Communications Network Design lecture 09

Matthew Roughan

<matthew.roughan@adelaide.edu.au>

Discipline of Applied Mathematics School of Mathematical Sciences University of Adelaide

March 2, 2009

The Network Design Problem

In this lecture we consider a new optimization problem, the network design problem, where we can choose the network links (in contrast to routing where we only chose the routes across a given network). In this lecture we present some basics such as **star-like** topologies, **ring** topologies and the **travelling salesman's problem**.

Network Design Problem

- the problems so far have concerned routing
 - network is given
 - we need to find optimal routing
- now we want to consider how to design the network
 - from scratch
 - routing is part of the design
- inputs
 - a set of nodes (locations)
 - forecasts of traffic demands

Example topologies

- point-to-point
- linear or bus
- ring
- hub and spoke or star
- double star
- fully connected (mesh) or complete topology or clique
- mesh
- (spanning) tree
- hybrid

Point-to-point

description: back-to-back connection of two nodes examples:

- (old fashioned) printer connection
- serial link
- PPP (Point-to-Point Protocol)

comments:

used as a component of a larger network

Bus

description: a single line (the bus) to which all nodes are connected, and the nodes connect only to this bus.

examples:

- physical structure of 10Base2 Ethernet
- logical structure of 10BaseT Ethernet with a hub

comments:

- design often matches a building (corridors)
- no redundancy (failures effect whole network)

Ring

description: Every node has exactly two branches connected to it, so that they form a (logical) ring. example:

SONET, FDDI, Token Ring

comments:

two paths provide some redundancy (a dual ring)

Ring

description: Every node has exactly two branches connected to it, so that they form a (logical) ring. example:

SONET, FDDI, Token Ring

comments:

two paths provide some redundancy (a dual ring)

Star

description: peripheral (spoke) nodes are connected to a central (hub) node. All communications is via the hub. examples:

- physical topology of 10BaseT Ethernet with a hub
- logical topology of 10BaseT Ethernet with a switch

comments:

hub node failures are critical

Double star

description: two stars, with two hubs, effectively, one is a redundant backup for failures.

example:

used for many networks

comments:

- stars are sensitive to failures of hub, or links
- robust to a failure of hub, or single link

Fully connected

description: every node directly connected to every other node (also called a clique).

example:

frame relay network (at a logical level)

comments:

very robust to failures

Mesh

description:

example:

many real networks are somewhat meshy

comments:

- somewhere between clique, and star
- robust to failures

Tree

description: nodes are arranged as a tree (no loops) examples:

- shortest path trees in routing
- spanning tree protocol (for switched Ethernets)

comments:

sensitive to failures

Hybrid

description: A combination of any two or more network topologies in such a way that the resulting network does not have one of the standard forms.

comments:

- a tree connected to a tree is still a tree network
- example is a hierachical network (as above)

Notation recap

Mostly as before (lecture 6)

- A network is a graph G(N,E), with nodes $N = \{1,2,...n\}$ and links $E \subseteq N \times N$
- Offered traffic between O-D pair (p,q) is t_{pq}
- lacksquare The set of all paths in G(N,E) is $P=\cup_{[p,q]\in K}P_{pq}$
- **Each** link $e \in E$ has
 - \blacksquare a capacity, denoted by $r_e(\ge 0)$
 - lacksquare a distance $d_e(\geq 0)$
 - lacksquare a load $f_e(\geq 0)$
- The vector $\mathbf{x} = (x_{\mu} : \mu \in P)$ is called the routing

$$f_e = \sum_{\mu \in P: e \in \mu} x_{\mu}$$

Primitive network design

assume network nodes and edges are given

$$G = (N, E)$$

 \blacksquare find optimal routing x, ignoring capacity constraints

Formulation: minimize
$$C(\mathbf{f})$$
 s.t. $f_e = \sum_{\mu \in P: e \in \mu} x_{\mu}, \quad orall e \in E$ $x_{\mu} \geq 0, \quad \forall \mu \in P$ $\sum_{\mu \in P_{pq}} x_{\mu} = t_{pq}, \quad \forall [p,q] \in K$

use loads given by routing to obtain capacities, e.g.

$$r_e = f_e, \ \forall e \in E$$

More generally

- only network nodes are given
- we must decide edges as well as nodes
- routing is part of this
 - often assume shortest (physical) path routing
- in other design problems, even the nodes aren't given
 - e.g. cellular mobile phone network
 - we are not considering these cases in this course
- costs include
 - \blacksquare construction costs based on capacities r_e
 - performance costs (e.g. delays, reliability, ...) based on r_e and f_e

Minimal cost ring

- minimum cost path that visits each node exactly once, and returns to the start
- consider case where cost is linear in distance
 - minimum cost ring is the shortest ring
 - traveling salesman problem [1, 2, 3]
 - find the shortest tour between N nodes
 - e.g. a travelling salesman has to visit N cities (exactly once each), with the minimum travel distance, and return to his start point.
 - NP-complete or NP-hard (Non-Polynomial)
 - settle P versus NP problem and fetch a \$1,000,000 prize

Travelling Salesman Computations

largest solvable problem has doubled in \sim 5 years [4]

Current, can do $\sim 20,000$ nodes which is big enough for most networks, but not fast, or easy.

Travelling Salesman Example

13,509 nodes

http://www.tsp.gatech.edu/gallery/idata/usa13509.html

Minimal cost star

- all we need to do is choose the hub
- assume cost are linear in distances
- either compute or are given the distances between each pair of nodes
- simple calculate all column (or row) sums, and find the minimum
 - this gives the hub
 - only one routing is possible
 - compute capacities as for primitive case above
- lacktriangle complexity $O(N^2)$ which is pretty good
 - compared to NP-hard

Minimal cost star: example

Minimal cost star: example

- Node 1 is has the minimal column sum.
- Hence Node 1 is the hub

Minimal cost star

- stars are used a lot
 - particularly at layer-2
 - Ethernets commonly use stars (at some level)
 - put stars together to get a tree
 - good where traffic matrix is not known
 - see later for why
- note often dual stars for reliability
 - backup star may be passive or active
 - active = load sharing
- not just used in comm.s networks
 - hub airports in the US

Which is better

- both very simple (conceptually)
- very different computationally
- a star or a ring can be better in some cases
- neither is truly optimal

Star is better

Ring is better

References

- [1] A. Schrijver, "On the history of combinatorial optimization (till 1960)." http://homepages.cwi.nl/~lex/.
- [2] "Traveling salesman problem." http://www.tsp.gatech.edu/index.html.
- [3] D. Applegate, R. Bixby, V. Chvátal, and W. Cook, Computational Combinatorial Optimization, ch. TSP cuts which do not conform to the template paradigm, pp. 261-304. Springer, 2001.
- [4] "Milestones in the solution of TSP instances."

 http://www.tsp.gatech.edu/history/milestone.html.