
Communi
ations Network Designle
ture 07Matthew Roughan

<matthew.roughan@adelaide.edu.au>Dis
ipline of Applied Mathemati
sS
hool of Mathemati
al S
ien
esUniversity of AdelaideMar
h 26, 2009

Communications Network Design: lecture 07 – p.1/44

This le
ture
ontinues the dis
ussion of shortest-path routing. It provides a new algorithm(Floyd-Warshall) and so details of how shortest-path routing is implemented in the Internet.

Communications Network Design: lecture 07 – p.1/44

Routing (
ontinued)

We
ontinue the algorithmi
 viewpoint by
onsidering analternative to Dijkstra
alled the Floyd-Warshallalgorithm. Also we
onsider routing implementation:OSPF, IS-IS, and some mis
ellaneous issues su
h as loadbalan
ing. Finally we will look into the distributedBellman-Ford dynami
 programming algorithm asimplemented in RIP.
Communications Network Design: lecture 07 – p.2/44

Communications Network Design: lecture 07 – p.2/44

Floyd-Warshall

Alternative to Dijkstra for all-pairs shortest pathproblem

◮ same input as Dijkstra (ex
ept no start node)

◮ add nodes in one by one, and
ompute shortestpaths as you add in a node

⊲ shortest path is either the same

⊲ or
hanges to in
lude the new node

Communications Network Design: lecture 07 – p.3/44

Communications Network Design: lecture 07 – p.3/44

Floyd-Warshall

Let D(k)
i j denote the shortest path length from node i tonode j using intermediate nodes from 1 to k only.Initialise: D(0)

i j = di j ∀ i, j ∈ N

V (0) = [0], an |N|× |N| zero matrix.Step: for k = 1,2, . . .n,
ompute new distan
e estimates

D(k)
i j =min{D(k−1)

i j ,D(k−1)
ik +D(k−1)

k j } ∀ i 6= jCompute the prede
essor nodesIf D(k)
i j < D(k−1)

i j put V (k)
i j = k;otherwise, V (k)

i j = V (k−1)
i j

Communications Network Design: lecture 07 – p.4/44

Communications Network Design: lecture 07 – p.4/44

Floyd-Warshall

◮ The initialisation step gives the shortest pathlengths subje
t to no intermediate nodes

◮ For a given k, D(k−1)
i j gives the shortest path from ito j using only nodes 1 through k−1 as possibleintermediate nodes.

◮ On allowing node k as an intermediate node, either kIS on the shortest path, or it isn't.

⊲ it isn't: keep the same distan
e, and path

⋆ D(k)
i j = D(k−1)

i j and V (k)
i j = V (k−1)

i j

⊲ it is: the new path must be made of twoshortest paths, joined by node k, i.e. i−k and k−j

⋆ D(k)
i j = D(k−1)

ik +D(k−1)
k j

⋆ V (k)
i j shows where the join o

urred

Communications Network Design: lecture 07 – p.5/44

Communications Network Design: lecture 07 – p.5/44

Floyd-Warshall

◮ The 0's in V (n) determine the adja
en
ies (links) inthe �nal network.

⊲ V (n)
i j indi
ates that we never found a shorterpath than di j along the dire
t path.

⊲ hen
e i and j are adja
ent in the SPF tree
◮ The other terms in V (n) show the prede
essor nodesfor ea
h end-to-end path.

⊲
onstru
t paths, by
on
atenating prede
essornodes
Communications Network Design: lecture 07 – p.6/44

Communications Network Design: lecture 07 – p.6/44

Floyd-Warshall example

3

6

4

6

2 5

1

1

2 4

3 5

1

Communications Network Design: lecture 07 – p.7/44

Communications Network Design: lecture 07 – p.7/44

Floyd-Warshall example

Initially, we put dire
t links into the matrix D
D(0)

i j =

1 2 3 4 5

1 0 6 3 ∞ ∞
2 0 2 4 1
3 0 1 6
4 0 5
5 0

V (0) =

1 2 3 4 5

1 0 0 0 0 0
2 0 0 0 0
3 0 0 0
4 0 0
5 0

3

6

4

6

2 5

1

1
1

2 4

3 5

Communications Network Design: lecture 07 – p.8/44

Communications Network Design: lecture 07 – p.8/44

Floyd-Warshall example

k = 1: in
lude node 1 on existing dire
t paths (so anypath already
ontaining node 1 e.g. top line and �rst
olumn of D,
an be ignored). Here, nothing
hanges.

D(1)
i j =

1 2 3 4 5

1 0 6 3 ∞ ∞
2 0 2 4 1
3 0 1 6
4 0 5
5 0

V (1) =

1 2 3 4 5

1 0 0 0 0 0
2 0 0 0 0
3 0 0 0
4 0 0
5 0

3

6

4

6

2 5

1

1

2 4

3 5

1

Communications Network Design: lecture 07 – p.9/44

Communications Network Design: lecture 07 – p.9/44

Floyd-Warshall example

k = 2: try in
luding node 2 on existing paths (so any pathalready
ontaining node 2 e.g. line 2 and se
ond
olumnof D,
an be ignored).

D(2)
i j =

1 2 3 4 5

1 0 6 3 10 7
2 0 2 4 1
3 0 1 3
4 0 5
5 0

V (2) =

1 2 3 4 5

1 0 0 0 2 2
2 0 0 0 0
3 0 0 2
4 0 0
5 0

3

6

4

6

2 5

1

1

10

7
3

1

4

3 5

2

Communications Network Design: lecture 07 – p.10/44

Communications Network Design: lecture 07 – p.10/44

Floyd-Warshall example

k = 3: try in
luding node 3 on existing paths (so any pathalready
ontaining node 3 e.g. line 3 and third
olumn of

D,
an be ignored).

D(3)
i j =

1 2 3 4 5

1 0 5 3 4 6
2 0 2 3 1
3 0 1 3
4 0 4
5 0

V (3) =

1 2 3 4 5

1 0 3 0 3 3
2 0 0 3 0
3 0 0 2
4 0 3
5 0

3

6

4

6

2 5

1

1
5

4

1

4

5

2

3

E.G. The old path joining 4-5 was a dire
t link withdistan
e D(2)
45 = 5. But when we are allowed to in
ludenode 3, we get an alternative D(2)

43 +D(2)
35 = 4, whi
h isbetter, so we set D(3)

45 = 4, and V (3)
45 = 3.

Communications Network Design: lecture 07 – p.11/44

Communications Network Design: lecture 07 – p.11/44

Floyd-Warshall example

k = 4: try in
luding node 4 on existing paths:No
hanges.

D(4)
i j =

1 2 3 4 5

1 0 5 3 4 6
2 0 2 3 1
3 0 1 3
4 0 4
5 0

V (4) =

1 2 3 4 5

1 0 3 0 3 3
2 0 0 3 0
3 0 0 2
4 0 3
5 0

3

6

4

6

2 5

1

1

2

3 5

1

4

Communications Network Design: lecture 07 – p.12/44

Communications Network Design: lecture 07 – p.12/44

Floyd-Warshall example

k = 5: try in
luding node 5 on existing paths. The entries

D(5)
i j give the length of the shortest path from ea
h node

i to ea
h other node j.

D(5)
i j =

1 2 3 4 5

1 0 5 3 4 6
2 0 2 3 1
3 0 1 3
4 0 4
5 0

V (5) =

1 2 3 4 5

1 0 3 0 3 3

2 0 0 3 0

3 0 0 2
4 0 3
5 0Use the boxed zero entries in the �nal V to determinelinks: (1,3), (2,3), (2,5), (3,4).

Communications Network Design: lecture 07 – p.13/44

Communications Network Design: lecture 07 – p.13/44

Floyd-Warshall shortest paths

3
2

1

1
1

3

2 4

5

Communications Network Design: lecture 07 – p.14/44

Note that the solution is the same as the one we found with Dijkstra. However, that isn'tguaranteed. In some
ases, there may be multiple equal-length shortest paths. The pathyou �nd depends on the ordering of the nodes in the various te
hniques, so depending onimplementation, even two different versions of Dijkstra
ould return a different SPF tree. Wewill
onsider this issue a little more later on.

Communications Network Design: lecture 07 – p.14/44

Floyd-Warshall
omplexity

◮ In
al
ulating D(k)
i j at ea
h step, we need to
omparetwo possibilities for ea
h of |N|(|N|−1)

2

pairs ofnodes.

◮ the algorithm has |N| steps

◮ total
omputational
omplexity is O(|N|3).

◮ This of
ourse is the same as repeating simpleversion of Dijkstra's algorithm |N| times (for ea
hof |N| sour
es)

Communications Network Design: lecture 07 – p.15/44

Communications Network Design: lecture 07 – p.15/44

Alternative algorithms

◮ Dijkstra and FW assume non-negative weights
◮ not a problem for network appli
ations
◮ for more general appli
ations, use Bellman-Ford

⊲
an be used on graphs with negative edgeweights

⊲ as long as the graph
ontains no negative
y
lerea
hable from the sour
e node
◮ Johnson's algorithm solves all pairs shortest paths,may be faster than Floyd-Warshall on sparsegraphs.

Communications Network Design: lecture 07 – p.16/44

We will see a version of Bellman-Ford later on in this
ourse.

Communications Network Design: lecture 07 – p.16/44

Routing implementation

◮ must obtain
onsistent results between routers

⊲ to avoid route loops, or dead-ends

◮ must adapt to
hanging network

⊲ route around link or node failures

◮ must use a distributed algorithm

⊲ an algorithm whi
h enables a
ommon obje
tive of two ormore peer pro
esses to be performed jointly by the
ombination of pro
essing and ex
hanging information.

⊲ The distributed algorithm is broken down into a set of lo
alalgorithms, one of whi
h is performed by ea
h peer pro
ess.

⊲ Ea
h lo
al pro
ess
arries out various operations on theavailable data, and at various points in the algorithm, itsends/re
eives data to/from other peer pro
esses.

Communications Network Design: lecture 07 – p.17/44

Communications Network Design: lecture 07 – p.17/44

SPF implementation

Implementation is performed by a routing proto
ol
◮ routing proto
ol performs SPF
al
ulation
◮ �rst needs to �nd out the topology, and weights
◮ ea
h router �oods its available topology informationto all other routers

⊲ takes the form of LSAs
⋆ Link State Announ
ements
⋆ a router sends LSA des
ribing its links toadja
ent routers

ld LSA in
ludes link weight
⋆ neighbours forward (non-dupli
ate) LSAs totheir neighbours

⊲ hen
e this is
alled a link-state routing proto
ol

Communications Network Design: lecture 07 – p.18/44

Communications Network Design: lecture 07 – p.18/44

SPF implementation

◮ on
e a router has seen all LSA

⊲ it knows the
omplete topology

⊲ it
an perform Dijkstra to
ompute shortestpaths to all other routers

◮ note that ea
h router only needs to performDijkstra on
e

⊲ it only needs to know paths from itself, to theother routers.

⊲ hen
e O(|N|2) for simple implementation

⊲ O(|N|3) workload is distributed over |N| routers

Communications Network Design: lecture 07 – p.19/44

Communications Network Design: lecture 07 – p.19/44

SPF routing implementations
◮
ommon implementations

⊲ OSPF [1℄

⋆ Open Shortest Path First
⋆ several RFCs needed to see all possibilities

⊲ IS-IS [2℄

⋆ Intermediate System-Intermediate System

⋆ several RFCs needed to see all possibilities

◮ some amusement: RFC 4041, �Requirements forMorality Se
tions in Routing Area Drafts�

ftp://ftp.rfc-editor.org/in-notes/rfc4041.txtIt has often been the
ase that morality has not been given proper
onsideration in the design and spe
i�
ation of proto
ols produ
ed withinthe Routing Area. This has led to a de
line in the moral values within theInternet and attempts to retro�t a suitable moral
ode to implementedand deployed proto
ols has been shown to be sub-optimal...

Communications Network Design: lecture 07 – p.20/44

Communications Network Design: lecture 07 – p.20/44

ftp://ftp.rfc-editor.org/in-notes/rfc4041.txt

OSPF

◮ soft state

⊲ periodi
ally refresh LSA information

⊲ also ex
hange hello messages (betweenneighbouring routers) to test link states

⊲ in
ase a failure happens, and isn't dete
ted

◮ not routed

⊲ LSAs are just sent in IP pa
kets

⋆ like everything else

⊲ transmitted over IP (proto
ol 89)

⋆ not over TCP, so not reliable transport

⊲ but you
an't route, until you have routes

⊲ hen
e forwarding of LSAs is limited to adja
entrouters

Communications Network Design: lecture 07 – p.21/44

Communications Network Design: lecture 07 – p.21/44

S
aling of OSPF

◮ as noted earlier, if |N| is too large,
omputing SPFtakes too long, and we run into problems
◮ how
an you build large (|N| ∼ 1000) networks
◮ use (2 level) hiera
hy

⊲ in subnetworks
ompute shortest paths
⊲
ompute the shortest paths between subnets

⊲
ombine the two
◮ not as simple as it sounds

⊲ example OSPF areas
⊲ area 0 is the ba
kbone (1st level)

⊲ other areas are the subnetworks (2nd level)

Communications Network Design: lecture 07 – p.22/44

Communications Network Design: lecture 07 – p.22/44

S
aling of OSPF

area 1

area 2

area 3

area 0
a different AS

Communications Network Design: lecture 07 – p.23/44

Communications Network Design: lecture 07 – p.23/44

Load balan
ing

◮ in some
ases there will be two (or more) equaldistan
e paths from sour
e to destination
◮ Dijkstra and FW only give you one path
◮ solution is non-unique

◮ more ef�
ient to share load over both paths

10.0.0.0/8

shortest paths

1 2

3

4

5 6

Communications Network Design: lecture 07 – p.24/44

Communications Network Design: lecture 07 – p.24/44

Dijkstra and load balan
ing

◮ for all destination nodes in graph, you have ashortest path

◮ start at a parti
ular destination

◮ re
ursively des
end through neighbours at the rightdistan
e ba
k

◮ algorithm exponential in number of paths, but this ishopefully small

Communications Network Design: lecture 07 – p.25/44

Communications Network Design: lecture 07 – p.25/44

Dijkstra and load balan
ing ex.

shortest paths

all links have unit weight

10.0.0.0/8
1 2

3

4

5 6

7 8

Communications Network Design: lecture 07 – p.26/44

Communications Network Design: lecture 07 – p.26/44

Load balan
ing implementation

◮ method one

⊲ split traf�
 up by addresses

⊲ instead of a simple forwarding table

⋆ e.g. at router 2, the next hop router to pre�x10.0.0.0/8 is router 3

⊲ have two forwarding table entries

⊲ e.g. forwarding table (at router 2)

destination next hop router10.0.0.0/9 310.1.0.0/9 4

◮ traf�
 betwen different pre�xes may be uneven

Communications Network Design: lecture 07 – p.27/44

Communications Network Design: lecture 07 – p.27/44

Load balan
ing implementation
◮ method two

⊲ need multiple paths in forwarding tabledestination next hop router10.0.0.0/8 3 or 4
⊲ allo
ate traf�
 between two next hops randomlyas it arrives

⊲ method is simpler to administrate
⊲ better balan
e of traf�

⊲ may reorder pa
kets

◮ method two(b)
⊲ randomize �rst pa
ket of a �ow

⊲ subsequent pa
kets of �ow follow same route

Communications Network Design: lecture 07 – p.28/44

Communications Network Design: lecture 07 – p.28/44

Load balan
ing implementation

◮ method three

⊲ allo
ate traf�
 randomly between two paths

⊲ but randomization is based on a hash of the IPsour
e and destination address

⊲ effe
t is random allo
ation

⋆ but with all pa
kets between same sour
e anddestination using the same path

⋆ so no reordering within a TCP
onne
tion

⊲ hash needs to be randomized at ea
h node,otherwise multiple splits don't work

⋆ different seeds for randomization at ea
hrouter

Communications Network Design: lecture 07 – p.29/44

Communications Network Design: lecture 07 – p.29/44

Load balan
ing implementation
◮ method 3 without random seeds in hashes

10.0.0.0/8

no traffic

traffic flows

h(i)=1

h(i)=1

h() is the hash
 1 = interface 1
 2 = interface 2

1 2

3

4

5

6

7

8

9

Communications Network Design: lecture 07 – p.30/44

Communications Network Design: lecture 07 – p.30/44

Link weights

What should be the link weights αe?

◮ real, physi
al distan
e?

◮ delay of pa
kets along link?

◮ hop
ount (e.g. αe = 1)?

◮ some arbitrary number?Cis
o default

◮ inverse
apa
ity weights αe = A/re

◮ the higher
apa
ity links are nominally �shorter�

◮ en
ourages traf�
 to use higher
apa
ity links

◮ it
an lead to weird routing

Communications Network Design: lecture 07 – p.31/44

Communications Network Design: lecture 07 – p.31/44

Link weights

Adelaide

routing

Bordertown Ballarat

Melbourne

r =10e

r =1e

r =10e

r =100e

◮ may think don't need link between Ballarat andBordertown, be
ause it has no traf�

◮ but its just be
ause routing is taking a longer path

⊲ dire
t path: D = we = 100/re = 100

⊲ indire
t path: D = 10+10+1 = 21

◮ inverse
apa
ity is often the wrong
hoi
e

Communications Network Design: lecture 07 – p.32/44

Communications Network Design: lecture 07 – p.32/44

Link weights

◮
orre
t
hoi
e depends on obje
tives

◮
ommon
ases o

ur when minimizing delays:

⊲ if propagation delay is dominant

⋆ minimize physi
al path distan
e

⋆ weight = link distan
e, e.g. αe = de

⊲ if pro
essing and transmission time dominate

⋆ minimize the hop
ount, e.g. αe = 1
⊲ if queueing
auses most delays, need to minimizeloads on links

⋆ early ARPANET had load-sensitive routing

⋆ measured pa
ket delays along links (to get αe)

⋆ sent pa
ket along shortest (delay) path

◮
an also write link weight
hoi
e as an optimizationproblem (
alled traf�
 engineering)

Communications Network Design: lecture 07 – p.33/44

Communications Network Design: lecture 07 – p.33/44

In
remental Dijkstra

As noted above, Dijkstra doesn't s
ale as well as wemight like.

◮ network of 1000 nodes need some kind of hiera
hy
◮ alternatively, note that most of the time thenetwork doesn't
hange

⊲ when it does
hange, it is usually only a lo
al
hange in a few links
⊲ perhaps we don't have to re
ompute everythingfrom s
rat
h?

◮ in
remental Dijkstra algorithm
◮ latest implementations use in
remental Dijkstra.

http://www.cisco.com/en/US/about/ac123/ac114/ac173/Q3-04/sp_calculate.html

Communications Network Design: lecture 07 – p.34/44

Communications Network Design: lecture 07 – p.34/44

http://www.cisco.com/en/US/about/ac123/ac114/ac173/Q3-04/sp_calculate.html

GeneralizationWe fo
used here on IP routing

◮ but routing is needed in most
ommuni
ationsnetworksShortest paths used in many areas � not just
ommuni
ations networks

◮ there are many other types of networks

⊲ often want shortest paths on these

⊲ e.g. for �nding
lose linkages in so
ial networks

◮ not always obvious what's a network

⊲ Dijkstra used in image pro
essing

⊲ pixels form a grid, whi
h is a network

◮ Dijkstra is often a
omponent of another algorithm

Communications Network Design: lecture 07 – p.35/44

Communications Network Design: lecture 07 – p.35/44

Link state vs Distan
e Ve
tor
◮ We saw OSPF was a link-state routing proto
ol

⊲ �oods topology (link states), and
omputes SPF
⊲ solves shortest path problem

◮ alternative is
alled distan
e-ve
tor proto
ol
⊲ examples: RIP, IGRP, ...
⊲ originally also aimed to solve shortest paths

⋆ but nodes don't need to know
ompletetopology
◮ hybrids exist, e.g. EIGRP

Communications Network Design: lecture 07 – p.36/44

Communications Network Design: lecture 07 – p.36/44

Distan
e Ve
tor

◮ Make a list of destinations you
an rea
h and thedistan
e to these destinations.

⊲ Store in routing table

◮ Share this list with your neighbours

◮ Add to routing table new information gained fromadja
ent routers about the destinations they
anrea
h

⊲ remember to in
rement their distan
e

⊲ keep the sour
e as the next hop

◮ If two paths to the same destination exists, keepthe shortest distan
e path.

◮ Repeat periodi
ally (in RIP every 30 se
onds).

Communications Network Design: lecture 07 – p.37/44

Communications Network Design: lecture 07 – p.37/44

Distan
e Ve
tor example
R2R1

R3 R4

R510.1.0.0/24

10.1.0.0/24subnet
next hop
distance

10.1.0.0/24subnet
next hop
distance

no route

10.1.0.0/24subnet
next hop
distance

no route
10.1.0.0/24subnet

next hop
distance

no route
infinity infinity

infinityinfinity

Ethernet 0

10.1.0.0/24subnet
next hop
distance 1

Ethernet 0 no route

Communications Network Design: lecture 07 – p.38/44

Communications Network Design: lecture 07 – p.38/44

Sink treesResults of algorithm must be a sink tree

◮ �sink� is destination

◮ get a tree leading to the destination

◮ must be a tree: shortest path
an only be
omposedof shortest paths

destination

sources
1

3

4

5

6
7

8

9

Communications Network Design: lecture 07 – p.39/44

Communications Network Design: lecture 07 – p.39/44

Distan
e Ve
tor

◮ also
alled Distributed Bellman-Ford
◮ proved
onverges for shortest path routing

⊲ ordering and timing of updates doesn't matter
◮
hief advantages

⊲ history (RIP invented way ba
k in ARPANET)

⊲ simpli
ity

⋆ example of Cis
o RIP
on�guration
router rip

network 10.1.0.0

◮ problems
⊲
onvergen
e time (minutes)

⊲ s
aling (of RIP)
⊲
ount to in�nity

Communications Network Design: lecture 07 – p.40/44

Communications Network Design: lecture 07 – p.40/44

Count to in�nity

R2R1 R510.1.0.0/24

10.1.0.0/24subnet
next hop
distance

10.1.0.0/24subnet
next hop
distance

Ethernet 0

10.1.0.0/24subnet
next hop
distance 1

Ethernet 0 R1
2

R2
3

Communications Network Design: lecture 07 – p.41/44

Communications Network Design: lecture 07 – p.41/44

RIPRouting Information Proto
ol (RIP)

◮ RIP was �rst developed in early ARPANET
⊲ RIPv1, de�ned in RFC 1058 [3℄ (1988)
⊲ RIPv2, de�ned in RFC 1723 [4℄ (1994)

⋆ introdu
ed
lassless routing (CIDR)
⊲ RIPng, de�ned in RFC 2080 (IPv6)
⊲ MDS authenti
ation RFC 2082.

◮ implementation
⊲ uses UDP over IP, on port 520 to
arry its data

⋆ see RFCs for pa
ket formats

⊲ router transmits full updates every 30 se
onds

⋆ by default
Communications Network Design: lecture 07 – p.42/44

Communications Network Design: lecture 07 – p.42/44

RIP

◮
ount-to-in�nity mitigated using

⊲ split horizon with poison reverse

⊲ triggered updates

◮
ount-to-in�nity stopped

⊲ maximum distan
e = 15

⊲ in�nity = 16

◮ problems

⊲
onvergen
e is slow

⊲
ount to 16
an still be slow

⊲ generates lots of traf�

⊲ maximum length path is 16

Communications Network Design: lecture 07 – p.43/44

Communications Network Design: lecture 07 – p.43/44

References[1℄ J. Moy, �OSPF Version 2.� IETF, Request for Comments: 2328, 1998.[2℄ D. Oran, �OSI IS-IS Intra-domain Routing Proto
ol.� IETF, Request for Comments:1142, 1990.[3℄ C. Hedri
k, �Routing Information Proto
ol.� IETF, Request for Comments: 1058,1988.[4℄ G. Malkin, �RIP Version 2.� IETF, Request for Comments: 1723, 1994.

Communications Network Design: lecture 07 – p.44/44

	
	
	
	Floyd-Warshall
	
	Floyd-Warshall
	
	Floyd-Warshall
	
	Floyd-Warshall
	
	Floyd-Warshall example
	
	Floyd-Warshall example
	
	Floyd-Warshall example
	
	Floyd-Warshall example
	
	Floyd-Warshall example
	
	Floyd-Warshall example
	
	Floyd-Warshall example
	
	Floyd-Warshall shortest paths
	
	Floyd-Warshall complexity
	
	Alternative algorithms
	
	Routing implementation
	
	SPF implementation
	
	SPF implementation
	
	SPF routing implementations
	
	OSPF
	
	Scaling of OSPF
	
	Scaling of OSPF
	
	Load balancing
	
	Dijkstra and load balancing
	
	Dijkstra and load balancing ex.
	
	Load balancing implementation
	
	Load balancing implementation
	
	Load balancing implementation
	
	Load balancing implementation
	
	Link weights
	
	Link weights
	
	Link weights
	
	Incremental Dijkstra
	
	Generalization
	
	Link state vs Distance Vector
	
	Distance Vector
	
	Distance Vector example
	
	Sink trees
	
	Distance Vector
	
	Count to infinity
	
	RIP
	
	RIP
	
	

