
Communi
ations Network Designle
ture 07Matthew Roughan
<matthew.roughan@adelaide.edu.au>Dis
ipline of Applied Mathemati
sS
hool of Mathemati
al S
ien
esUniversity of AdelaideApril 1, 2009

Communications Network Design: lecture 07 – p.1/44

Routing (
ontinued)

We
ontinue the algorithmi
 viewpoint by
onsidering analternative to Dijkstra
alled the Floyd-Warshallalgorithm. Also we
onsider routing implementation:OSPF, IS-IS, and some mis
ellaneous issues su
h as loadbalan
ing. Finally we will look into the distributedBellman-Ford dynami
 programming algorithm asimplemented in RIP.
Communications Network Design: lecture 07 – p.2/44

Floyd-Warshall

Alternative to Dijkstra for all-pairs shortest pathproblemsame input as Dijkstra (ex
ept no start node)add nodes in one by one, and
ompute shortestpaths as you add in a nodeshortest path is either the sameor
hanges to in
lude the new node

Communications Network Design: lecture 07 – p.3/44

Floyd-Warshall

Let D(k)
i j denote the shortest path length from node i tonode j using intermediate nodes from 1 to k only.Initialise: D(0)

i j = di j ∀ i, j ∈ N

V (0) = [0], an |N|× |N| zero matrix.Step: for k = 1,2, . . .n,
ompute new distan
e estimates

D(k)
i j =min{D(k−1)

i j ,D(k−1)
ik +D(k−1)

k j } ∀ i 6= jCompute the prede
essor nodesIf D(k)
i j < D(k−1)

i j put V (k)
i j = k;otherwise, V (k)

i j = V (k−1)
i j

Communications Network Design: lecture 07 – p.4/44

Floyd-WarshallThe initialisation step gives the shortest pathlengths subje
t to no intermediate nodesFor a given k, D(k−1)
i j gives the shortest path from ito j using only nodes 1 through k−1 as possibleintermediate nodes.On allowing node k as an intermediate node, either kIS on the shortest path, or it isn't.it isn't: keep the same distan
e, and path

D(k)
i j = D(k−1)

i j and V (k)
i j = V (k−1)

i jit is: the new path must be made of twoshortest paths, joined by node k, i.e. i−k and k−j

D(k)
i j = D(k−1)

ik +D(k−1)
k j

V (k)
i j shows where the join o

urred

Communications Network Design: lecture 07 – p.5/44

Floyd-Warshall

The 0's in V (n) determine the adja
en
ies (links) inthe �nal network.

V (n)
i j indi
ates that we never found a shorterpath than di j along the dire
t path.hen
e i and j are adja
ent in the SPF treeThe other terms in V (n) show the prede
essor nodesfor ea
h end-to-end path.
onstru
t paths, by
on
atenating prede
essornodes

Communications Network Design: lecture 07 – p.6/44

Floyd-Warshall example
3

6

4

6

2 5

1

1

2 4

3 5

1

Communications Network Design: lecture 07 – p.7/44

Floyd-Warshall example

Initially, we put dire
t links into the matrix D
D(0)

i j =

1 2 3 4 5

1 0 6 3 ∞ ∞
2 0 2 4 1
3 0 1 6
4 0 5
5 0

V (0) =

1 2 3 4 5

1 0 0 0 0 0
2 0 0 0 0
3 0 0 0
4 0 0
5 0

3

6

4

6

2 5

1

1
1

2 4

3 5

Communications Network Design: lecture 07 – p.8/44

Floyd-Warshall example

k = 1: in
lude node 1 on existing dire
t paths (so anypath already
ontaining node 1 e.g. top line and �rst
olumn of D,
an be ignored). Here, nothing
hanges.

D(1)
i j =

1 2 3 4 5

1 0 6 3 ∞ ∞
2 0 2 4 1
3 0 1 6
4 0 5
5 0

V (1) =

1 2 3 4 5

1 0 0 0 0 0
2 0 0 0 0
3 0 0 0
4 0 0
5 0

3

6

4

6

2 5

1

1

2 4

3 5

1

Communications Network Design: lecture 07 – p.9/44

Floyd-Warshall example

k = 2: try in
luding node 2 on existing paths (so any pathalready
ontaining node 2 e.g. line 2 and se
ond
olumnof D,
an be ignored).

D(2)
i j =

1 2 3 4 5

1 0 6 3 10 7
2 0 2 4 1
3 0 1 3
4 0 5
5 0

V (2) =

1 2 3 4 5

1 0 0 0 2 2
2 0 0 0 0
3 0 0 2
4 0 0
5 0

3

6

4

6

2 5

1

1

10

7
3

1

4

3 5

2

Communications Network Design: lecture 07 – p.10/44

Floyd-Warshall example

k = 3: try in
luding node 3 on existing paths (so any pathalready
ontaining node 3 e.g. line 3 and third
olumn of
D,
an be ignored).

D(3)
i j =

1 2 3 4 5

1 0 5 3 4 6
2 0 2 3 1
3 0 1 3
4 0 4
5 0

V (3) =

1 2 3 4 5

1 0 3 0 3 3
2 0 0 3 0
3 0 0 2
4 0 3
5 0

3

6

4

6

2 5

1

1
5

4

1

4

5

2

3

E.G. The old path joining 4-5 was a dire
t link withdistan
e D(2)
45 = 5. But when we are allowed to in
ludenode 3, we get an alternative D(2)

43 +D(2)
35 = 4, whi
h isbetter, so we set D(3)

45 = 4, and V (3)
45 = 3.

Communications Network Design: lecture 07 – p.11/44

Floyd-Warshall example

k = 4: try in
luding node 4 on existing paths:No
hanges.

D(4)
i j =

1 2 3 4 5

1 0 5 3 4 6
2 0 2 3 1
3 0 1 3
4 0 4
5 0

V (4) =

1 2 3 4 5

1 0 3 0 3 3
2 0 0 3 0
3 0 0 2
4 0 3
5 0

3

6

4

6

2 5

1

1

2

3 5

1

4

Communications Network Design: lecture 07 – p.12/44

Floyd-Warshall example

k = 5: try in
luding node 5 on existing paths. The entries
D(5)

i j give the length of the shortest path from ea
h node
i to ea
h other node j.
D(5)

i j =

1 2 3 4 5

1 0 5 3 4 6
2 0 2 3 1
3 0 1 3
4 0 4
5 0

V (5) =

1 2 3 4 5

1 0 3 0 3 3

2 0 0 3 0

3 0 0 2
4 0 3
5 0Use the boxed zero entries in the �nal V to determinelinks: (1,3), (2,3), (2,5), (3,4).

Communications Network Design: lecture 07 – p.13/44

Floyd-Warshall shortest paths

3
2

1

1
1

3

2 4

5

Communications Network Design: lecture 07 – p.14/44

Floyd-Warshall
omplexity

In
al
ulating D(k)
i j at ea
h step, we need to
omparetwo possibilities for ea
h of |N|(|N|−1)

2
pairs ofnodes.the algorithm has |N| stepstotal
omputational
omplexity is O(|N|3).This of
ourse is the same as repeating simpleversion of Dijkstra's algorithm |N| times (for ea
hof |N| sour
es)

Communications Network Design: lecture 07 – p.15/44

Alternative algorithms

Dijkstra and FW assume non-negative weightsnot a problem for network appli
ationsfor more general appli
ations, use Bellman-Ford
an be used on graphs with negative edgeweightsas long as the graph
ontains no negative
y
lerea
hable from the sour
e nodeJohnson's algorithm solves all pairs shortest paths,may be faster than Floyd-Warshall on sparsegraphs.
Communications Network Design: lecture 07 – p.16/44

Routing implementationmust obtain
onsistent results between routersto avoid route loops, or dead-endsmust adapt to
hanging networkroute around link or node failuresmust use a distributed algorithman algorithm whi
h enables a
ommon obje
tive of two ormore peer pro
esses to be performed jointly by the
ombination of pro
essing and ex
hanging information.The distributed algorithm is broken down into a set of lo
alalgorithms, one of whi
h is performed by ea
h peer pro
ess.Ea
h lo
al pro
ess
arries out various operations on theavailable data, and at various points in the algorithm, itsends/re
eives data to/from other peer pro
esses.

Communications Network Design: lecture 07 – p.17/44

SPF implementation

Implementation is performed by a routing proto
olrouting proto
ol performs SPF
al
ulation�rst needs to �nd out the topology, and weightsea
h router �oods its available topology informationto all other routerstakes the form of LSAsLink State Announ
ementsa router sends LSA des
ribing its links toadja
ent routers
ld LSA in
ludes link weightneighbours forward (non-dupli
ate) LSAs totheir neighbourshen
e this is
alled a link-state routing proto
ol

Communications Network Design: lecture 07 – p.18/44

SPF implementation

on
e a router has seen all LSAit knows the
omplete topologyit
an perform Dijkstra to
ompute shortestpaths to all other routersnote that ea
h router only needs to performDijkstra on
eit only needs to know paths from itself, to theother routers.hen
e O(|N|2) for simple implementation

O(|N|3) workload is distributed over |N| routers

Communications Network Design: lecture 07 – p.19/44

SPF routing implementations

ommon implementationsOSPF [1℄Open Shortest Path Firstseveral RFCs needed to see all possibilitiesIS-IS [2℄Intermediate System-Intermediate Systemseveral RFCs needed to see all possibilitiessome amusement: RFC 4041, �Requirements forMorality Se
tions in Routing Area Drafts�

ftp://ftp.rfc-editor.org/in-notes/rfc4041.txtIt has often been the
ase that morality has not been given proper
onsideration in the design and spe
i�
ation of proto
ols produ
ed withinthe Routing Area. This has led to a de
line in the moral values within theInternet and attempts to retro�t a suitable moral
ode to implementedand deployed proto
ols has been shown to be sub-optimal...

Communications Network Design: lecture 07 – p.20/44

ftp://ftp.rfc-editor.org/in-notes/rfc4041.txt

OSPFsoft stateperiodi
ally refresh LSA informationalso ex
hange hello messages (betweenneighbouring routers) to test link statesin
ase a failure happens, and isn't dete
tednot routedLSAs are just sent in IP pa
ketslike everything elsetransmitted over IP (proto
ol 89)not over TCP, so not reliable transportbut you
an't route, until you have routeshen
e forwarding of LSAs is limited to adja
entrouters
Communications Network Design: lecture 07 – p.21/44

S
aling of OSPF

as noted earlier, if |N| is too large,
omputing SPFtakes too long, and we run into problemshow
an you build large (|N| ∼ 1000) networksuse (2 level) hiera
hyin subnetworks
ompute shortest paths
ompute the shortest paths between subnets
ombine the twonot as simple as it soundsexample OSPF areas
area 0 is the ba
kbone (1st level)other areas are the subnetworks (2nd level)

Communications Network Design: lecture 07 – p.22/44

S
aling of OSPF
area 1

area 2

area 3

area 0
a different AS

Communications Network Design: lecture 07 – p.23/44

S
aling of OSPF
area 1

area 2

area 3

border
routers

area 0

internal routers

a different AS

Communications Network Design: lecture 07 – p.23/44

S
aling of OSPF
area 1

area 2

area 3

area 0
a different AS

gateway router

backbone routers

Communications Network Design: lecture 07 – p.23/44

Load balan
ingin some
ases there will be two (or more) equaldistan
e paths from sour
e to destinationDijkstra and FW only give you one pathsolution is non-uniquemore ef�
ient to share load over both paths

10.0.0.0/8

shortest paths

1 2

3

4

5 6

Communications Network Design: lecture 07 – p.24/44

Dijkstra and load balan
ing

for all destination nodes in graph, you have ashortest pathstart at a parti
ular destinationre
ursively des
end through neighbours at the rightdistan
e ba
kalgorithm exponential in number of paths, but this ishopefully small
Communications Network Design: lecture 07 – p.25/44

Dijkstra and load balan
ing ex.

shortest paths

all links have unit weight

10.0.0.0/8
1 2

3

4

5 6

7 8

Communications Network Design: lecture 07 – p.26/44

Dijkstra and load balan
ing ex.

10.0.0.0/8

shortest paths

distance from node 1

0 1

2

2

2 3

3 4

Communications Network Design: lecture 07 – p.26/44

Dijkstra and load balan
ing ex.

10.0.0.0/8

2+1=3

2+1=3

4+1=3

distance of
node 8

link weight

from node 5, compare neighbours

distance of
node 53+1=3

0 1

2

2

2 3

3 4

Communications Network Design: lecture 07 – p.26/44

Dijkstra and load balan
ing ex.

10.0.0.0/8

routes (so far)

0 1

2

2

2 3

3 4

Communications Network Design: lecture 07 – p.26/44

Load balan
ing implementation

method onesplit traf�
 up by addressesinstead of a simple forwarding tablee.g. at router 2, the next hop router to pre�x10.0.0.0/8 is router 3have two forwarding table entriese.g. forwarding table (at router 2)

destination next hop router10.0.0.0/9 310.1.0.0/9 4

traf�
 betwen different pre�xes may be uneven

Communications Network Design: lecture 07 – p.27/44

Load balan
ing implementation

method twoneed multiple paths in forwarding tabledestination next hop router10.0.0.0/8 3 or 4allo
ate traf�
 between two next hops randomlyas it arrivesmethod is simpler to administratebetter balan
e of traf�
may reorder pa
ketsmethod two(b)randomize �rst pa
ket of a �owsubsequent pa
kets of �ow follow same route

Communications Network Design: lecture 07 – p.28/44

Load balan
ing implementation

method threeallo
ate traf�
 randomly between two pathsbut randomization is based on a hash of the IPsour
e and destination addresseffe
t is random allo
ationbut with all pa
kets between same sour
e anddestination using the same pathso no reordering within a TCP
onne
tionhash needs to be randomized at ea
h node,otherwise multiple splits don't workdifferent seeds for randomization at ea
hrouter
Communications Network Design: lecture 07 – p.29/44

Load balan
ing implementation

method 3 without random seeds in hashes
10.0.0.0/8

no traffic

traffic flows

h(i)=1

h(i)=1

h() is the hash
 1 = interface 1
 2 = interface 2

1 2

3

4

5

6

7

8

9

Communications Network Design: lecture 07 – p.30/44

Link weights

What should be the link weights αe?real, physi
al distan
e?delay of pa
kets along link?hop
ount (e.g. αe = 1)?some arbitrary number?Cis
o defaultinverse
apa
ity weights αe = A/rethe higher
apa
ity links are nominally �shorter�en
ourages traf�
 to use higher
apa
ity linksit
an lead to weird routing

Communications Network Design: lecture 07 – p.31/44

Link weights

Adelaide

routing

Bordertown Ballarat

Melbourne

r =10e

r =1e

r =10e

r =100e

may think don't need link between Ballarat andBordertown, be
ause it has no traf�
but its just be
ause routing is taking a longer pathdire
t path: D = we = 100/re = 100indire
t path: D = 10+10+1 = 21inverse
apa
ity is often the wrong
hoi
e

Communications Network Design: lecture 07 – p.32/44

Link weights

Adelaide

routing

Bordertown Ballarat

Melbourne

w =100 e

w =10 e
w =10 e

w =1 e

may think don't need link between Ballarat andBordertown, be
ause it has no traf�
but its just be
ause routing is taking a longer pathdire
t path: D = we = 100/re = 100indire
t path: D = 10+10+1 = 21inverse
apa
ity is often the wrong
hoi
e

Communications Network Design: lecture 07 – p.32/44

Link weights
orre
t
hoi
e depends on obje
tives
ommon
ases o

ur when minimizing delays:if propagation delay is dominantminimize physi
al path distan
eweight = link distan
e, e.g. αe = deif pro
essing and transmission time dominateminimize the hop
ount, e.g. αe = 1if queueing
auses most delays, need to minimizeloads on linksearly ARPANET had load-sensitive routingmeasured pa
ket delays along links (to get αe)sent pa
ket along shortest (delay) path
an also write link weight
hoi
e as an optimizationproblem (
alled traf�
 engineering)

Communications Network Design: lecture 07 – p.33/44

In
remental Dijkstra

As noted above, Dijkstra doesn't s
ale as well as wemight like.network of 1000 nodes need some kind of hiera
hyalternatively, note that most of the time thenetwork doesn't
hangewhen it does
hange, it is usually only a lo
al
hange in a few linksperhaps we don't have to re
ompute everythingfrom s
rat
h?in
remental Dijkstra algorithmlatest implementations use in
remental Dijkstra.

http://www.cisco.com/en/US/about/ac123/ac114/ac173/Q3-04/sp_calculate.html

Communications Network Design: lecture 07 – p.34/44

http://www.cisco.com/en/US/about/ac123/ac114/ac173/Q3-04/sp_calculate.html

GeneralizationWe fo
used here on IP routingbut routing is needed in most
ommuni
ationsnetworksShortest paths used in many areas � not just
ommuni
ations networksthere are many other types of networksoften want shortest paths on thesee.g. for �nding
lose linkages in so
ial networksnot always obvious what's a networkDijkstra used in image pro
essingpixels form a grid, whi
h is a networkDijkstra is often a
omponent of another algorithm

Communications Network Design: lecture 07 – p.35/44

Link state vs Distan
e Ve
torWe saw OSPF was a link-state routing proto
ol�oods topology (link states), and
omputes SPFsolves shortest path problemalternative is
alled distan
e-ve
tor proto
olexamples: RIP, IGRP, ...originally also aimed to solve shortest pathsbut nodes don't need to know
ompletetopologyhybrids exist, e.g. EIGRP

Communications Network Design: lecture 07 – p.36/44

Distan
e Ve
torMake a list of destinations you
an rea
h and thedistan
e to these destinations.Store in routing tableShare this list with your neighboursAdd to routing table new information gained fromadja
ent routers about the destinations they
anrea
hremember to in
rement their distan
ekeep the sour
e as the next hopIf two paths to the same destination exists, keepthe shortest distan
e path.Repeat periodi
ally (in RIP every 30 se
onds).

Communications Network Design: lecture 07 – p.37/44

Distan
e Ve
tor example
R2R1

R3 R4

R510.1.0.0/24

10.1.0.0/24subnet
next hop
distance

10.1.0.0/24subnet
next hop
distance

no route

10.1.0.0/24subnet
next hop
distance

no route
10.1.0.0/24subnet

next hop
distance

no route
infinity infinity

infinityinfinity

Ethernet 0

10.1.0.0/24subnet
next hop
distance 1

Ethernet 0 no route

Communications Network Design: lecture 07 – p.38/44

Distan
e Ve
tor example
R2R1

R3 R4

R510.1.0.0/24

10.1.0.0/24subnet
next hop
distance

10.1.0.0/24subnet
next hop
distance

no route

10.1.0.0/24subnet
next hop
distance

no route
10.1.0.0/24subnet

next hop
distance

no route
infinity infinity

infinity

Ethernet 0

10.1.0.0/24subnet
next hop
distance 1

Ethernet 0
2
R1

Communications Network Design: lecture 07 – p.38/44

Distan
e Ve
tor example
R2R1

R3 R4

R510.1.0.0/24

10.1.0.0/24subnet
next hop
distance

10.1.0.0/24subnet
next hop
distance

10.1.0.0/24subnet
next hop
distance

no route
10.1.0.0/24subnet

next hop
distance infinity

Ethernet 0

10.1.0.0/24subnet
next hop
distance 1

Ethernet 0 R1
2

R2
3

R2
3

Communications Network Design: lecture 07 – p.38/44

Distan
e Ve
tor example
R2R1

R3 R4

R510.1.0.0/24

10.1.0.0/24subnet
next hop
distance

10.1.0.0/24subnet
next hop
distance

10.1.0.0/24subnet
next hop
distance

10.1.0.0/24subnet
next hop
distance

Ethernet 0

10.1.0.0/24subnet
next hop
distance 1

Ethernet 0 R1
2

R2
3

R2
3

R3
4

Communications Network Design: lecture 07 – p.38/44

Distan
e Ve
tor example
R2R1

R3 R4

R510.1.0.0/24

10.1.0.0/24subnet
next hop
distance

10.1.0.0/24subnet
next hop
distance

10.1.0.0/24subnet
next hop
distance

10.1.0.0/24subnet
next hop
distance

Ethernet 0

10.1.0.0/24subnet
next hop
distance 1

Ethernet 0

R2
3

R1
2

R2
3

R3
4

Communications Network Design: lecture 07 – p.38/44

Sink treesResults of algorithm must be a sink tree�sink� is destinationget a tree leading to the destinationmust be a tree: shortest path
an only be
omposedof shortest paths
destination

sources
1

3

4

5

6
7

8

9

Communications Network Design: lecture 07 – p.39/44

Sink treesResults of algorithm must be a sink tree�sink� is destinationget a tree leading to the destinationmust be a tree: shortest path
an only be
omposedof shortest paths
destination

sources
1

3

4

5

6
7

8

9

Communications Network Design: lecture 07 – p.39/44

Distan
e Ve
toralso
alled Distributed Bellman-Fordproved
onverges for shortest path routingordering and timing of updates doesn't matter
hief advantageshistory (RIP invented way ba
k in ARPANET)simpli
ityexample of Cis
o RIP
on�guration

router rip
network 10.1.0.0problems
onvergen
e time (minutes)s
aling (of RIP)
ount to in�nity

Communications Network Design: lecture 07 – p.40/44

Count to in�nity

R2R1 R510.1.0.0/24

10.1.0.0/24subnet
next hop
distance

10.1.0.0/24subnet
next hop
distance

Ethernet 0

10.1.0.0/24subnet
next hop
distance 1

Ethernet 0 R1
2

R2
3

Communications Network Design: lecture 07 – p.41/44

Count to in�nity

R2R1 R510.1.0.0/24

10.1.0.0/24subnet
next hop
distance

10.1.0.0/24subnet
next hop
distance

Ethernet 0

10.1.0.0/24subnet
next hop
distance 1

Ethernet 0 R2
3

no route
infinitylink between R1 and R2 failsR5 does not see the failure!

Communications Network Design: lecture 07 – p.41/44

Count to in�nity

R2R1 R510.1.0.0/24

10.1.0.0/24subnet
next hop
distance

10.1.0.0/24subnet
next hop
distance

Ethernet 0

10.1.0.0/24subnet
next hop
distance 1

Ethernet 0 R2
3

R5
4route update from R5R5 does not know that its route is now invalidR2 does not know that R5's route is invalida route loop is
reated

Communications Network Design: lecture 07 – p.41/44

Count to in�nity

R2R1 R510.1.0.0/24

10.1.0.0/24subnet
next hop
distance

10.1.0.0/24subnet
next hop
distance

Ethernet 0

10.1.0.0/24subnet
next hop
distance 1

Ethernet 0 R5
4

R2
5R2 does not know R5's route is invalidso re-advertisesR5 sees this as its only valid route

Communications Network Design: lecture 07 – p.41/44

Count to in�nity

R2R1 R510.1.0.0/24

10.1.0.0/24subnet
next hop
distance

10.1.0.0/24subnet
next hop
distance

Ethernet 0

10.1.0.0/24subnet
next hop
distance 1

Ethernet 0 R2
5

R5
6R5 re-advertises route

Communications Network Design: lecture 07 – p.41/44

Count to in�nity

R2R1 R510.1.0.0/24

10.1.0.0/24subnet
next hop
distance

10.1.0.0/24subnet
next hop
distance

Ethernet 0

10.1.0.0/24subnet
next hop
distance 1

Ethernet 0 R5
6 7

R2

R2 re-advertises route
Communications Network Design: lecture 07 – p.41/44

Count to in�nity

R2R1 R510.1.0.0/24

10.1.0.0/24subnet
next hop
distance

10.1.0.0/24subnet
next hop
distance

Ethernet 0

10.1.0.0/24subnet
next hop
distance 1

Ethernet 0 R2
7

R5
8this pro
ess
ontinues inde�nitelymetri
s slowly
ount to in�nity

Communications Network Design: lecture 07 – p.41/44

RIPRouting Information Proto
ol (RIP)RIP was �rst developed in early ARPANETRIPv1, de�ned in RFC 1058 [3℄ (1988)RIPv2, de�ned in RFC 1723 [4℄ (1994)introdu
ed
lassless routing (CIDR)RIPng, de�ned in RFC 2080 (IPv6)MDS authenti
ation RFC 2082.implementationuses UDP over IP, on port 520 to
arry its datasee RFCs for pa
ket formatsrouter transmits full updates every 30 se
ondsby default
Communications Network Design: lecture 07 – p.42/44

RIP
ount-to-in�nity mitigated usingsplit horizon with poison reversetriggered updates
ount-to-in�nity stoppedmaximum distan
e = 15in�nity = 16problems
onvergen
e is slow
ount to 16
an still be slowgenerates lots of traf�
maximum length path is 16

Communications Network Design: lecture 07 – p.43/44

References[1℄ J. Moy, �OSPF Version 2.� IETF, Request for Comments: 2328, 1998.[2℄ D. Oran, �OSI IS-IS Intra-domain Routing Proto
ol.� IETF, Request for Comments:1142, 1990.[3℄ C. Hedri
k, �Routing Information Proto
ol.� IETF, Request for Comments: 1058,1988.[4℄ G. Malkin, �RIP Version 2.� IETF, Request for Comments: 1723, 1994.

Communications Network Design: lecture 07 – p.44/44

	
	Floyd-Warshall
	Floyd-Warshall
	Floyd-Warshall
	Floyd-Warshall
	Floyd-Warshall example
	Floyd-Warshall example
	Floyd-Warshall example
	Floyd-Warshall example
	Floyd-Warshall example
	Floyd-Warshall example
	Floyd-Warshall example
	Floyd-Warshall shortest paths
	Floyd-Warshall complexity
	Alternative algorithms
	Routing implementation
	SPF implementation
	SPF implementation
	SPF routing implementations
	OSPF
	Scaling of OSPF
	Scaling of OSPF
	Load balancing
	Dijkstra and load balancing
	Dijkstra and load balancing ex.
	Load balancing implementation
	Load balancing implementation
	Load balancing implementation
	Load balancing implementation
	Link weights
	Link weights
	Link weights
	Incremental Dijkstra
	Generalization
	Link state vs Distance Vector
	Distance Vector
	Distance Vector example
	Sink trees
	Distance Vector
	Count to infinity
	RIP
	RIP
	

