Communications Network Design lecture 10

Matthew Roughan
<matthew.roughan@adelaide.edu.au>

Discipline of Applied Mathematics School of Mathematical Sciences University of Adelaide

March 2, 2009

Communications Network Design: lecture 10 – p.1/24

The lecture considers some generic issues regarding concave costs, and the resultant multi-commodity flow optimization problem, which is a general form of the network design problem.

Concave costs

When costs are concave, the network design problem has properties like single path routing. A common example is linear costs. Also we present a simple heursitic approach.

Communications Network Design: lecture 10 – p.2/24

Communications Network Design: lecture 10 - p.1/24

Communications Network Design: lecture 10 - p.2/24

Notation recap

Mostly as before (lecture 6)

- ▶ A network is a graph G(N,E), with nodes $N = \{1,2,...n\}$ and links $E \subseteq N \times N$
- ▶ Offered traffic between O-D pair (p,q) is t_{pq}
- ▶ The set of all paths in G(N,E) is $P = \bigcup_{[p,q] \in K} P_{pq}$
- ▶ Each link $e \in E$ has
 - \triangleright a capacity, denoted by $r_e(\ge 0)$
 - \triangleright a distance $d_e(\ge 0)$
 - \triangleright a load $f_e(\geq 0)$
- ▶ The vector $\mathbf{x} = (x_{\mu} : \mu \in P)$ is called the **routing**

$$f_e = \sum_{\mu \in P: e \in \mu} x_{\mu}$$

Communications Network Design: lecture 10 – p.3/24

Multicommodity flow problem

Completely general case

- ▶ objective: minimize some cost function
 - \triangleright construction costs based on capacities r_e
 - \triangleright performance costs (e.g. delays, reliability, ...) based on r_e and f_e
- ▶ input:
 - \triangleright a set of nodes N
 - \triangleright forecast traffic demands t_{pq}
- ► constraints are flow based (as before)
 - ▶ loads on links are implied by routing of traffic
 - ▶ link loads ≤ capacities

Call it the multicommodity flow problem

Communications Network Design: lecture 10 – p.4/24

A simplified problem

- \blacktriangleright in general costs depend on r_e and f_e
 - > lets us start a little simpler
 - > only include construction costs
 - * not performance costs
- ightharpoonup assume we choose $r_e = f_e$
 - - * could include some overhead, e.g. $r_e = \gamma f_e$ for some $\gamma > 1$
- problem simplifies to choosing which links we need in our network
 - > it becomes an integer programming problem
 - it has a direct relationship to least-cost routing on a complete graph

Communications Network Design: lecture 10 – p.5/24

Formal problem specification

Formal problem specification:

$$\begin{array}{lll} \text{(P)} & & \min. & C(\mathbf{f}) & = \sum\limits_{e \in E} c_e(f_e) \\ & & \text{s.t.} & f_e & = \sum\limits_{\mu \in P: e \in \mu} x_\mu & \forall \, e \in E. \\ & & x_\mu & \geq 0 & \forall \, \mu \in P \\ & \sum\limits_{\mu \in P_{pq}} x_\mu & = t_{pq} & \forall \, [p,q] \in K. \end{array}$$

Where we then take $r_e = \gamma f_e$, $\forall e \in E$

This looks the same as for routing, but the set E is the set of all possible links, rather than a given set, and the cost function C will be different (though still separable).

Communications Network Design: lecture 10 - p.6/24

Typical cost function

- \blacktriangleright assume the cost function is continuous on $[0,\infty)$ and differentiable on $(0,\infty)$
- ▶ assume the cost function nondecreasing
- ▶ assume the cost function is separable

$$C(\mathbf{f}) = \sum_e c_e(f_e)$$

▶ assume the cost function is concave $C(\mathbf{f})$ is concave over Ω if for all $\lambda \in [0,1]$, and all feasible loads $\mathbf{f}_1,\mathbf{f}_2 \in \Omega$,

$$C(\lambda \mathbf{f}_1 + (1 - \lambda)\mathbf{f}_2) \ge \lambda C(\mathbf{f}_1) + (1 - \lambda)C(\mathbf{f}_2)$$

> chords lie below the function

Communications Network Design: lecture 10 - p.7/24

Concave

Communications Network Design: lecture 10 - p.8/24

Concave costs

- concave costs represent "economy of scales"
 - \triangleright operations at a larger scale have a smaller marginal cost, e.g. $\frac{\partial c_e}{\partial f_e}$ is decreasing
 - \triangleright operations at a larger scale have a smaller average cost, e.g. $\frac{c_e(f_e)}{f_e}$ is decreasing
- ▶ alternative view "multiplexing gain"
 - multiplexed (grouped) traffic has a lower relative variance, and so is less "bursty"
 - ▷ less overhead is required for smoother traffic
- ► Example

$$c_e(f_e) = k_e f_e^{\alpha}, \quad k_e = \text{constant}, \ \alpha \in (0.4, 0.6)$$

Communications Network Design: lecture 10 - p.9/24

Concave costs and routing

- ▶ we have so far (today) ignored routing
- ▶ nice result that shows for concave costs, we only need to consider single path routing (no load sharing)

Proposition: If $C(\mathbf{f})$ is a concave cost function of load \mathbf{f} , then the minimum is attained by routing t_{pq} on a single path $\hat{\mu}_{pq}$ for all O-D pairs $[p,q] \in K$.

Communications Network Design: lecture 10 - p.10/24

Example of single path routing

Communications Network Design: lecture 10 – p.11/24

Example of single path routing

Communications Network Design: lecture 10 - p.12/24

Example of single path routing

Communications Network Design: lecture 10 – p.13/24

Example of single path routing

Communications Network Design: lecture 10 – p.14/24

Concave costs and routing: proof

Proof: Let us take two paths $\mu_1, \mu_2 \in P_{pq}$. Suppose there is a routing $\mathbf{x} = (x_\mu : \mu \in P)$ such that the traffic between the O-D pair [p,q] is routed across both μ_1 and μ_2 , i.e. $x_{\mu_1} > 0$ and $x_{\mu_2} > 0$.

Let f be the link loads induced by x; so

$$f_e = \sum_{\mu: e \in \mu} x_{\mu}$$

Consider two cases:

- ▶ the traffic x_{μ_2} on μ_2 is moved to μ_1 inducing loads $\mathbf{f}^{(1)}$
- ▶ the traffic x_{μ_1} on μ_1 is moved to μ_2 inducing loads $\mathbf{f}^{(2)}$

Communications Network Design: lecture 10 – p.15/24

Concave costs and routing: proof

The net result is:

$$\mathbf{f} = \frac{x_{\mu_1} \mathbf{f}^{(1)} + x_{\mu_2} \mathbf{f}^{(2)}}{x_{\mu_1} + x_{\mu_2}} = \frac{x_{\mu_1}}{x_{\mu_1} + x_{\mu_2}} \mathbf{f}^{(1)} + \frac{x_{\mu_2}}{x_{\mu_1} + x_{\mu_2}} \mathbf{f}^{(2)}$$
(1)

and therefore, for all $e \in E$,

$$f_e = \frac{x_{\mu_1} f_e^{(1)} + x_{\mu_2} f_e^{(2)}}{x_{\mu_1} + x_{\mu_2}} \tag{2}$$

- ▶ In both cases links $e \notin \mu_1, \mu_2$ and links $e \in \mu_1, \mu_2$ have load unaltered, e.g. $f_e^{(1)} = f_e^{(2)} = f_e$.
- ▶ Only those links on precisely one of the paths μ_1, μ_2 have loads altered by this process.

Communications Network Design: lecture 10 - p.16/24

Concave costs and routing: proof

In more detail: check this out for links $e \in E$:

- ▶ if $e \in \mu_1$ and $e \in \mu_2$ then $f_e^{(1)} = f_e^{(2)} = f_e$ so equation (2) correctly gives the load as f_e .
- ightharpoonup if $e
 ot\in \mu_1$ and $e
 ot\in \mu_2$ then $f_e^{(1)} = f_e^{(2)} = f_e$, and (2) is OK.
- ▶ if $e \in \mu_1$ but $\notin \mu_2$ then $f_e^{(1)} = f_e + x_{\mu_2}$ and $f_e^{(2)} = f_e x_{\mu_1}$. So RHS of (2) above gives

$$\frac{x_{\mu_1} f_e^{(1)} + x_{\mu_2} f_e^{(2)}}{x_{\mu_1} + x_{\mu_2}} = \frac{x_{\mu_1} (f_e + x_{\mu_2}) + x_{\mu_2} (f_e - x_{\mu_1})}{x_{\mu_1} + x_{\mu_2}} = f_e$$

▶ if $e \notin \mu_1$ but $\in \mu_2$ then $f_e^{(1)} = f_e - x_{\mu_2}$ and $f_e^{(2)} = f_e + x_{\mu_1}$. So RHS of (2) above gives

$$\frac{x_{\mu_1} f_e^{(1)} + x_{\mu_2} f_e^{(2)}}{x_{\mu_1} + x_{\mu_2}} = \frac{x_{\mu_1} (f_e - x_{\mu_2}) + x_{\mu_2} (f_e + x_{\mu_1})}{x_{\mu_1} + x_{\mu_2}} = f_e$$

Communications Network Design: lecture 10 - p.17/24

Concave costs and routing: proof

Take
$$\lambda = \frac{x_{\mu_1}}{x_{\mu_1} + x_{\mu_2}} \in (0,1)$$
 and $1 - \lambda = \frac{x_{\mu_2}}{x_{\mu_1} + x_{\mu_2}} \in (0,1).$

When C is concave. By definition, for all $\lambda \in [0,1]$,

$$C(\lambda \mathbf{f}_1 + (1 - \lambda)\mathbf{f}_2) \ge \lambda C(\mathbf{f}_1) + (1 - \lambda)C(\mathbf{f}_2)$$

Given that $\mathbf{f} = \lambda \mathbf{f}^{(1)} + (1 - \lambda)\mathbf{f}^{(2)}$ we get

$$C(\mathbf{f}) \ge \lambda C(\mathbf{f}^{(1)}) + (1 - \lambda)C(\mathbf{f}^{(2)})$$

If $C(\mathbf{f}^{(1)}) \leq C(\mathbf{f}^{(2)})$, then $\lambda C(\mathbf{f}^{(1)}) + (1 - \lambda)C(\mathbf{f}^{(2)}) \geq C(\mathbf{f}^{(1)})$ and therefore, $C(\mathbf{f}) \geq C(\mathbf{f}^{(1)})$. This means the traffic can t_{pq} can all be re-routed onto μ_1 with less cost.

If $C(\mathbf{f}^{(1)}) \geq C(\mathbf{f}^{(2)})$ then, re-route traffic t_{pq} onto μ_2 . \square

Communications Network Design: lecture 10 - p.18/24

Concave costs and routing

- ▶ The result above means that with concave costs
 - b we can assume that single paths are used for end-to-end demands.
- ► Heuristic for network design
 - □ adapt the Frank-Wolfe method
 - * remember this was used for routing with convex costs
 - > assumptions
 - \star we start with a single path routing x
 - \star the corresponding induced load is ${f f}$
 - \star the routing is **not** a shortest path routing

► Allocate t_k to its shortest path $\hat{\mu}_k$ for all $k \in K$.

► Call this routing z.

of length $l_{\hat{u}_{\nu}}$.

Heuristic Method

▶ Re-calculate shortest paths; go to first step.

▶ If all traffic is allocated to a shortest path, STOP.

▶ Else, select for all $k \in K$, a shortest length path $\hat{\mu}_k$

Note we have concave cost, so there is no guarantee that the shortest path routing we find will be the minimal cost routing!

Communications Network Design: lecture 10 - p.19/24

 $Communications \ Network \ Design: \ lecture \ 10-p.20/24$

The point

- ▶ Routing and capacity are intricately linked
- ➤ We can solve the capacity problem (for the cases above) by solving the routing problem on a complete graph.
- ► Any link with zero traffic is eliminated
- ▶ other links have capacities designed to carry traffic plus some overhead.
- ► Different types of cost
 - \triangleright routing \Rightarrow convex costs \Rightarrow SPF
 - \triangleright construction \Rightarrow concave costs \Rightarrow unique routing
- ► special case: linear costs
 - ▶ best of both cases: unique SPF routing

Communications Network Design: lecture 10 – p.21/24

Example with linear costs

Communications Network Design: lecture 10 - p.22/24

Example with linear costs

Communications Network Design: lecture 10 – p.23/24

References

Communications Network Design: lecture 10 – p.24/24

Communications Network Design: lecture 10 – p.23/24