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This le
ture 
ontinues the dis
ussion of shortest-path routing. It provides a new algorithm(Floyd-Warshall) and so details of how shortest-path routing is implemented in the Internet.
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Routing (
ontinued)

We 
ontinue the algorithmi
 viewpoint by 
onsidering analternative to Dijkstra 
alled the Floyd-Warshallalgorithm. Also we 
onsider routing implementation:OSPF, IS-IS, and some mis
ellaneous issues su
h as loadbalan
ing. Finally we will look into the distributedBellman-Ford dynami
 programming algorithm asimplemented in RIP.
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Floyd-Warshall

Alternative to Dijkstra for all-pairs shortest pathproblem

◮ same input as Dijkstra (ex
ept no start node)

◮ add nodes in one by one, and 
ompute shortestpaths as you add in a node

⊲ shortest path is either the same

⊲ or 
hanges to in
lude the new node
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Floyd-Warshall

Let D(k)
i j denote the shortest path length from node i tonode j using intermediate nodes from 1 to k only.Initialise: D(0)

i j = di j ∀ i, j ∈ N

V (0) = [0], an |N|× |N| zero matrix.Step: for k = 1,2, . . .n, 
ompute new distan
e estimates

D(k)
i j =min{D(k−1)

i j ,D(k−1)
ik +D(k−1)

k j } ∀ i 6= jCompute the prede
essor nodesIf D(k)
i j < D(k−1)

i j put V (k)
i j = k;otherwise, V (k)

i j = V (k−1)
i j
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Floyd-Warshall

◮ The initialisation step gives the shortest pathlengths subje
t to no intermediate nodes

◮ For a given k, D(k−1)
i j gives the shortest path from ito j using only nodes 1 through k−1 as possibleintermediate nodes.

◮ On allowing node k as an intermediate node, either kIS on the shortest path, or it isn't.

⊲ it isn't: keep the same distan
e, and path

⋆ D(k)
i j = D(k−1)

i j and V (k)
i j = V (k−1)

i j

⊲ it is: the new path must be made of twoshortest paths, joined by node k, i.e. i−k and k−j

⋆ D(k)
i j = D(k−1)

ik +D(k−1)
k j

⋆ V (k)
i j shows where the join o

urred
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Floyd-Warshall

◮ The 0's in V (n) determine the adja
en
ies (links) inthe �nal network.

⊲ V (n)
i j indi
ates that we never found a shorterpath than di j along the dire
t path.

⊲ hen
e i and j are adja
ent in the SPF tree
◮ The other terms in V (n) show the prede
essor nodesfor ea
h end-to-end path.

⊲ 
onstru
t paths, by 
on
atenating prede
essornodes
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Floyd-Warshall example
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Floyd-Warshall example

Initially, we put dire
t links into the matrix D
D(0)

i j =

1 2 3 4 5

1 0 6 3 ∞ ∞
2 0 2 4 1
3 0 1 6
4 0 5
5 0

V (0) =

1 2 3 4 5

1 0 0 0 0 0
2 0 0 0 0
3 0 0 0
4 0 0
5 0

3

6

4

6

2 5

1

1
1

2 4

3 5
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Floyd-Warshall example

k = 1: in
lude node 1 on existing dire
t paths (so anypath already 
ontaining node 1 e.g. top line and �rst
olumn of D, 
an be ignored). Here, nothing 
hanges.

D(1)
i j =

1 2 3 4 5

1 0 6 3 ∞ ∞
2 0 2 4 1
3 0 1 6
4 0 5
5 0

V (1) =

1 2 3 4 5

1 0 0 0 0 0
2 0 0 0 0
3 0 0 0
4 0 0
5 0

3

6

4

6

2 5

1

1

2 4

3 5

1
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Floyd-Warshall example

k = 2: try in
luding node 2 on existing paths (so any pathalready 
ontaining node 2 e.g. line 2 and se
ond 
olumnof D, 
an be ignored).

D(2)
i j =

1 2 3 4 5

1 0 6 3 10 7
2 0 2 4 1
3 0 1 3
4 0 5
5 0

V (2) =

1 2 3 4 5

1 0 0 0 2 2
2 0 0 0 0
3 0 0 2
4 0 0
5 0

3

6

4

6

2 5

1

1

10

7
3

1

4

3 5
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Floyd-Warshall example

k = 3: try in
luding node 3 on existing paths (so any pathalready 
ontaining node 3 e.g. line 3 and third 
olumn of

D, 
an be ignored).

D(3)
i j =

1 2 3 4 5

1 0 5 3 4 6
2 0 2 3 1
3 0 1 3
4 0 4
5 0

V (3) =

1 2 3 4 5

1 0 3 0 3 3
2 0 0 3 0
3 0 0 2
4 0 3
5 0

3

6

4

6

2 5

1

1
5

4

1

4

5

2

3

E.G. The old path joining 4-5 was a dire
t link withdistan
e D(2)
45 = 5. But when we are allowed to in
ludenode 3, we get an alternative D(2)

43 +D(2)
35 = 4, whi
h isbetter, so we set D(3)

45 = 4, and V (3)
45 = 3.
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Floyd-Warshall example

k = 4: try in
luding node 4 on existing paths:No 
hanges.

D(4)
i j =

1 2 3 4 5

1 0 5 3 4 6
2 0 2 3 1
3 0 1 3
4 0 4
5 0

V (4) =

1 2 3 4 5

1 0 3 0 3 3
2 0 0 3 0
3 0 0 2
4 0 3
5 0

3

6

4

6

2 5

1

1

2

3 5

1

4
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Floyd-Warshall example

k = 5: try in
luding node 5 on existing paths. The entries

D(5)
i j give the length of the shortest path from ea
h node

i to ea
h other node j.

D(5)
i j =

1 2 3 4 5

1 0 5 3 4 6
2 0 2 3 1
3 0 1 3
4 0 4
5 0

V (5) =

1 2 3 4 5

1 0 3 0 3 3

2 0 0 3 0

3 0 0 2
4 0 3
5 0Use the boxed zero entries in the �nal V to determinelinks: (1,3), (2,3), (2,5), (3,4).
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Floyd-Warshall shortest paths
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Note that the solution is the same as the one we found with Dijkstra. However, that isn'tguaranteed. In some 
ases, there may be multiple equal-length shortest paths. The pathyou �nd depends on the ordering of the nodes in the various te
hniques, so depending onimplementation, even two different versions of Dijkstra 
ould return a different SPF tree. Wewill 
onsider this issue a little more later on.
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Floyd-Warshall 
omplexity

◮ In 
al
ulating D(k)
i j at ea
h step, we need to 
omparetwo possibilities for ea
h of |N|(|N|−1)

2

pairs ofnodes.

◮ the algorithm has |N| steps

◮ total 
omputational 
omplexity is O(|N|3).

◮ This of 
ourse is the same as repeating simpleversion of Dijkstra's algorithm |N| times (for ea
hof |N| sour
es)
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Alternative algorithms

◮ Dijkstra and FW assume non-negative weights
◮ not a problem for network appli
ations
◮ for more general appli
ations, use Bellman-Ford

⊲ 
an be used on graphs with negative edgeweights

⊲ as long as the graph 
ontains no negative 
y
lerea
hable from the sour
e node
◮ Johnson's algorithm solves all pairs shortest paths,may be faster than Floyd-Warshall on sparsegraphs.
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We will see a version of Bellman-Ford later on in this 
ourse.
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Routing implementation

◮ must obtain 
onsistent results between routers

⊲ to avoid route loops, or dead-ends

◮ must adapt to 
hanging network

⊲ route around link or node failures

◮ must use a distributed algorithm

⊲ an algorithm whi
h enables a 
ommon obje
tive of two ormore peer pro
esses to be performed jointly by the
ombination of pro
essing and ex
hanging information.

⊲ The distributed algorithm is broken down into a set of lo
alalgorithms, one of whi
h is performed by ea
h peer pro
ess.

⊲ Ea
h lo
al pro
ess 
arries out various operations on theavailable data, and at various points in the algorithm, itsends/re
eives data to/from other peer pro
esses.
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SPF implementation

Implementation is performed by a routing proto
ol
◮ routing proto
ol performs SPF 
al
ulation
◮ �rst needs to �nd out the topology, and weights
◮ ea
h router �oods its available topology informationto all other routers

⊲ takes the form of LSAs
⋆ Link State Announ
ements
⋆ a router sends LSA des
ribing its links toadja
ent routers

ld LSA in
ludes link weight
⋆ neighbours forward (non-dupli
ate) LSAs totheir neighbours

⊲ hen
e this is 
alled a link-state routing proto
ol
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SPF implementation

◮ on
e a router has seen all LSA

⊲ it knows the 
omplete topology

⊲ it 
an perform Dijkstra to 
ompute shortestpaths to all other routers

◮ note that ea
h router only needs to performDijkstra on
e

⊲ it only needs to know paths from itself, to theother routers.

⊲ hen
e O(|N|2) for simple implementation

⊲ O(|N|3) workload is distributed over |N| routers
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SPF routing implementations
◮ 
ommon implementations

⊲ OSPF [1℄

⋆ Open Shortest Path First
⋆ several RFCs needed to see all possibilities

⊲ IS-IS [2℄

⋆ Intermediate System-Intermediate System

⋆ several RFCs needed to see all possibilities

◮ some amusement: RFC 4041, �Requirements forMorality Se
tions in Routing Area Drafts�

ftp://ftp.rfc-editor.org/in-notes/rfc4041.txtIt has often been the 
ase that morality has not been given proper
onsideration in the design and spe
i�
ation of proto
ols produ
ed withinthe Routing Area. This has led to a de
line in the moral values within theInternet and attempts to retro�t a suitable moral 
ode to implementedand deployed proto
ols has been shown to be sub-optimal...

Communications Network Design: lecture 07 – p.20/44

Communications Network Design: lecture 07 – p.20/44

ftp://ftp.rfc-editor.org/in-notes/rfc4041.txt


OSPF

◮ soft state

⊲ periodi
ally refresh LSA information

⊲ also ex
hange hello messages (betweenneighbouring routers) to test link states

⊲ in 
ase a failure happens, and isn't dete
ted

◮ not routed

⊲ LSAs are just sent in IP pa
kets

⋆ like everything else

⊲ transmitted over IP (proto
ol 89)

⋆ not over TCP, so not reliable transport

⊲ but you 
an't route, until you have routes

⊲ hen
e forwarding of LSAs is limited to adja
entrouters
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S
aling of OSPF

◮ as noted earlier, if |N| is too large, 
omputing SPFtakes too long, and we run into problems
◮ how 
an you build large (|N| ∼ 1000) networks
◮ use (2 level) hiera
hy

⊲ in subnetworks 
ompute shortest paths
⊲ 
ompute the shortest paths between subnets

⊲ 
ombine the two
◮ not as simple as it sounds

⊲ example OSPF areas
⊲ area 0 is the ba
kbone (1st level)

⊲ other areas are the subnetworks (2nd level)
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S
aling of OSPF

area 1

area 2

area 3

area 0
a different AS
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Load balan
ing

◮ in some 
ases there will be two (or more) equaldistan
e paths from sour
e to destination
◮ Dijkstra and FW only give you one path
◮ solution is non-unique

◮ more ef�
ient to share load over both paths

10.0.0.0/8

shortest paths

1 2

3

4

5 6
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Dijkstra and load balan
ing

◮ for all destination nodes in graph, you have ashortest path

◮ start at a parti
ular destination

◮ re
ursively des
end through neighbours at the rightdistan
e ba
k

◮ algorithm exponential in number of paths, but this ishopefully small
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Dijkstra and load balan
ing ex.

shortest paths

all links have unit weight

10.0.0.0/8
1 2

3

4

5 6

7 8
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Load balan
ing implementation

◮ method one

⊲ split traf�
 up by addresses

⊲ instead of a simple forwarding table

⋆ e.g. at router 2, the next hop router to pre�x10.0.0.0/8 is router 3

⊲ have two forwarding table entries

⊲ e.g. forwarding table (at router 2)

destination next hop router10.0.0.0/9 310.1.0.0/9 4

◮ traf�
 betwen different pre�xes may be uneven
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Load balan
ing implementation
◮ method two

⊲ need multiple paths in forwarding tabledestination next hop router10.0.0.0/8 3 or 4
⊲ allo
ate traf�
 between two next hops randomlyas it arrives

⊲ method is simpler to administrate
⊲ better balan
e of traf�

⊲ may reorder pa
kets

◮ method two(b)
⊲ randomize �rst pa
ket of a �ow

⊲ subsequent pa
kets of �ow follow same route
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Load balan
ing implementation

◮ method three

⊲ allo
ate traf�
 randomly between two paths

⊲ but randomization is based on a hash of the IPsour
e and destination address

⊲ effe
t is random allo
ation

⋆ but with all pa
kets between same sour
e anddestination using the same path

⋆ so no reordering within a TCP 
onne
tion

⊲ hash needs to be randomized at ea
h node,otherwise multiple splits don't work

⋆ different seeds for randomization at ea
hrouter
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Load balan
ing implementation
◮ method 3 without random seeds in hashes

10.0.0.0/8

no traffic

traffic flows

h(i)=1

h(i)=1

h( ) is the hash
   1 = interface 1
   2 = interface 2

1 2

3

4

5

6

7

8

9
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Link weights

What should be the link weights αe?

◮ real, physi
al distan
e?

◮ delay of pa
kets along link?

◮ hop 
ount (e.g. αe = 1)?

◮ some arbitrary number?Cis
o default

◮ inverse 
apa
ity weights αe = A/re

◮ the higher 
apa
ity links are nominally �shorter�

◮ en
ourages traf�
 to use higher 
apa
ity links

◮ it 
an lead to weird routing
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Link weights

Adelaide

routing

Bordertown Ballarat

Melbourne

r =10e

r =1e

r =10e

r =100e

◮ may think don't need link between Ballarat andBordertown, be
ause it has no traf�

◮ but its just be
ause routing is taking a longer path

⊲ dire
t path: D = we = 100/re = 100

⊲ indire
t path: D = 10+10+1 = 21

◮ inverse 
apa
ity is often the wrong 
hoi
e
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Link weights

◮ 
orre
t 
hoi
e depends on obje
tives

◮ 
ommon 
ases o

ur when minimizing delays:

⊲ if propagation delay is dominant

⋆ minimize physi
al path distan
e

⋆ weight = link distan
e, e.g. αe = de

⊲ if pro
essing and transmission time dominate

⋆ minimize the hop 
ount, e.g. αe = 1
⊲ if queueing 
auses most delays, need to minimizeloads on links

⋆ early ARPANET had load-sensitive routing

⋆ measured pa
ket delays along links (to get αe)

⋆ sent pa
ket along shortest (delay) path

◮ 
an also write link weight 
hoi
e as an optimizationproblem (
alled traf�
 engineering)
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In
remental Dijkstra

As noted above, Dijkstra doesn't s
ale as well as wemight like.

◮ network of 1000 nodes need some kind of hiera
hy
◮ alternatively, note that most of the time thenetwork doesn't 
hange

⊲ when it does 
hange, it is usually only a lo
al
hange in a few links
⊲ perhaps we don't have to re
ompute everythingfrom s
rat
h?

◮ in
remental Dijkstra algorithm
◮ latest implementations use in
remental Dijkstra.

http://www.cisco.com/en/US/about/ac123/ac114/ac173/Q3-04/sp_calculate.html
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GeneralizationWe fo
used here on IP routing

◮ but routing is needed in most 
ommuni
ationsnetworksShortest paths used in many areas � not just
ommuni
ations networks

◮ there are many other types of networks

⊲ often want shortest paths on these

⊲ e.g. for �nding 
lose linkages in so
ial networks

◮ not always obvious what's a network

⊲ Dijkstra used in image pro
essing

⊲ pixels form a grid, whi
h is a network

◮ Dijkstra is often a 
omponent of another algorithm
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Link state vs Distan
e Ve
tor
◮ We saw OSPF was a link-state routing proto
ol

⊲ �oods topology (link states), and 
omputes SPF
⊲ solves shortest path problem

◮ alternative is 
alled distan
e-ve
tor proto
ol
⊲ examples: RIP, IGRP, ...
⊲ originally also aimed to solve shortest paths

⋆ but nodes don't need to know 
ompletetopology
◮ hybrids exist, e.g. EIGRP
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Distan
e Ve
tor

◮ Make a list of destinations you 
an rea
h and thedistan
e to these destinations.

⊲ Store in routing table

◮ Share this list with your neighbours

◮ Add to routing table new information gained fromadja
ent routers about the destinations they 
anrea
h

⊲ remember to in
rement their distan
e

⊲ keep the sour
e as the next hop

◮ If two paths to the same destination exists, keepthe shortest distan
e path.

◮ Repeat periodi
ally (in RIP every 30 se
onds).

Communications Network Design: lecture 07 – p.37/44

Communications Network Design: lecture 07 – p.37/44

Distan
e Ve
tor example
R2R1

R3 R4

R510.1.0.0/24

10.1.0.0/24subnet
next hop
distance

10.1.0.0/24subnet
next hop
distance

no route

10.1.0.0/24subnet
next hop
distance

no route
10.1.0.0/24subnet

next hop
distance

no route
infinity infinity

infinityinfinity

Ethernet 0

10.1.0.0/24subnet
next hop
distance 1

Ethernet 0 no route
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Sink treesResults of algorithm must be a sink tree

◮ �sink� is destination

◮ get a tree leading to the destination

◮ must be a tree: shortest path 
an only be 
omposedof shortest paths

destination

sources
1

3

4

5

6
7

8

9
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Distan
e Ve
tor

◮ also 
alled Distributed Bellman-Ford
◮ proved 
onverges for shortest path routing

⊲ ordering and timing of updates doesn't matter
◮ 
hief advantages

⊲ history (RIP invented way ba
k in ARPANET)

⊲ simpli
ity

⋆ example of Cis
o RIP 
on�guration
router rip

network 10.1.0.0

◮ problems
⊲ 
onvergen
e time (minutes)

⊲ s
aling (of RIP)
⊲ 
ount to in�nity
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Count to in�nity

R2R1 R510.1.0.0/24

10.1.0.0/24subnet
next hop
distance

10.1.0.0/24subnet
next hop
distance

Ethernet 0

10.1.0.0/24subnet
next hop
distance 1

Ethernet 0 R1
2

R2
3
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RIPRouting Information Proto
ol (RIP)

◮ RIP was �rst developed in early ARPANET
⊲ RIPv1, de�ned in RFC 1058 [3℄ (1988)
⊲ RIPv2, de�ned in RFC 1723 [4℄ (1994)

⋆ introdu
ed 
lassless routing (CIDR)
⊲ RIPng, de�ned in RFC 2080 (IPv6)
⊲ MDS authenti
ation RFC 2082.

◮ implementation
⊲ uses UDP over IP, on port 520 to 
arry its data

⋆ see RFCs for pa
ket formats

⊲ router transmits full updates every 30 se
onds

⋆ by default
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RIP

◮ 
ount-to-in�nity mitigated using

⊲ split horizon with poison reverse

⊲ triggered updates

◮ 
ount-to-in�nity stopped

⊲ maximum distan
e = 15

⊲ in�nity = 16

◮ problems

⊲ 
onvergen
e is slow

⊲ 
ount to 16 
an still be slow

⊲ generates lots of traf�


⊲ maximum length path is 16

Communications Network Design: lecture 07 – p.43/44

Communications Network Design: lecture 07 – p.43/44

References[1℄ J. Moy, �OSPF Version 2.� IETF, Request for Comments: 2328, 1998.[2℄ D. Oran, �OSI IS-IS Intra-domain Routing Proto
ol.� IETF, Request for Comments:1142, 1990.[3℄ C. Hedri
k, �Routing Information Proto
ol.� IETF, Request for Comments: 1058,1988.[4℄ G. Malkin, �RIP Version 2.� IETF, Request for Comments: 1723, 1994.

Communications Network Design: lecture 07 – p.44/44


	
	
	
	Floyd-Warshall
	
	Floyd-Warshall
	
	Floyd-Warshall
	
	Floyd-Warshall
	
	Floyd-Warshall example
	
	Floyd-Warshall example
	
	Floyd-Warshall example
	
	Floyd-Warshall example
	
	Floyd-Warshall example
	
	Floyd-Warshall example
	
	Floyd-Warshall example
	
	Floyd-Warshall shortest paths
	
	Floyd-Warshall complexity
	
	Alternative algorithms
	
	Routing implementation
	
	SPF implementation
	
	SPF implementation
	
	SPF routing implementations
	
	OSPF
	
	Scaling of OSPF
	
	Scaling of OSPF
	
	Load balancing
	
	Dijkstra and load balancing
	
	Dijkstra and load balancing ex.
	
	Load balancing implementation
	
	Load balancing implementation
	
	Load balancing implementation
	
	Load balancing implementation
	
	Link weights
	
	Link weights
	
	Link weights
	
	Incremental Dijkstra
	
	Generalization
	
	Link state vs Distance Vector
	
	Distance Vector
	
	Distance Vector example
	
	Sink trees
	
	Distance Vector
	
	Count to infinity
	
	RIP
	
	RIP
	
	

