — p.7/24

Concave

A

" below the curve

~achord lies
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Concave costs

» concave costs represent “economy of scales”
> operations at a larger scale have a smaller
marginal cost, e.g. J% is decreasing
> operations at a larger scale have a smaller
average cost, e.g. %:e) is decreasing

» alternative view "multiplexing gain”

> multiplexed (grouped) traffic has a lower
relative variance, and so is less "bursty”

> less overhead is required for smoother traffic
» Example

Ce(fe) = kefs', ke = constant, a € (0.4,0.6)
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Concave costs and routing

» we have so far (tfoday) ignored routing

» nice result that shows for concave costs, we only
need to consider single path routing (no load
sharing)

Proposition: If C(f) is a concave cost function of load f,
then the minimum is attained by routing ty on a single
path [ipq for all O-D pairs [p,q] € K.
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Example of single path routing

Link c(f)

COSts
LAN ~oj
c(f)

WAN
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Example of single path routing

traffic \ 1

LAN J

LAN

WAN
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Example of single path routing

link
loads )
1
LAN LAN
L /
[
. WAN

I‘OU'[Ing 1 cost = c(1) + c(1)
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Example of single path routing

link
loads

WAN
cost=c(2) <=2c(1)

routing 2
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Concave costs and routing: proof

Proof: Let us take two paths i, € Pyq. Suppose there
is a routing X = (X, : p € P) such that the traffic between
the O-D pair [p,q] is routed across both py and o,

i.e. Xy, >0and x, > 0.

Let f be the link loads induced by x; so

fe: Z Xu
WSy
Consider two cases:
» the traffic x,, on | is moved to  inducing loads !

» the traffic x, on p is moved to | inducing loads (2
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Concave costs and routing: proof

The net result is:
R R AU £(1) Ko (2)

= = + €
XHl + Xuz XlJl + Xilz Xul + Xuz
and therefore, for all ec E,
1 2

Xill + Xllz

» Inboth cases links e W, and links e € g, o have
load unaltered, e.g. R

» Only those links on precisely one of the paths py, 1,
have loads altered by this process.
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Concave costs and routing: proof

In more detail: check this out for links e€ E:
» if ecy and e 1, then &Y = 12 = f, so equation (2)
correctly gives the load as fe.
» if ed 1y and ed 1, then Y = 12 = fo, and (2) is OK.
> if ecpy but € then £V = fo+x, and 2 = fo—x,.
So RHS of (2) above gives
Xy " + X, i _ Xy (e + X ) + X (fe — X)
thl +XH2 Xul +XH2
> if ed 1y but € i then &V = fo—x,, and 7 = fo+x,,.
So RHS of (2) above gives
Xﬂlfe(l) +XH2fe(2) — Xlll(fe_xﬂz) +Xuz(fe+xl11) —f
Xill +XL12 Xlll +XH2 ©

— f,

Communications Network Design: lecture 10 — p.17/24

Concave costs and routing: proof

Take A= — € (0,1)and 1—-A= —¥__ < (0,1).
T Ky il +X|42
When C is concave. By definition, for all A € [0,1],
C(Af1+ (1-A)f2) > AC(f1) + (1 —A)C(f2)
Given that f = M + (1))@ we get
C(f) > AC(fD) + (1 - N)C(f@)

If C(fM)) < C(f@), then AC(fV) + (1 — \)C(f?) > C(fV)
and therefore, C(f) > C(fV). This means the traffic can
toq can all be re-routed onto py with less cost.

If C(fW) > C(f?) then, re-route traffic tpq onto . O
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Concave costs and routing

» The result above means that with concave costs

> we can assume that single paths are used for
end-to-end demands.

» Heuristic for network design

> adapt the Frank-Wolfe method
*x remember this was used for routing with
convex costs
> assumptions
x we start with a single path routing x
x the corresponding induced load is f
* the routing is not a shortest path routing
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Heuristic Method

» If all traffic is allocated to a shortest path, STOP.

» Else, select for all ke K, a shortest length path i
Of IengTh |gk.

» Allocate ti to its shortest path {i for all k e K.

» Call this routing z.

» Re-calculate shortest paths; go to first step.
Note we have concave cost, so there is no guarantee

that the shortest path routing we find will be the
minimal cost routing!
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The point

» Routing and capacity are intricately linked

» We can solve the capacity problem (for the cases
above) by solving the routing problem on a complete
graph.

» Any link with zero traffic is eliminated

» other links have capacities designed to carry traffic
plus some overhead.

» Different types of cost
> routing = convex costs = SPF
> construction = concave costs = unique routing

» special case: linear costs
> best of both cases: unique SPF routing
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Example with linear costs

1
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Example with linear costs

4

Communications Network Design: lecture 10 — p.23/24

References

Communications Network Design: lecture 10 — p.24/24

Communications Network Design: lecture 10 — p.23/24




	
	
	
	Notation recap
	
	Multicommodity flow problem
	
	A simplified problem
	
	Formal problem specification
	
	Typical cost function
	
	Concave
	
	Concave costs
	
	Concave costs and routing
	
	Example of single path routing
	
	Example of single path routing
	
	Example of single path routing
	
	Example of single path routing
	
	Concave costs and routing: proof
	
	Concave costs and routing: proof
	
	Concave costs and routing: proof
	
	Concave costs and routing: proof
	
	Concave costs and routing
	
	Heuristic Method
	
	The point
	
	Example with linear costs
	
	Example with linear costs
	
	

