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The le
ture 
onsiders some generi
 issues regarding 
on
ave 
osts, and the resultant multi-
ommodity �ow optimization problem, whi
h is a general form of the network design problem.
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Con
ave 
ostsWhen 
osts are 
on
ave, the network design problemhas properties like single path routing. A 
ommonexample is linear 
osts. Also we present a simpleheursiti
 approa
h.
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Notation re
ap

Mostly as before (le
ture 6)

◮ A network is a graph G(N,E), with nodes

N = {1,2, . . .n} and links E ⊆ N×N

◮ Offered traf�
 between O-D pair (p,q) is tpq

◮ The set of all paths in G(N,E) is P = ∪[p,q]∈KPpq

◮ Ea
h link e∈ E has

⊲ a 
apa
ity, denoted by re(≥ 0)

⊲ a distan
e de(≥ 0)

⊲ a load fe(≥ 0)

◮ The ve
tor x = (xµ : µ∈ P) is 
alled the routing

fe = ∑
µ∈P:e∈µ

xµ
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Multi
ommodity �ow problem

Completely general 
ase

◮ obje
tive: minimize some 
ost fun
tion
⊲ 
onstru
tion 
osts based on 
apa
ities re

⊲ performan
e 
osts (e.g. delays, reliability, ...)based on re and fe

◮ input:

⊲ a set of nodes N
⊲ fore
ast traf�
 demands tpq

◮ 
onstraints are �ow based (as before)

⊲ loads on links are implied by routing of traf�


⊲ link loads ≤ 
apa
itiesCall it the multi
ommodity �ow problem
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A simpli�ed problem

◮ in general 
osts depend on re and fe
⊲ lets us start a little simpler

⊲ only in
lude 
onstru
tion 
osts

⋆ not performan
e 
osts

◮ assume we 
hoose re = fe
⊲ 
hoose 
apa
ities to 
arry required loads

⋆ 
ould in
lude some overhead,e.g. re = γ fe for some γ > 1

◮ problem simpli�es to 
hoosing whi
h links we need inour network

⊲ it be
omes an integer programming problem

⊲ it has a dire
t relationship to least-
ost routingon a 
omplete graph
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Formal problem spe
i�
ation

Formal problem spe
i�
ation:

(P) min. C(f) = ∑
e∈E

ce( fe)s.t. fe = ∑
µ∈P:e∈µ

xµ ∀e∈ E.

xµ ≥ 0 ∀µ∈ P

∑
µ∈Ppq

xµ = tpq ∀ [p,q] ∈ K.

Where we then take re = γ fe, ∀e∈ EThis looks the same as for routing, but the set E is theset of all possible links, rather than a given set, and the
ost fun
tion C will be different (though still separable).
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Typi
al 
ost fun
tion

◮ assume the 
ost fun
tion is 
ontinuous on [0,∞) anddifferentiable on (0,∞)

◮ assume the 
ost fun
tion nonde
reasing

◮ assume the 
ost fun
tion is separable

C(f) = ∑
e

ce( fe)

◮ assume the 
ost fun
tion is 
on
ave

C(f) is 
on
ave over Ω if for all λ ∈ [0,1], and allfeasible loads f1, f2 ∈ Ω,

C(λf1 +(1−λ)f2) ≥ λC(f1)+(1−λ)C(f2)

⊲ 
hords lie below the fun
tion

Communications Network Design: lecture 10 – p.7/24

Communications Network Design: lecture 10 – p.7/24

Con
ave
f1 f2

C(f)

below the curve
a chord lies
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Con
ave 
osts

◮ 
on
ave 
osts represent �e
onomy of s
ales�

⊲ operations at a larger s
ale have a smallermarginal 
ost, e.g. ∂ce
∂ fe

is de
reasing

⊲ operations at a larger s
ale have a smalleraverage 
ost, e.g. ce( fe)
fe

is de
reasing

◮ alternative view �multiplexing gain�

⊲ multiplexed (grouped) traf�
 has a lowerrelative varian
e, and so is less �bursty�

⊲ less overhead is required for smoother traf�


◮ Example

ce( fe) = ke f α
e , ke = 
onstant, α ∈ (0.4,0.6)
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Con
ave 
osts and routing

◮ we have so far (today) ignored routing
◮ ni
e result that shows for 
on
ave 
osts, we onlyneed to 
onsider single path routing (no loadsharing)Proposition: If C(f) is a 
on
ave 
ost fun
tion of load f,then the minimum is attained by routing tpq on a singlepath µ̂pq for all O-D pairs [p,q] ∈ K.
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Example of single path routing

c(f)

c(f)

~0 ~0
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costs
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Example of single path routing

WAN

LAN LAN
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Example of single path routing

WAN

LAN LAN

link
loads

1

1

cost = c(1) + c(1)

3

2

4

1

routing 1
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Example of single path routing
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Con
ave 
osts and routing: proof

Proof: Let us take two paths µ1,µ2 ∈ Ppq. Suppose thereis a routing x = (xµ : µ∈ P) su
h that the traf�
 betweenthe O-D pair [p,q] is routed a
ross both µ1 and µ2,i.e. xµ1 > 0 and xµ2 > 0.Let f be the link loads indu
ed by x; so

fe = ∑
µ:e∈µ

xµ

Consider two 
ases:

◮ the traf�
 xµ2 on µ2 is moved to µ1 indu
ing loads f(1)

◮ the traf�
 xµ1 on µ1 is moved to µ2 indu
ing loads f(2)
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Con
ave 
osts and routing: proof

The net result is:

f =
xµ1f

(1) +xµ2f
(2)

xµ1 +xµ2

=
xµ1

xµ1 +xµ2

f(1) +
xµ2

xµ1 +xµ2

f(2) (1)

and therefore, for all e∈ E,
fe =

xµ1 f (1)
e +xµ2 f (2)

e

xµ1 +xµ2

(2)

◮ In both 
ases links e 6∈ µ1,µ2 and links e∈ µ1,µ2 haveload unaltered, e.g. f (1)
e = f (2)

e = fe.

◮ Only those links on pre
isely one of the paths µ1,µ2have loads altered by this pro
ess.
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Con
ave 
osts and routing: proof

In more detail: 
he
k this out for links e∈ E:

◮ if e∈ µ1 and e∈ µ2 then f (1)
e = f (2)

e = fe so equation (2)
orre
tly gives the load as fe.

◮ if e 6∈ µ1 and e 6∈ µ2 then f (1)
e = f (2)

e = fe, and (2) is OK.

◮ if e∈ µ1 but 6∈ µ2 then f (1)
e = fe+xµ2 and f (2)

e = fe−xµ1.So RHS of (2) above gives

xµ1 f (1)
e +xµ2 f (2)

e

xµ1 +xµ2

=
xµ1( fe+xµ2)+xµ2( fe−xµ1)

xµ1 +xµ2

= fe

◮ if e 6∈ µ1 but ∈ µ2 then f (1)
e = fe−xµ2 and f (2)

e = fe+xµ1.So RHS of (2) above gives

xµ1 f (1)
e +xµ2 f (2)

e

xµ1 +xµ2

=
xµ1( fe−xµ2)+xµ2( fe+xµ1)

xµ1 +xµ2

= fe
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Con
ave 
osts and routing: proof

Take λ =
xµ1

xµ1 +xµ2

∈ (0,1) and 1−λ =
xµ2

xµ1 +xµ2

∈ (0,1).When C is 
on
ave. By de�nition, for all λ ∈ [0,1],
C(λf1 +(1−λ)f2) ≥ λC(f1)+(1−λ)C(f2)Given that f = λf(1) +(1−λ)f(2) we get

C(f) ≥ λC(f(1))+(1−λ)C(f(2))If C(f(1)) ≤C(f(2)), then λC(f(1))+(1−λ)C(f(2)) ≥C(f(1))and therefore, C(f) ≥C(f(1)). This means the traf�
 
an

tpq 
an all be re-routed onto µ1 with less 
ost.If C(f(1)) ≥C(f(2)) then, re-route traf�
 tpq onto µ2. 2
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Con
ave 
osts and routing

◮ The result above means that with 
on
ave 
osts

⊲ we 
an assume that single paths are used forend-to-end demands.

◮ Heuristi
 for network design

⊲ adapt the Frank-Wolfe method

⋆ remember this was used for routing with
onvex 
osts

⊲ assumptions

⋆ we start with a single path routing x
⋆ the 
orresponding indu
ed load is f
⋆ the routing is not a shortest path routing
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Heuristi
 Method

◮ If all traf�
 is allo
ated to a shortest path, STOP.
◮ Else, sele
t for all k∈ K, a shortest length path µ̂kof length lµ̂k.

◮ Allo
ate tk to its shortest path µ̂k for all k∈ K.
◮ Call this routing z.

◮ Re-
al
ulate shortest paths; go to �rst step.Note we have 
on
ave 
ost, so there is no guaranteethat the shortest path routing we �nd will be theminimal 
ost routing!
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The point

◮ Routing and 
apa
ity are intri
ately linked

◮ We 
an solve the 
apa
ity problem (for the 
asesabove) by solving the routing problem on a 
ompletegraph.

◮ Any link with zero traf�
 is eliminated

◮ other links have 
apa
ities designed to 
arry traf�
plus some overhead.

◮ Different types of 
ost

⊲ routing ⇒ 
onvex 
osts ⇒ SPF

⊲ 
onstru
tion ⇒ 
on
ave 
osts ⇒ unique routing

◮ spe
ial 
ase: linear 
osts

⊲ best of both 
ases: unique SPF routing
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Example with linear 
osts
1 1
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Example with linear 
osts
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