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Routing (continued)

The simple routing considered so far has fixed
distances, but if we consider a more queueing view of
networks, then packets are delayed when a link is heavily
loaded, and so this increases delays. Minimum delay
routing forms a non-linear, convex optimization problem
with separable costs. We present two simple gradient
descent methods for solution of such problems including
the Frank Wolfe method.
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The lecture considers non-linear, convex, objective functions for the routing problem.
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Recap link-state routing

» topology is flooded
> including the link weights a

» calculate shortest paths
> assumption of linear costs, based on weights

> not automatically based on congestion
* capacity constraints are ignored in the
optimization

> so oo much traffic can be routed along any one
route

» note that the link weights are arbitrary
> how can we use this to avoid congestion?

» recap notation in lecture 6
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Link loads

Once we know shortest paths, we can compute link loads

start node

either link or path costs and loads can be used.
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Example cost calculation

A

OD pair | load tpq | path path length | Ipgtpq
(1,2) tb=1 |1-3-2 l1,=5 5
(1,3) t;3=2 | 1-3 l13=3 6
(1,4) ty=3 |1-3-4 l1a=4 12
(1,5) tis=4 |1-3-2-5|115=6 24
(2,3) tyg=2 |3-2 I3 =2 4
(2,4) thy=3 [2-3-4 lpga=3 9
(2,5) ts=3 | 2—5 5 =1 3
(3,4) tsy=2 | 3—4 l3a=1 2
(3,5) tss=1 |3-2-5 I35 =3 3
(4,5) tis=2 |4—3-2-5|(;5=4 8

total cost 76
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Example loads on links

links
OD pair | tyg (1,3) | (2,3) | (2,4) | (3,5)
(L,2) |tp=1 1 1
(L,3) |tz=2 2
(L4) |tu=3 3 3
(L5) |ts=4 4 4 4
(2,3)  |tz=2 2
(2,4) | ta=3 3
(2,5) |ts=3 3
(3,4) |tg=2 2
(3,5) |[tgs=1 1 1
(45)  |ts=2 2 2 2
total load 10 13 10 10
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Alternative cost calculation

link | ae| fo| cost dex fe
(1,3) |3 |10 30
(2,3) |2 |13 26
(2,4) |1 |10 10
(3,5 |1 |10 10
total 76

This also tells us the link loads, from which we could
estimate congestion.
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Link loads

Why should this result in low cost network?
» link weights relate to link cost
» higher weight results in less traffic
» hence less cost
>

relationship between link loads and shortest paths
> shorter paths result in fewer hops
> so less resources used
> less cost

But is a linear model the right approach?
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Non-linear cost functions

Non-linear functions could be anything: we will restrict
ourselves to

» continuous functions
> ho breaks in the function
» differentiable
> ho corners or edges in the function
> assume its differentiable enough
> can define gradient and Hessian
» convex functions
> chords lie above the function
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Differentiable functions

The gradient OC(f) = (%ef) ‘ec E) is the vector of first
partial derivatives of C.

For example

has gradient

Te,
(relr_ fel)z
ac(f) fe 2

0fe  (fe— fo)2 and  0OC(f) = (rez’:fez)2

lem
L (rep—Tfem)? 4
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Differentiable functions

The Hessian 0°C(f) = (g%ﬁ: egec E) is the square
matrix of all second partial derivatives of C.

Example above has

2r T
(rel_?el)s 2?
0 %5 .. 0
0%C(f) =
: -
L 0 0 o (remifem)3 |

Note that in this example, the Hessian is a diagonal
matrix. This will always be the case when C is separable
ln fe. i.e. C(f) - ZEGE Ce( fe).
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Linear cost example

C(f)= eZEO(efe

OC(f) = (ag,02,...0m)"

0%C(f) = [0]
a matrix of O's, since C(f) is linear
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Convex sets

Definition: A set Q is a convex set in R" if for all
X,y €Q,tx+(1-t)ye Q foralltel01].

i.e. chords between points in the set lie inside the set.

Convex Set Non—-convex Set
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Convex functions

Definition: Let Q be a convex set in R™. A function
f:Q — Ris a convex function if for all A € (0,1),

C(f -+ AAF) < C(f) + A (C(f + AF) — C(F)),

for all f,f+ Af € Q. In 2-D, one can picture this as the
chord joining (f,C(f)) and (f +Af,C(f +Af)) sitting
above the curve y=C(f).

C(f) + A[C(f+ &) — C(f)]

c(+n
:

f YT T
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Convex functions

CHA c

not convex convex
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Convex differentiable functions

Theorem: Let Q be a convex set in R™. A differentiable
functionC: Q — Ris convex iff

C(f +Af) > C(f) + OC(f)T Af.
Proof: Omitted. Proof uses a Taylor Series approach.

Thus a differentiable function is convex iff

C(f + Af) —C(f) > OC(f) TAf.

Says that tangents will lie below the convex function.
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Convex differentiable functions

Theorem: A differentiable function C is convex on the
convex set Q iff the Hessian OC(f) is positive

semidefinite on Q i.e. C is convex iff z'0°C(f)z > 0 for all
vectors ze Q

i.e. Cis convex iff AfTO?C(f)Af > 0 for all Af € Q.
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Example

A separable, differentiable function C(f) = Scce(fe) is
convex iff c(fe) = "zg'*f(gfe) >0 for all ecE.
Explanation:

To be positive semi-definite we must have
Z'0%C(f)z= S, "defg@zg >0 forall z.

(=) clearly if c(fc) > 0 then the sum above is >0
(<) Also, recall that in this example,
O?C(f) = [diag{ce, (fe,), .-, Cq,(fen)}]

If z=(0.....0,1,0,...0)" with the 1" in the i-th spot, then
z'0%C(f)z= ¢} (fs) and hence we must have cg convex for
all i

Communications Network Design: lecture 08 — p.18/51

Communications Network Design: lecture 08 — p.17/51

Communications Network Design: lecture 08 — p.18/51




Simple queueing model

Imagine we wish to minimize delays caused by queueing
» simple queueing model M/M/1 queue
» average queueing delay on a link is given by

fe
re— fe

C(feire) =

where fe is the link load, and r¢ is the capacity
Assume that the interactions between queues are weak
» Kleinrock's Independence Approximation

C(f;r) :EZEc(fe;re) :eZEreEefe
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Simple queueing model

40

35

w
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gueueing delay c(f)

=
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5
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0.4 0.6 0.8 1
load fe

The function is increasing, convex and differentiable
(except at re), with an asymptote at re
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Minima

» convex functions have a unique minimum

» non-convex functions can have non-unique minima,
and local minima

» by definition, at the minima f we get
c(f) < c(f+af)
» if differentiable, for all feasible routing changes
Oc(f)Taf >0
reason lies in Taylor's theorem
C(f + NAF) = C(f) + ACC(f) TAf + O(A?)
If OC(f)TAf < 0, for small A > 0 then C(f) > C(f+ AAf)
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Feasible routing changes

Feasible change in routing Ax

» no path traffic can go negative
Xy +Ax, >0, Ve Py

» traffic must be conserved
Ax, =0, V[p,q € K,

HEFpq
» note that the change in link loads will be

uePecu
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Separable cost functions

» if we have cost function C(f)

pE

aC(f)

& Oofe

» note that path length now depends on the loads f

=1,(f) is called path length (again)
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Shortest path with non-linear costs

l(f) is called the length of path p, and

OCHTAf = § 1, (f)Ax,.
(f) Lgpu()xu

For a load f and any O-D pair [p,q] € K, let

[5q(f) = min{l(f) : L€ Poo}

As before, we call a path p=fie Pyq for which
la(f) = [pq(f) a shortest path for [p,q].

Note that this is consistent with the previous example
where % = Ole.
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Shortest path with non-linear costs

Theorem: A minimum cost routing implies a shortest
path routing (though the reverse is not necessarily true).

Proof: Suppose the routing is NOT a shortest path
routing. In particular, assume some traffic for the O-D
pair [p,q] € K is assigned to a path Y € Pyg which is NOT
of shortest length. That is,

Let {1 € Pyq be a shortest path for [p,q]. So lu(f) = [pg(F).
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Shortest path with non-linear costs

Proof (continued): Reroute as follows:
AXH/ = -0
AXQ =90
Ax, =0 VY otherpeP

where 0 < 8 <xy. Then note I (f) > I(f)

OCH)TAaf = Y ep lu(F)Ax,
= —ly(f)0+1(f)d
= (=1 (f) +1a(f))d
(something -ve). (something +ve)

<0.

Thus if the routing is not a shortest path routing,
OC(f)TAf < 0 which means it cannot be minimum cost.
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Shortest path with convex costs

Theorem: If C(f) is convex and differentiable, then x is
a minimum cost routing iff x is a shortest path routing.

Proof: = from previous theorem
< from properties of convex functions:

» assume we have shortest path routing, e.g.
Xy = 0,Vl € Pyq not a shortest path
» for arouting change Ax, then Ax, > 0,Vp € Pyq which
are not shortest paths, i.e.
Ax, > 0 when I(f) > 14(f)

» Also, for all pe Pyg which are shortest paths,
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Shortest path with convex costs

Proof: (cont) = (I,(f) — lg(f))AX, > 0, V[p,q], 1 € Py
» either first term > 0 and second >0
» or first term =0, so second term is irrelevant
S0 1,(F)Ax, > [q(f)AX,. Therefore

Oc(f)Taf = > 0%,
e
= > Zlu(f)AXu

[P.aleKMEPg

= Z'pq(f)AXu
[p,0JeK HEPq

A

[p.aleK HEPYq MEPq
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Shortest path with convex costs

Proof: (cont)
Thus OC(f)TAf > 0 for all feasible changes in load Af.

Now one of the properties of a convex differentiable
function C(f) is that

C(f + Af) —C(f) > OC(f) TAf.
If C(f)TAf > 0 then
cf+af)—c@) >0

or alternatively C(f+Af) > C(f), which means that C(f)
takes its minimum value at f. O
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Descent Methods

Definition: A vector u € RF! is said to be a descent
direction for the routing x, with induced load f, if

(i) uu<0=x,>0.
we can only subtract traffic from a path pif there
is some traffic on it in the first place!

(i) u,=0 V O-D pairs (p,q) € K
HEFpq
any traffic we take from one path pmust be added
to the traffic on some other path(s)

L (f 0
(iii) pgp u(fuy <

it is a descent vector, i.e., the change in C by going a
small distance in this direction is negative.
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Descent Methods: notes

» The change in C for a small change Au will be

C(f+AAf) —C(f) = A Zbl“(f)u,ﬁr O(A?)
pe

and we require that Z:,l“(f)u” <0
V=

» The change in routing will be Ax = Au, for some small
A > 0. A must be chosen with two things in mind:
(@) x+Ax, the new routing, must still be feasible.
(b) we only go as far in the direction u as we need
to, to get maximum decrease in C(f), in that
direction.
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Descent Methods

Broadly, the method consists of the following steps:

1. Choose a feasible descent direction u € RP!.

2. Given that the new routing will be x+ Au, choose a
step length A > 0 so that

(i) x+Au is feasible (i.e. >0)
(ii) x+Au minimises the cost of the induced load.
3. Change the routing and the induced load

4. Unless you have a minimum, goto step 1.

(i) For convex costs, when we have a shortest path
routing, we have reached the minima.
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Calculating the new cost

Take the change in routing to be Ax =Au

HeSu
Hesp
— )\Ve

where we define ve= % u,andv=(ve:e€E) ER™
peEN

More succinctly Af = Av and the new cost is C(f +Av).
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Descent Method 1

Simple exchange method:

» transfer some traffic from a longer path u* € Pyq to
a shortest path fie Py, i.e. 1+ (f) > In(f) = la(f)

» descent direction u has components

us =-—1 tfransfer off
up =-+1 transfer onto |
u, =0 V otherpeP

Note that with u as above
> luty = +Ha(f) =1 () <O
I

and therefore u is a descent direction.
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Descent Method 1

Simple exchange method:

» to maintain feasibility we require
0< A< Xy
» the vector v has components

1 ifecfanded
Ve=<¢ —1 ifeepgandedl
0 otherwise

» We wish to determine A* € [0,X] which minimises
C(f+Av)
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Descent Method 1: example

An example network

Capacities re

Traffic demands tpq

Q)
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Descent Method 1: example

Assume direct routing of the traffic

f
e le

dee  re
df  (re—fo)?

Q——®

Total cost C(f) = YeCe(fe) =3.555+3.75 =4

[any
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Descent Method 1: example

shortest paths are as follow:

OD pair | direct path | shortest path
1,2 1-2 1-4-2
1,3 1-3 1-4-3
1,4 |1-4 1-4
23 |2-3 2-4-3
24 |2-4 2—4
34 |[3-4 3-4

» not all traffic is routed on the shortest pathl

» For example: O-D pair [1,3], the shortest route
would be 1-4-3 (length of 8), but at present the
traffic is routed on 1-3 (length of 2)
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Descent Method 1: example

We transfer some load from a direct path, to a shortest path
e.g. fransfer some flow from path p=1-2 o p=1-4-2.

In this problem, there are 30 paths in this network. So x and u
have 30 entries. Listing all paths lexicographically, e.g. paths

1-2,1-2-31-2-41-2-3-41-2-4-3,
1-3,1-3-2,1-3-41-3-2-41-3-4-2,
1-4,1-4-21-4-31-4-2-31-4-3-2, ...

x" =(1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0)
and
u' =(-1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
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Descent Method 1: example

We need to calculate ve given the above descent
direction.
» Ui, =—1which says
> we reduce the traffic on path 1-2
> and hence on link 1-2
> so this gives us vi, = -1
» U142 =1 which says
> we increase the fraffic on path 1-4—2
> and hence on links 1-4 and 4-2
> so thisgivesusvia=vip=1
Net effect is
V= (V12,V13,V1 4,V2.3,Vo4,V34)' =(—1,0,1,0,1,0)"
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Descent Method 1: example

We move A € [0,1] in the descent direction (above), so recalcu-
lating the costs we get

C(f+AV) = > ce(fe+Ave)

B fe+AVe

- Zre—(feJr)\ve)

~ s fio—A fra+A fa2+A
ro—(fro—A) ria—(fra+A) rao—(faz+A)

1A\ 14A
2
Ct o TN a 1o

dc 1 4
a 2<u+xy+ks—xy>
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Descent Method 1: example

dc -1 4
dr T\ (122" (3=))2
which is equal to zero for A = 1/3, so this gives us out

optimal step size A. The new “distances" are shown
below. Note it is still not a shortest path graph.
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Descent Method 2

Frank-Wolfe method:
» we know we are aiming for a shortest path

» why not try to get there in one step

> given a feasible routing x, find shortest path
routing z

> setu=u—x,and A € [0,1]
> Find A o minimize the new cost C(f +Av)
> Continue
» don't really get there in one step, as shortest paths
change when load changes
> but iterations converge
> proof on following slide
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Descent Method 2

Lemma: If zis ashortest path routing wrt I, (f) (where f

is the load induced by current routing x) thenu=z—x:is
a descent direction.

Proof of Lemma: (recall the definition)
1. if x,=0thenu,=2>0
2. U, = — =tpg—tpg=0
u;pq n 4 Xu = Tpg = 1pg

HEFpq HEFpg

3. [ (Flu, = [ (F)z, — [, (f 0
l; u(fuy Hp%@(p;pq( u(f)zu—lu(f)x,) <

since z being shortest path routing implies second
sum is larger than first sum.

Hence z— X is a descent direction. O
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Methods: Dynamic feedback

ARPANET's earliest methods [1, 2].

» the M/M/1 model is not really a good model for the
Internet

> we don't a priori know the best model

» want a distributed algorithm

» what can we do?

» bright idea
> measure delays (two different methods)
> use these in a SPF routing

» problem: oscillation

> the network and traffic are not static
> doesn't take much to cause oscillation
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Greedy vs Hill Climbing

» We have discussed hill-climbing today

> actually we described descent methods, but
hill-climbing is just the reverse

> follow the path up (down) a hill (optimization
function)
» Greedy algorithms are similar
> choose the next best step at each point
> like going up a hill, but
> only a partial solution at each step until the end
> Dijkstra is a good example of a greedy algorithm
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Traffic Engineering

Modern IGP routing protocols are almost all based on
simple SPF algorithms with linear costs, but real costs
are non-linear. It works fine most of the time, but when
congestion occurs, there is a problem. Traffic
engineering is the process of rebalancing traffic loads on
a network to avoid congestion.
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Now a'days

Modern IGP routing protocols are almost all based on
simple linear cost SPF algorithms!

» link costs are static: no dependence on congestion
» mainly used for rerouting in failures

» how can we optimize if the cost function is really
non-linear

» optimization becomes choice of the best weights ae
» NP-hard so need heuristics [3, 4, 5]
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Note that there has been work on such weight optimizations to find optimal weights for a range
of traffic, or failure scenarios.
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Planning horizons

More generally

» real way o optimize network is to change its design
(which we consider next)

» planning horizon for network redesign is months
> ordering and delivery of equipment

test and verification of equipment

waiting for planned maintenance windows

availability of technical staff

capital budgeting cycles.

v VvV Vv V

» need a process to allow rebalancing of traffic on
shorter time scale: traffic engineering
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Traffic Engineering

» Traffic engineering fills the gap

» Planning horizon of hours/days: only need to change
router configuration (the link weights)
» Two methods
> link weight optimization (as above)
> MPLS: full optimization of all routing using
tunnels

» But alot of traffic engineering is still done in a very
ad hoc way.
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MultiProtocol Label Switching (MPLS) [6],can arbitrarily tunnel traffic across almost any set of
paths in our network. Finding a general routing minimizing max-utilization is an instance of
the classical multi-commodity flow problem which can be formulated as a linear program [7,
Chapter 17].
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