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Routing (continued)

We continue the algorithmic viewpoint by considering an
alternative to Dijkstra called the Floyd-Warshall
algorithm. Also we consider routing implementation:

OSPF, IS-IS, and some miscellaneous issues such as load
balancing. Finally we will look into the distributed

Bellman-Ford dynamic programming algorithm as
implemented in RIP.
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This lecture continues the discussion of shortest-path routing. It provides a new algorithm
(Floyd-Warshall) and so details of how shortest-path routing is implemented in the Internet.
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Floyd-Warshall

Alternative to Dijkstra for all-pairs shortest path
problem

» same input as Dijkstra (except no start node)

» add nodes in one by one, and compute shortest
paths as you add in a hode

> shortest path is either the same
> or changes to include the new node
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Floyd-Warshall

Let Di(}‘) denote the shortest path length from node i to
node j using infermediate nodes from 1 to k only.
Initialise: D) =dj Vi, jeN

Vv =10], an |N| x [N| zero matrix.
Step: for k=1,2,...n, compute new distance estimates

k . k— k— k— . .
|}’ = min{D{{, D" + Dy M} Vi ]
Compute the predecessor nodes
If DX <D Y put V¥ =k;

otherwise, Vigk) — \/ig"—l)
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Floyd-Warshall

» The initialisation step gives the shortest path
lengths subject to no intermediate nodes

» For agivenk, Di(}‘_l) gives the shortest path from i

to j using only nodes 1 through k— 1 as possible
intermediate nodes.
» On allowing node k as an intermediate node, either k
IS on the shortest path, or it isn't.
> it isn't: keep the same distance, and path

« DI =DV and V| = v
> it is: the new path must be made of two
shortest paths, joined by node k, i.e. i—k and k—]
k k-1 k—1
« D =D{ Y + D

* \/;(jk) shows where the join occurred
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Floyd-Warshall

» The O's in V(" determine the adjacencies (links) in
the final network.
> Vign) indicates that we never found a shorter
path than dij along the direct path.
> hence i and j are adjacent in the SPF tree
» The other terms in V(" show the predecessor nodes
for each end-to-end path.

> construct paths, by concatenating predecessor
nodes
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Floyd-Warshall example
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Floyd-Warshall example

Initially, we put direct links into the matrix D

ol

o olN

© o olw

© O o olk
©O O o oo w
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Floyd-Warshall example Floyd-Warshall example

k = 2: try including node 2 on existing paths (so any path

k = 1: include node 1 on existing direct paths (so any
already containing node 2 e.g. line 2 and second column

path already containing node 1 e.g. top line and first

column of D, can be ighored). Here, nothing changes. of D, can be ignored).
1 2 3 4 5 1 2 3 45 1 2 3 45 1 2 3 45
110 6 3 0 o 1/0 0 0 0O 1/0 6 310 7 110 0 0 2 2
Di('l) 2 0 2 4 1 v 2 0 00O Di('z) 2 0 2 41 v _ 2 0O 00O
J 3 0O 1 6 3 0 0O ! 3 0 13 3 0 02
4 0 5 4 00 4 0 5 4 00
5 0 5 0 5 0 5 0
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Floyd-Warshall example Floyd-Warshall example

k =3 try including node 3 on existing paths (so any path k = 4: try including node 4 on existing paths:

already containing node 3 e.g. line 3 and third column of No changes.
D, can be ignored).
1 2 3 45 123 45 12345 12 3 45
110 5 3 4 6 110 3 0 3 3 10 5 346 110 3 0 3 3
' 3 013 3 0 0 2 3 013 3 0 0 2
4 0 4 4 0 3 4 0 4 4 0 3
5 0 5 0 5 0 5 0

E.G. The old path joining 4-5 was a direct link with
distance Dfs) =5. But when we are allowed to include
node 3, we get an alternative D%) + D(325) =4, which is

better, so we set DE@ =4, and V4(g) =3
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Floyd-Warshall example

k =5: try including node 5 on existing paths. The entries
Di(f’) give the length of the shortest path from each node
i Yo each other node j.

12345 12 3 4 5
1/0 5 3 46 1/o0 3[0] 3 3
5o _ 2 0231 ve_ 2| 0ol 3]0
3 013 3 o [0] 2
4 0 4 4 0 3
5 0 5 0

Use the boxed zero entries in the final V to determine
links: (1,3), (2.3), (2.5), (3.,4).
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Floyd-Warshall shortest paths
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Note that the solution is the same as the one we found with Dijkstra. However, that isn’t
guaranteed. In some cases, there may be multiple equal-length shortest paths. The path
you find depends on the ordering of the nodes in the various techniques, so depending on
implementation, even two different versions of Dijkstra could return a different SPF tree. We
will consider this issue a little more later on.
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Floyd-Warshall complexity

» In calculating Di(}() at each step, we need to compare

[(IN[=1)

two possibilities for each of N 3 pairs of
nodes.

» the algorithm has |N| steps

» total computational complexity is O(|N|3).

» This of course is the same as repeating simple
version of Dijkstra's algorithm |N| times (for each
of |N| sources)
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Alternative algorithms

» Dijkstra and FW assume non-negative weights
» not a problem for network applications

» for more general applications, use Bellman-Ford
> can be used on graphs with negative edge
weights
> as long as the graph contains no negative cycle
reachable from the source node
» Johnson's algorithm solves all pairs shortest paths,
may be faster than Floyd-Warshall on sparse
graphs.
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We will see a version of Bellman-Ford later on in this course.
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Routing implementation

» must obtain consistent results between routers
> to avoid route loops, or dead-ends

» must adapt to changing network
> route around link or node failures
» must use a distributed algorithm
> an algorithm which enables a common objective of two or

more peer processes to be performed jointly by the
combination of processing and exchanging information.

> The distributed algorithm is broken down into a set of local
algorithms, one of which is performed by each peer process.

> Each local process carries out various operations on the
available data, and at various points in the algorithm, it
sends/receives data to/from other peer processes.
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SPF implementation

Implementation is performed by a routing protocol
» routing protocol performs SPF calculation
» first needs to find out the topology, and weights

» each router floods its available topology information
to all other routers
> takes the form of LSAs

= Link State Announcements
x a router sends LSA describing its links to

adjacent routers
¢+ LSA includes link weight
* heighbours forward (non-duplicate) LSAs to
their neighbours

> hence this is called a link-state routing protocol
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SPF implementation

» once a router has seen all LSA
> it knows the complete topology

> it can perform Dijkstra to compute shortest
paths to all other routers

» note that each router only needs to perform
Dijkstra once

> it only needs to know paths from itself, to the
other routers.
> hence O(|N|?) for simple implementation

> O(|N[®) workload is distributed over [N| routers
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SPF routing implementations

» common implementations

> OSPF [1]
x Open Shortest Path First
+ several RFCs needed to see all possibilities
> IS-IS [2]
» Intermediate System-Intermediate System
= several RFCs needed to see all possibilities

» some amusement: RFC 4041, "Requirements for

Morality Sections in Routing Area Drafts”
ftp://ftp.rfc-editor.org/in-notes/rfc4041.txt

It has often been the case that morality has not been given proper
consideration in the design and specification of protocols produced within
the Routing Area. This has led o a decline in the moral values within the
Internet and attempts to retrofit a suitable moral code to implemented
and deployed protocols has been shown to be sub-optimal...
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ftp://ftp.rfc-editor.org/in-notes/rfc4041.txt

OSPF

» soft state
> periodically refresh LSA information

> also exchange hel | 0 messages (between
neighbouring routers) to test link states

> in case a failure happens, and isn't detected

» not routed
> LSAS are just sent in IP packets
x like everything else
> transmitted over IP (protocol 89)
x not over TCP, so not reliable transport
> but you can't route, until you have routes

> hence forwarding of LSAs is limited to adjacent
routers
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Scaling of OSPF

» as noted earlier, if |N| is too large, computing SPF
takes too long, and we run into problems

» how can you build large (|N| ~ 1000) networks

» use (2 level) hierachy
> in subnetworks compute shortest paths
> compute the shortest paths between subnets
> combine the two
» not as simple as it sounds
> example OSPF areas
> area 0 is the backbone (1st level)
> other ar eas are the subnetworks (2nd level)
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a different AS
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Load balancing

» in some cases there will be two (or more) equal
distance paths from source to destination

» Dijkstra and FW only give you one path
» solution is non-unique
» more efficient to share load over both paths

10.0.0.0/8

——p» shortest paths
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Dijkstra and load balancing

» for all destination nodes in graph, you have a
shortest path

» start at a particular destination

» recursively descend through neighbours at the right
distance back

» algorithm exponential in number of paths, but this is
hopefully small
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Dijkstra and load balancing ex.

all links have unit weight

10.0.0.0/8

———» shortest paths
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Load balancing implementation

» method one
> split traffic up by addresses
> instead of a simple forwarding table

x e.g. at router 2, the next hop router to prefix
10.0.0.0/8 is router 3

> have two forwarding table entries
> e.g. forwarding table (at router 2)

destination | next hop router
10.0.0.0/9 3
10.1.0.0/9 4

» traffic betwen different prefixes may be uneven
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Load balancing implementation

» method two
> need multiple paths in forwarding table
destination | next hop router

10.0.0.0/8 3or4
> allocate traffic between two next hops randomly
as it arrives

> method is simpler o administrate
> better balance of traffic
> may reorder packets
» method two(b)
> randomize first packet of a flow
> subsequent packets of flow follow same route
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Load balancing implementation

» method three

> allocate traffic randomly between two paths

> but randomization is based on a hash of the IP
source and destination address

> effect is random allocation
x but with all packets between same source and

destination using the same path

* S0 no reordering within a TCP connection

> hash needs to be randomized at each node,
otherwise multiple splits don't work

* different seeds for randomization at each
router
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Load balancing implementation

» method 3 without random seeds in hashes

—Pp-traffic flows
no traffic  h(i)=

10.0.0.0/8

h() is the hash
1 = interface 1
2 = interface 2
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Link weights

What should be the link weights oc?
» real, physical distance?
» delay of packets along link?
» hop count (e.g. 0e=1)?
» some arbitrary number?
Cisco default
» inverse capacity weights oe = A/re
» the higher capacity links are nominally “shorter”
» encourages ftraffic to use higher capacity links
» it can lead to weird routing
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Link weights

Adelaide =100 Melbourne

Bordertown Ballarat

» may think don't need link between Ballarat and
Bordertown, because it has no traffic

» but its just because routing is taking a longer path
> direct path: D = we = 100/r. = 100
> indirect path: D =10+10+1=21

» inverse capacity is often the wrong choice
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Link weights

» correct choice depends on objectives

» common cases occur when minimizing delays:

> if propagation delay is dominant
* minimize physical path distance
x weight = link distance, e.g. te =de

> if processing and transmission time dominate
* minimize the hop count,eg. 0.=1

> if queueing causes most delays, need to minimize
loads on links
x early ARPANET had load-sensitive routing
* measured packet delays along links (to get a)
= sent packet along shortest (delay) path

» can also write link weight choice as an optimization

problem (called traffic engineering)
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Incremental Dijkstra

As noted above, Dijkstra doesn't scale as well as we
might like.

» network of 1000 nodes need some kind of hierachy

» alternatively, note that most of the time the
network doesn't change

> when it does change, it is usually only a local
change in a few links

> perhaps we don't have to recompute everything
from scratch?

» incremental Dijkstra algorithm
» latest implementations use incremental Dijkstra.

http://ww. ci sco. com en/ US/ about/ac123/acl1l4/acl73/ @3- 04/ sp_cal cul ate. htnl
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http://www.cisco.com/en/US/about/ac123/ac114/ac173/Q3-04/sp_calculate.html

Generalization

We focused here on IP routing

» but routing is needed in most communications
networks

Shortest paths used in many areas - not just
communications networks

» there are many other types of networks

> often want shortest paths on these

> e.g. for finding close linkages in social networks
» not always obvious what's a network

> Dijkstra used in image processing

> pixels form a grid, which is a network

» Dijkstra is offen a component of another algorithm
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Link state vs Distance Vector

» We saw OSPF was a link-state routing protocol
> floods topology (link states), and computes SPF
> solves shortest path problem

» alternative is called distance-vector protocol
> examples: RIP, IGRP, ...

> originally also aimed to solve shortest paths
* but nodes don't need to know complete

topology
» hybrids exist, e.g. EIGRP
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Distance Vector

» Make a list of destinations you can reach and the
distance to these destinations.
> Store in routing table

» Share this list with your neighbours

» Add to routing table new information gained from
adjacent routers about the destinations they can
reach

> remember to increment their distance
> keep the source as the next hop

» If two paths to the same destination exists, keep
the shortest distance path.

» Repeat periodically (in RIP every 30 seconds).
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Distance Vector example

subnet |10.1.0.0/24 subnet |10.1.0.0/24
next hop | no route next hop | no route
distance | infinity distance |infinity

10.1.0.0/24 R1 R2 R5
Ethernet 0--
subnet_|10.1.0.0/24 subnet|10.1.0.0/24 subnet_|10.1.0.0/24
next hop | Ethernet 0 next hop | no route next hop | no route
distance |1 distance | infinity distance | infinity
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Sink trees

Results of algorithm must be a sink tree
» "sink” is destination
» get a tree leading to the destination
» must be a tree: shortest path can only be composed

of shortest paths
\

©

destination
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Distance Vector

» also called Distributed Bellman-Ford
» proved converges for shortest path routing
> ordering and timing of updates doesn't matter

» chief advantages
> history (RIP invented way back in ARPANET)
> simplicity
= example of Cisco RIP configuration

router rip
network 10.1.0.0

» problems
> convergence time (minutes)
> scaling (of RIP)
> count to infinity
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Count to infinity

R1 R2 R5
10.1.0.0/24 7 7 a
B )
subnet[10.1.0.0/24 subnet[10.1.0.0/24 subnet_[10.1.0.0/24
next hop | Ethernet O next hop |R1 next hop |R2
distance |1 distance |2 distance |3
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RIP

Routing Information Protocol (RIP)

» RIP was first developed in early ARPANET
> RIPv1, defined in RFC 1058 [3] (1988)

> RIPvZ2, defined in RFC 1723 [4] (1994)
* introduced classless routing (CIDR)

> RIPng, defined in RFC 2080 (IPv6)
> MDS authentication RFC 2082.
» implementation

> uses UDP over IP, on port 520 to carry its data
= see RFCs for packet formats

> router transmits full updates every 30 seconds
* by default
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RIP

» count-to-infinity mitigated using
> split horizon with poison reverse
> triggered updates
» count-to-infinity stopped
> maximum distance = 15
> infinity = 16
» problems
> convergence is slow

> count to 16 can still be slow
> generates lots of traffic
> maximum length path is 16
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