Communications Network Design lecture 08

Matthew Roughan
<matthew.roughan@adelaide.edu.au>

Discipline of Applied Mathematics School of Mathematical Sciences University of Adelaide

April 1, 2009

Communications Network Design: lecture 08 – p.1/51

The lecture considers non-linear, convex, objective functions for the routing problem.

Routing (continued)

The simple routing considered so far has fixed distances, but if we consider a more queueing view of networks, then packets are delayed when a link is heavily loaded, and so this increases delays. Minimum delay routing forms a non-linear, convex optimization problem with separable costs. We present two simple gradient descent methods for solution of such problems including the Frank Wolfe method.

Communications Network Design: lecture 08 – p.2/51

Recap link-state routing

- ► topology is flooded
 - \triangleright including the link weights α
- ► calculate shortest paths
 - > assumption of linear costs, based on weights
 - - * capacity constraints are ignored in the optimization
 - > so too much traffic can be routed along any one route
- ▶ note that the link weights are arbitrary
 - ▶ how can we use this to avoid congestion?
- ▶ recap notation in lecture 6

Communications Network Design: lecture 08 – p.3/51

Link loads

Once we know shortest paths, we can compute link loads

Costs are linear in the costs/distances, and loads

$$C(\mathbf{f}) = \sum_{e \in E} \alpha_e f_e = \sum_{(p,q) \in K} \hat{l}_{pq} t_{pq}$$

either link or path costs and loads can be used.

Communications Network Design: lecture 08 - p.4/51

Example cost calculation

OD pair	load t_{pq}	path	path length	$\hat{l}_{pq}t_{pq}$
(1,2)	$t_{12} = 1$	1 - 3 - 2	$\hat{l}_{12}=5$	5
(1,3)	$t_{13} = 2$	1 - 3	$\hat{l}_{13} = 3$	6
(1,4)	$t_{14} = 3$	1 - 3 - 4	$\hat{l}_{14} = 4$	12
(1,5)	$t_{15} = 4$	1 - 3 - 2 - 5	$\hat{l}_{15} = 6$	24
(2,3)	$t_{23} = 2$	3-2	$\hat{l}_{23}=2$	4
(2,4)	$t_{24} = 3$	2 - 3 - 4	$\hat{l}_{24} = 3$	9
(2,5)	$t_{25} = 3$	2 - 5	$\hat{l}_{25}=1$	3
(3,4)	$t_{34} = 2$	3 - 4	$\hat{l}_{34}=1$	2
(3,5)	$t_{35} = 1$	3 - 2 - 5	$\hat{l}_{35} = 3$	3
(4,5)	$t_{45} = 2$	4 - 3 - 2 - 5	$\hat{l}_{45}=4$	8
			total cost	76

Communications Network Design: lecture 08 – p.5/51

Example loads on links

		links			
OD pair	t_{pq}	(1,3)	(2,3)	(2,4)	(3,5)
(1,2)	$t_{12} = 1$	1	1		
(1,3)	$t_{13} = 2$	2			
(1,4)	$t_{14} = 3$	3			3
(1,5)	$t_{15} = 4$	4	4	4	
(2,3)	$t_{23} = 2$		2		
(2,4)	$t_{24} = 3$		3		
(2,5)	$t_{25} = 3$			3	
(3,4)	$t_{34} = 2$				2
(3,5)	$t_{35} = 1$		1	1	
(4,5)	$t_{45} = 2$		2	2	2
	total load	10	13	10	10

Communications Network Design: lecture 08 – p.6/51

Alternative cost calculation

link	α_e	f_e	cost $lpha_e imes f_e$
(1,3)	3	10	30
(2,3)	2	13	26
(2,4)	1	10	10
(3,5)	1	10	10
total			76

This also tells us the link loads, from which we could estimate congestion.

Communications Network Design: lecture 08 - p.7/51

Link loads

Why should this result in low cost network?

- ▶ link weights relate to link cost
- ▶ higher weight results in less traffic
- ▶ hence less cost
- ▶ relationship between link loads and shortest paths
 - ▷ shorter paths result in fewer hops

But is a linear model the right approach?

Communications Network Design: lecture 08 – p.8/51

Non-linear cost functions

Non-linear functions could be anything: we will restrict ourselves to

- ► continuous functions
 - > no breaks in the function
- ▶ differentiable
 - ▷ no corners or edges in the function
 - > assume its differentiable enough
 - > can define gradient and Hessian
- ► convex functions
 - > chords lie above the function

Communications Network Design: lecture 08 – p.9/51

Differentiable functions

The gradient $\nabla C(\mathbf{f}) = \left(\frac{\partial C(\mathbf{f})}{\partial f_e} : e \in E\right)$ is the vector of first partial derivatives of C.

For example

$$C(\mathbf{f}) = \sum_{e \in E} \frac{f_e}{r_e - f_e} = \sum_{e \in E} \left[\frac{r_e}{r_e - f_e} - 1 \right]$$

has gradient

$$rac{\partial C(\mathbf{f})}{\partial f_e} = rac{r_e}{(r_e - f_e)^2}$$
 and $\nabla C(\mathbf{f}) = egin{bmatrix} rac{r_{e_1}}{(r_{e_1} - f_{e_1})^2} & rac{r_{e_2}}{(r_{e_2} - f_{e_2})^2} & rac{r_{e_m}}{(r_{e_m} - f_{e_m})^2} \end{bmatrix}$

Communications Network Design: lecture 08 – p.10/51

Differentiable functions

The **Hessian** $\nabla^2 C(\mathbf{f}) = \left(\frac{\partial^2 C(\mathbf{f})}{\partial f_e \partial f_g} : e, g \in E\right)$ is the square matrix of all second partial derivatives of C.

Example above has

$$abla^2 C(\mathbf{f}) = egin{bmatrix} rac{2r_{e_1}}{(r_{e_1} - f_{e_1})^3} & 0 & \dots & 0 \ 0 & rac{2r_{e_2}}{(r_{e_2} - f_{e_2})^3} & \dots & 0 \ & & & & \ dots & & & \ & dots & & & \ 0 & 0 & \dots & rac{2r_{e_m}}{(r_{e_m} - f_{e_m})^3} \ \end{bmatrix}$$

Note that in this example, the Hessian is a diagonal matrix. This will always be the case when C is separable in f_e . i.e. $C(\mathbf{f}) = \sum_{e \in E} c_e(f_e)$.

Communications Network Design: lecture 08 - p.11/51

Linear cost example

$$C(\mathbf{f}) = \sum_{e \in E} \alpha_e f_e$$

$$\nabla C(\mathbf{f}) = (\alpha_1, \alpha_2, \dots \alpha_m)^T$$

$$\nabla^2 C(\mathbf{f}) = [0]$$

a matrix of 0's, since $C(\mathbf{f})$ is linear

Communications Network Design: lecture 08 - p.12/51

Convex sets

Definition: A set Ω is a convex set in R^m if for all $\mathbf{x}, \mathbf{y} \in \Omega$, $t\mathbf{x} + (1-t)\mathbf{y} \in \Omega$ for all $t \in [0,1]$.

i.e. chords between points in the set lie inside the set.

Communications Network Design: lecture 08 - p.13/51

Convex functions

Definition: Let Ω be a convex set in R^m . A function $f: \Omega \to R$ is a convex function if for all $\lambda \in (0,1)$,

$$C(\mathbf{f} + \lambda \Delta \mathbf{f}) \le C(\mathbf{f}) + \lambda (C(\mathbf{f} + \Delta \mathbf{f}) - C(\mathbf{f})),$$

for all $\mathbf{f}, \mathbf{f} + \Delta \mathbf{f} \in \Omega$. In 2-D, one can picture this as the chord joining (f, C(f)) and $(f + \Delta f, C(f + \Delta f))$ sitting above the curve y = C(f).

Communications Network Design: lecture 08 – p.14/51

Convex functions

Communications Network Design: lecture 08 - p.15/51

Convex differentiable functions

Theorem: Let Ω be a convex set in R^m . A differentiable function $C: \Omega \to R$ is convex iff

$$C(\mathbf{f} + \Delta \mathbf{f}) \ge C(\mathbf{f}) + \nabla C(\mathbf{f})^T \Delta \mathbf{f}.$$

Proof: Omitted. Proof uses a Taylor Series approach.

Thus a differentiable function is convex iff

$$C(\mathbf{f} + \Delta \mathbf{f}) - C(\mathbf{f}) \ge \nabla C(\mathbf{f})^T \Delta \mathbf{f}.$$

Says that tangents will lie below the convex function.

Communications Network Design: lecture 08 – p.16/51

Convex differentiable functions

Theorem: A differentiable function C is convex on the convex set Ω iff the Hessian $\nabla^2 C(\mathbf{f})$ is positive semidefinite on Ω i.e. C is convex iff $\mathbf{z}^T \nabla^2 C(\mathbf{f}) \mathbf{z} \geq 0$ for all vectors $\mathbf{z} \in \Omega$

i.e. C is convex iff $\Delta \mathbf{f}^T \nabla^2 C(\mathbf{f}) \Delta \mathbf{f} \geq 0$ for all $\Delta \mathbf{f} \in \Omega$.

Communications Network Design: lecture 08 - p.17/51

Example

A separable, differentiable function $C(\mathbf{f}) = \sum_e c_e(f_e)$ is convex iff $c_e''(f_e) = \frac{\partial^2 c_e(f_e)}{\partial f_e^2} \geq 0$ for all $e \in E$.

Explanation:

To be positive semi-definite we must have

$$\mathbf{z}^T \nabla^2 C(\mathbf{f}) \mathbf{z} = \sum_e rac{\partial^2 c_e(f_e)}{\partial f_e^2} z_e^2 \geq 0$$
 for all \mathbf{z} .

- (\Rightarrow) clearly if $c_e''(f_e) \ge 0$ then the sum above is ≥ 0
- (←) Also, recall that in this example,

$$\nabla^2 C(\mathbf{f}) = \left[\operatorname{diag}\{c_{e_1}''(f_{e_1}), \dots, c_{e_m}''(f_{e_m})\} \right]$$

If $\mathbf{z} = (0....0, 1, 0, ...0)^T$ with the '1' in the *i*-th spot, then $\mathbf{z}^T \nabla^2 C(\mathbf{f}) \mathbf{z} = c''_{e_i}(f_{e_i})$ and hence we must have c_{e_i} convex for all *i*

Communications Network Design: lecture 08 – p.18/51

Simple queueing model

Imagine we wish to minimize delays caused by queueing

- ▶ simple queueing model M/M/1 queue
- ▶ average queueing delay on a link is given by

$$c(f_e; r_e) = \frac{f_e}{r_e - f_e}$$

where f_e is the link load, and r_e is the capacity Assume that the interactions between queues are weak

► Kleinrock's Independence Approximation

$$C(\mathbf{f}; \mathbf{r}) = \sum_{e \in E} c(f_e; r_e) = \sum_{e \in E} \frac{f_e}{r_e - f_e}$$

Communications Network Design: lecture 08 - p.19/51

Simple queueing model

The function is increasing, convex and differentiable (except at r_e), with an asymptote at r_e

Communications Network Design: lecture 08 – p.20/51

Minima

- ► convex functions have a unique minimum
- non-convex functions can have non-unique minima, and local minima
- \blacktriangleright by definition, at the minima $\hat{\mathbf{f}}$ we get

$$C(\hat{\mathbf{f}}) \leq C(\hat{\mathbf{f}} + \Delta \mathbf{f})$$

▶ if differentiable, for all feasible routing changes

$$\nabla C(\mathbf{\hat{f}})^T \Delta \mathbf{f} \geq 0$$

reason lies in Taylor's theorem

$$C(\mathbf{f} + \lambda \Delta \mathbf{f}) = C(\mathbf{f}) + \lambda \nabla C(\mathbf{f})^T \Delta \mathbf{f} + O(\lambda^2)$$

If $\nabla\!C(\hat{\mathbf{f}})^T\Delta\mathbf{f}<0$, for small $\lambda>0$ then $C(\hat{\mathbf{f}})>C(\hat{\mathbf{f}}+\lambda\Delta\mathbf{f})$

Communications Network Design: lecture 08 - p.21/51

Feasible routing changes

Feasible change in routing Δx

▶ no path traffic can go negative

$$x_{\mu} + \Delta x_{\mu} \ge 0, \ \forall \mu \in P_{pq}$$

▶ traffic must be conserved

$$\sum_{\mu \in P_{pq}} \Delta x_{\mu} = 0, \,\, orall \left[p,q
ight] \in K,$$

▶ note that the change in link loads will be

$$\Delta f_e = \sum_{\mu \in P: e \in \mu} \Delta x_\mu \quad \forall \, e \in E$$

Communications Network Design: lecture 08 - p.22/51

Separable cost functions

 \blacktriangleright if we have cost function $C(\mathbf{f})$

$$\nabla C(\mathbf{f})^T \Delta \mathbf{f} = \sum_{e \in E} \frac{\partial C(\mathbf{f})}{\partial f_e} . \Delta f_e$$

$$= \sum_{e \in E} \frac{\partial C(\mathbf{f})}{\partial f_e} . \left(\sum_{\mu \in P: e \in \mu} \Delta x_{\mu} \right)$$

$$= \sum_{\mu \in P} \left(\sum_{e \in \mu} \frac{\partial C(\mathbf{f})}{\partial f_e} \right) . \Delta x_{\mu}$$

$$= \sum_{\mu \in P} l_{\mu}(\mathbf{f}) \Delta x_{\mu}$$

- $ightharpoonup \sum_{e \in \mu} rac{\partial C(\mathbf{f})}{\partial f_e} = l_{\mu}(\mathbf{f})$ is called path length (again)
- \blacktriangleright note that path length now depends on the loads ${f f}$

Communications Network Design: lecture 08 - p.23/51

Shortest path with non-linear costs

 $l_{\mu}(\mathbf{f})$ is called the length of path μ , and

$$\nabla C(\mathbf{f})^T \Delta \mathbf{f} = \sum_{\mu \in P} l_{\mu}(\mathbf{f}) \Delta x_{\mu}.$$

For a load f and any O-D pair $[p,q] \in K$, let

$$\hat{l}_{pq}(\mathbf{f}) = \min\{l_{\mu}(\mathbf{f}): \mu \in P_{pq}\}$$

As before, we call a path $\mu = \hat{\mu} \in P_{pq}$ for which $l_{\hat{\mu}}(\mathbf{f}) = \hat{l}_{pq}(\mathbf{f})$ a shortest path for [p,q].

Note that this is consistent with the previous example where $\frac{\partial C}{\partial f_e} = \alpha_e$.

Communications Network Design: lecture 08 - p.24/51

Shortest path with non-linear costs

Theorem: A minimum cost routing implies a shortest path routing (though the reverse is not necessarily true).

Proof: Suppose the routing is NOT a shortest path routing. In particular, assume some traffic for the O-D pair $[p,q] \in K$ is assigned to a path $\mu' \in P_{pq}$ which is NOT of shortest length. That is,

$$l_{\mu'}(\mathbf{f}) > \hat{l}_{pq}(\mathbf{f})$$
 and $x_{\mu'} > 0$.

Let $\hat{\mu} \in P_{pq}$ be a shortest path for [p,q]. So $l_{\hat{\mu}}(\mathbf{f}) = \hat{l}_{pq}(\mathbf{f})$.

Communications Network Design: lecture 08 - p.25/51

Shortest path with non-linear costs

Proof (continued): Reroute as follows:

$$egin{array}{lll} \Delta x_{\mu'} &= -\delta \ \Delta x_{\hat{\mu}} &= \delta \ \Delta x_{\mu} &= 0 & orall & ext{other } \mu \in P, \end{array}$$

where $0 < \delta \le x_{u'}$. Then note $l_{u'}(\mathbf{f}) > l_{\hat{\mu}}(\mathbf{f})$

$$\begin{split} \nabla C(\mathbf{f})^T \Delta \mathbf{f} &= \sum_{\mu \in P} l_\mu(\mathbf{f}) \Delta x_\mu \\ &= -l_{\mu'}(\mathbf{f}) \delta + l_{\hat{\mu}}(\mathbf{f}) \delta \\ &= (-l_{\mu'}(\mathbf{f}) + l_{\hat{\mu}}(\mathbf{f})) \delta \\ &\quad \text{(something -ve)}. \text{ (something +ve)} \\ &< 0. \end{split}$$

Thus if the routing is not a shortest path routing, $\nabla C(\mathbf{f})^T \Delta \mathbf{f} < 0$ which means it cannot be minimum cost.

Communications Network Design: lecture 08 – p.26/51

Shortest path with convex costs

Theorem: If $C(\mathbf{f})$ is convex and differentiable, then \mathbf{x} is a minimum cost routing iff \mathbf{x} is a shortest path routing.

Proof: ⇒ from previous theorem ← from properties of convex functions:

- ▶ assume we have shortest path routing, e.g. $x_{\mu} = 0, \forall \mu \in P_{pq}$ not a shortest path
- ▶ for a routing change $\Delta \mathbf{x}$, then $\Delta x_{\mu} \geq 0, \forall \mu \in P_{pq}$ which are **not** shortest paths, i.e.

$$\Delta x_{\mu} \geq 0$$
 when $l_{\mu}(\mathbf{f}) > \hat{l}_{pq}(\mathbf{f})$

lacktriangledown Also, for all $\mu \in P_{pq}$ which are shortest paths, $\Delta x_{\mu} \geq -x_{\mu}$ when $l_{\mu}(\mathbf{f}) = \hat{l}_{pq}(\mathbf{f})$.

Communications Network Design: lecture 08 - p.27/51

Shortest path with convex costs

Proof: (cont)
$$\Rightarrow$$
 $(l_{\mu}(\mathbf{f}) - \hat{l}_{pq}(\mathbf{f}))\Delta x_{\mu} \geq 0, \ \forall [p,q], \mu \in P_{pq}$

- \blacktriangleright either first term > 0 and second ≥ 0
- ▶ or first term =0, so second term is irrelevant

So
$$l_{\mu}(\mathbf{f})\Delta x_{\mu} \geq \hat{l}_{pq}(\mathbf{f})\Delta x_{\mu}.$$
 Therefore

$$\begin{split} \nabla C(\mathbf{f})^T \Delta \mathbf{f} &= \sum_{\mu \in P} l_{\mu}(\mathbf{f}) \Delta x_{\mu} \\ &= \sum_{[p,q] \in K} \sum_{\mu \in P_{pq}} l_{\mu}(\mathbf{f}) \Delta x_{\mu} \\ &\geq \sum_{[p,q] \in K} \sum_{\mu \in P_{pq}} \hat{l}_{pq}(\mathbf{f}) \Delta x_{\mu} \\ &= \sum_{[p,q] \in K} \hat{l}_{pq}(\mathbf{f}) \left(\sum_{\mu \in P_{pq}} \Delta x_{\mu} \right) = 0, \quad \text{since } \sum_{\mu \in P_{pq}} \Delta x_{\mu} = 0. \end{split}$$

Communications Network Design: lecture 08 – p.28/51

Shortest path with convex costs

Proof: (cont)

Thus $\nabla C(\mathbf{f})^T \Delta \mathbf{f} \geq 0$ for all feasible changes in load $\Delta \mathbf{f}$.

Now one of the properties of a convex differentiable function $C(\mathbf{f})$ is that

$$C(\mathbf{f} + \Delta \mathbf{f}) - C(\mathbf{f}) \ge \nabla C(\mathbf{f})^T \Delta \mathbf{f}.$$

If $C(\hat{\mathbf{f}})^T \Delta \mathbf{f} \geq 0$ then

$$C(\hat{\mathbf{f}} + \Delta \mathbf{f}) - C(\hat{\mathbf{f}}) \ge 0$$

or alternatively $C(\hat{\mathbf{f}} + \Delta \mathbf{f}) \geq C(\hat{\mathbf{f}})$, which means that $C(\hat{\mathbf{f}})$ takes its minimum value at $\hat{\mathbf{f}}$. \square

Communications Network Design: lecture 08 - p.29/51

Descent Methods

Definition: A vector $\mathbf{u} \in R^{|P|}$ is said to be a **descent** direction for the routing \mathbf{x} , with induced load \mathbf{f} , if

- (i) $u_{\mu} < 0 \Rightarrow x_{\mu} > 0$. we can only subtract traffic from a path μ if there is some traffic on it in the first place!
- (ii) $\sum_{\mu \in P_{pq}} u_{\mu} = 0$ \forall O-D pairs $(p,q) \in K$ any traffic we take from one path μ must be added to the traffic on some other path(s)
- (iii) $\sum_{\mu \in P} l_{\mu}(\mathbf{f}) u_{\mu} < 0$ it is a descent vector, i.e., the change in C by going a small distance in this direction is negative.

Communications Network Design: lecture 08 - p.30/51

Descent Methods: notes

ightharpoonup The change in C for a small change $\lambda \mathbf{u}$ will be

$$C(\mathbf{f} + \lambda \Delta \mathbf{f}) - C(\mathbf{f}) = \lambda \sum_{\mu \in P} l_{\mu}(\mathbf{f}) u_{\mu} + O(\lambda^{2})$$

and we require that $\sum_{\mu \in P} l_{\mu}(\mathbf{f}) u_{\mu} < 0$

- The change in routing will be $\Delta x = \lambda u$, for some small $\lambda > 0$. λ must be chosen with two things in mind:
 - (a) $x + \Delta x$, the new routing, must still be feasible.
 - (b) we only go as far in the direction ${\bf u}$ as we need to, to get maximum decrease in $C({\bf f})$, in that direction.

Communications Network Design: lecture 08 – p.31/51

Descent Methods

Broadly, the method consists of the following steps:

- 1. Choose a feasible descent direction $\mathbf{u} \in R^{|P|}$.
- 2. Given that the new routing will be $\mathbf{x} + \lambda \mathbf{u}$, choose a step length $\lambda > 0$ so that
 - (i) $x + \lambda u$ is feasible (i.e. ≥ 0)
 - (ii) $x + \lambda u$ minimises the cost of the induced load.
- 3. Change the routing and the induced load
- 4. Unless you have a minimum, goto step 1.
 - (i) For convex costs, when we have a shortest path routing, we have reached the minima.

Communications Network Design: lecture 08 – p.32/51

Calculating the new cost

Take the change in routing to be $\Delta x = \lambda u$

$$\Delta f_e = \sum_{\mu: e \in \mu} \Delta x_{\mu}$$
$$= \lambda \sum_{\mu: e \in \mu} u_{\mu}$$
$$= \lambda v_e$$

where we define $v_e = \sum_{\mu: e \in \mu} u_\mu$ and $\mathbf{v} = (v_e: e \in E) \in R^m$.

More succinctly $\Delta \mathbf{f} = \lambda \mathbf{v}$ and the new cost is $C(\mathbf{f} + \lambda \mathbf{v})$.

Communications Network Design: lecture 08 - p.33/51

Descent Method 1

Simple exchange method:

- ▶ transfer some traffic from a longer path $\mu^* \in P_{pq}$ to a shortest path $\hat{\mu} \in P_{pq}$, i.e. $l_{\mu^*}(\mathbf{f}) > l_{\hat{\mu}}(\mathbf{f}) = l_{\hat{\mu}}(\mathbf{f})$
- \blacktriangleright descent direction \mathbf{u} has components

$$egin{array}{ll} u_{\mu^*} &= -1 & {\sf transfer off} \ \mu^* \ u_{\hat{\mu}} &= +1 & {\sf transfer onto} \ \hat{\mu^*} \ u_{\mu} &= 0 & orall \ {\sf other} \ \mu \in P \end{array}$$

Note that with u as above

$$\sum_{\mu} l_{\mu} u_{\mu} = + l_{\hat{\mu}}(\mathbf{f}) - l_{\mu^*}(\mathbf{f}) < 0$$

and therefore u is a descent direction.

Communications Network Design: lecture 08 – p.34/51

Descent Method 1

Simple exchange method:

▶ to maintain feasibility we require

$$0 \le \lambda \le x_{\mu^*}$$

 \blacktriangleright the vector v has components

$$v_e = \left\{ egin{array}{ll} 1 & ext{if } e \in \hat{\mu} ext{ and } e
otin \mu^* \ -1 & ext{if } e \in \mu^* ext{ and } e
otin \hat{\mu} \ 0 & ext{otherwise} \end{array}
ight.$$

▶ We wish to determine $\lambda^* \in [0, x_{\mu^*}]$ which minimises $C(\mathbf{f} + \lambda \mathbf{v})$

Communications Network Design: lecture 08 – p.35/51

Descent Method 1: example

An example network

Capacities r_e

 r_{e}

Traffic demands t_{pq}

Communications Network Design: lecture 08 – p.36/51

Descent Method 1: example

Assume direct routing of the traffic

Costs
$$c_e(f_e) = \frac{f_e}{r_e - f_e}$$

$$\frac{dc_e}{df_e} = \frac{r_e}{(r_e - f_e)^2}$$

$$\frac{c_{e}}{f_{e}}$$
 $\frac{2}{4/9}$
 $\frac{2}{2}$
 $\frac{2}{4/9}$
 $\frac{2}{4/9}$
 $\frac{2}{4/9}$
 $\frac{2}{4/9}$
 $\frac{2}{4/9}$

Total cost
$$C(\mathbf{f}) = \sum_{e} c_e(f_e) = 3.\frac{1}{2-1} + 3.\frac{1}{4-1} = 4$$

Communications Network Design: lecture 08 - p.37/51

Descent Method 1: example

shortest paths are as follow:

OD pair	direct path	shortest path
1,2	1 - 2	1 - 4 - 2
1,3	1 - 3	1 - 4 - 3
1,4	1 - 4	1 - 4
2,3	2-3	2 - 4 - 3
2,4	2 - 4	2 - 4
3,4	3 - 4	3 - 4

- ▶ not all traffic is routed on the shortest path!
- For example: O-D pair [1,3], the shortest route would be 1-4-3 (length of $\frac{8}{9}$), but at present the traffic is routed on 1-3 (length of 2)

Communications Network Design: lecture 08 – p.38/51

Descent Method 1: example

We transfer some load from a direct path, to a shortest path e.g. transfer some flow from path $\mu=1-2$ to $\mu=1-4-2$.

In this problem, there are 30 paths in this network. So $\mathbf x$ and $\mathbf u$ have 30 entries. Listing all paths lexicographically, e.g. paths

$$1-2, 1-2-3, 1-2-4, 1-2-3-4, 1-2-4-3,$$
 $1-3, 1-3-2, 1-3-4, 1-3-2-4, 1-3-4-2,$
 $1-4, 1-4-2, 1-4-3, 1-4-2-3, 1-4-3-2, \dots$

Communications Network Design: lecture 08 - p.39/51

Descent Method 1: example

We need to calculate v_e given the above descent direction

- \blacktriangleright $u_{1-2} = -1$ which says
 - \triangleright we reduce the traffic on path 1-2
 - \triangleright and hence on link 1-2
 - \triangleright so this gives us $v_{1-2} = -1$
- ▶ $u_{1-4-2} = 1$ which says
 - \triangleright we increase the traffic on path 1-4-2
 - \triangleright and hence on links 1-4 and 4-2
 - \triangleright so this gives us $v_{1-4} = v_{4-2} = 1$

Net effect is

$$\mathbf{v} = (v_{1-2}, v_{1-3}, v_{1-4}, v_{2-3}, v_{2-4}, v_{3-4})^T = (-1, 0, 1, 0, 1, 0)^T$$

Communications Network Design: lecture 08 – p.40/51

Descent Method 1: example

We move $\lambda \in [0,1]$ in the descent direction (above), so recalculating the costs we get

$$C(\mathbf{f} + \lambda \mathbf{v}) = \sum_{e} c_{e}(f_{e} + \lambda v_{e})$$

$$= \sum_{e} \frac{f_{e} + \lambda v_{e}}{r_{e} - (f_{e} + \lambda v_{e})}$$

$$= c + \frac{f_{1-2} - \lambda}{r_{1-2} - (f_{1-2} - \lambda)} + \frac{f_{1-4} + \lambda}{r_{1-4} - (f_{1-4} + \lambda)} + \frac{f_{4-2} + \lambda}{r_{4-2} - (f_{4-2} + \lambda)}$$

$$= c + \frac{1 - \lambda}{2 - 1 + \lambda} + 2\frac{1 + \lambda}{4 - 1 - \lambda}$$

$$\frac{dC}{d\lambda} = 2\left(\frac{-1}{(1 + \lambda)^{2}} + \frac{4}{(3 - \lambda)^{2}}\right)$$

Communications Network Design: lecture 08 – p.41/51

Descent Method 1: example

$$\frac{dC}{d\lambda} = 2\left(\frac{-1}{(1+\lambda)^2} + \frac{4}{(3-\lambda)^2}\right)$$

which is equal to zero for $\lambda = 1/3$, so this gives us out optimal step size λ . The new "distances" are shown below. Note it is still not a shortest path graph.

Communications Network Design: lecture 08 – p.42/51

Descent Method 2

Frank-Wolfe method:

- ▶ we know we are aiming for a shortest path
- ▶ why not try to get there in one step
 - $\,\triangleright\,$ given a feasible routing x, find shortest path routing z
 - \triangleright set $\mathbf{u} = \mathbf{u} \mathbf{x}$, and $\lambda \in [0,1]$
 - \triangleright Find λ to minimize the new cost $C(\mathbf{f} + \lambda \mathbf{v})$
 - Continue
- ▶ don't really get there in one step, as shortest paths change when load changes
 - > but iterations converge
 - > proof on following slide

Communications Network Design: lecture 08 - p.43/51

Descent Method 2

Lemma: If z is a shortest path routing $wrt l_{\mu}(f)$ (where f is the load induced by current routing x) then u = z - x is a descent direction.

Proof of Lemma: (recall the definition)

1. if
$$x_{\mu} = 0$$
 then $u_{\mu} = z_{\mu} \ge 0$

2.
$$\sum_{\mu \in P_{pq}} u_{\mu} = \sum_{\mu \in P_{pq}} z_{\mu} - \sum_{\mu \in P_{pq}} x_{\mu} = t_{pq} - t_{pq} = 0$$

3.
$$\sum_{\mu \in P} l_{\mu}(\mathbf{f}) u_{\mu} = \sum_{[[p,q] \in K} \sum_{\mu \in P_{pq}} (l_{\mu}(\mathbf{f}) z_{\mu} - l_{\mu}(\mathbf{f}) x_{\mu}) < 0$$

since z being shortest path routing implies second sum is larger than first sum.

Hence z - x is a descent direction. \Box

Communications Network Design: lecture 08 – p.44/51

Methods: Dynamic feedback

ARPANET's earliest methods [1, 2].

- ► the M/M/1 model is not really a good model for the Internet
 - > we don't a priori know the best model
- ▶ want a distributed algorithm
- ▶ what can we do?
- ▶ bright idea

 - □ use these in a SPF routing
- ▶ problem: oscillation
 - by the network and traffic are not static
 - b doesn't take much to cause oscillation

Communications Network Design: lecture 08 – p.45/51

Greedy vs Hill Climbing

- ▶ We have discussed hill-climbing today
 - > actually we described descent methods, but hill-climbing is just the reverse
 - ▶ follow the path up (down) a hill (optimization function)
- ► Greedy algorithms are similar
 - ▷ choose the next best step at each point
 - ▷ like going up a hill, but
 - ▷ only a partial solution at each step until the end
 - Dijkstra is a good example of a greedy algorithm

Communications Network Design: lecture 08 - p.46/51

Traffic Engineering

Modern IGP routing protocols are almost all based on simple SPF algorithms with linear costs, but real costs are non-linear. It works fine most of the time, but when congestion occurs, there is a problem. Traffic engineering is the process of rebalancing traffic loads on a network to avoid congestion.

Communications Network Design: lecture 08 – p.47/51

Now a'days

Modern IGP routing protocols are almost all based on simple linear cost SPF algorithms!

- ▶ link costs are static: no dependence on congestion
- mainly used for rerouting in failures
- ► how can we optimize if the cost function is really non-linear
- lacktriangle optimization becomes choice of the best weights $lpha_e$
- ▶ NP-hard so need heuristics [3, 4, 5]

Communications Network Design: lecture 08 – p.48/51

Note that there has been work on such weight optimizations to find optimal weights for a range of traffic, or failure scenarios.

Communications Network Design: lecture 08 – p.47/51

Communications Network Design: lecture 08 - p.48/51

Planning horizons

More generally

- ► real way to optimize network is to change its design (which we consider next)
- ▶ planning horizon for network redesign is months
 - > ordering and delivery of equipment
 - > test and verification of equipment
 - ▶ waiting for planned maintenance windows
 - ▷ availability of technical staff
 - > capital budgeting cycles.
- ▶ need a process to allow rebalancing of traffic on shorter time scale: traffic engineering

Communications Network Design: lecture 08 - p.49/51

Traffic Engineering

- ► Traffic engineering fills the gap
- ► Planning horizon of hours/days: only need to change router configuration (the link weights)
- ► Two methods

 - ▶ MPLS: full optimization of all routing using tunnels
- ▶ But a lot of traffic engineering is still done in a very ad hoc way.

Communications Network Design: lecture 08 - p.50/51

MultiProtocol Label Switching (MPLS) [6],can arbitrarily tunnel traffic across almost any set of paths in our network. Finding a general routing minimizing max-utilization is an instance of the classical multi-commodity flow problem which can be formulated as a linear program [7, Chapter 17].

References

- [1] J. M.McQuillan, G. Falk, and I. Richer, "A review of the development and performance of the ARPANET routing algorithm," IEEE Transactions on Communication, vol. COM-26, pp. 60-74, December 1978.
- [2] J. M.McQuillan, I. Richer, and E. C. Rosen, "A new routing algorithm for the ARPANET," IEEE Transactions on Communication, vol. COM-28, pp. 711-719, May 1980.
- [3] B. Fortz, J. Rexford, and M. Thorup, "Traffic engineering with traditional IP routing protocols," IEEE Communications Magazine, vol. 40, no. 10, pp. 118-124, 2002.
- [4] B. Fortz and M. Thorup, "Optimizing OSPF/IS-IS weights in a changing world," IEEE Journal on Selected Areas in Communications, vol. 20, no. 4, pp. 756-767, 2002.
- [5] M. Roughan, M. Thorup, and Y. Zhang, "Performance of estimated traffic matrices in traffic engineering," in ACM SIGMETRICS, (San Diego, CA, USA), pp. 326–327, 2003.
- [6] E. C. Rosen, A. Viswanathan, and R. Callon, "Multiprotocol label switching architecture." Network Working Group, Request for Comments: 3031, 2001.
- [7] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, Algorithms, and Applications. Upper Saddle River, New Jersey: Prentice Hall, 1993.

Communications Network Design: lecture 08 – p.51/51

