Communications Network Design
lecture 07

Matthew Roughan
<mat t hew. r oughan@del ai de. edu. au>

Discipline of Applied Mathematics
School of Mathematical Sciences
University of Adelaide

March 26, 2009

Communications Network Design: lecture 07 — p.1/44

Routing (continued)

We continue the algorithmic viewpoint by considering an
alternative to Dijkstra called the Floyd-Warshall
algorithm. Also we consider routing implementation:

OSPF, IS-IS, and some miscellaneous issues such as load
balancing. Finally we will look into the distributed

Bellman-Ford dynamic programming algorithm as
implemented in RIP.

Communications Network Design: lecture 07 — p.2/44

This lecture continues the discussion of shortest-path routing. It provides a new algorithm
(Floyd-Warshall) and so details of how shortest-path routing is implemented in the Internet.

Communications Network Design: lecture 07 — p.1/44

Communications Network Design: lecture 07 — p.2/44

Floyd-Warshall

Alternative to Dijkstra for all-pairs shortest path
problem

» same input as Dijkstra (except no start node)

» add nodes in one by one, and compute shortest
paths as you add in a hode

> shortest path is either the same
> or changes to include the new node

Communications Network Design: lecture 07 — p.3/44

Floyd-Warshall

Let Di(}‘) denote the shortest path length from node i to
node j using infermediate nodes from 1 to k only.
Initialise: D) =dj Vi, jeN

Vv =10], an |N| x [N| zero matrix.
Step: for k=1,2,...n, compute new distance estimates

k . k— k— k— . .
|}’ = min{D{{, D" + Dy M} Vi]
Compute the predecessor nodes
If DX <D Y put V¥ =k;

otherwise, Vigk) — \/ig"—l)

Communications Network Design: lecture 07 — p.4/44

Communications Network Design: lecture 07 — p.3/44

Communications Network Design: lecture 07 — p.4/44

Floyd-Warshall

» The initialisation step gives the shortest path
lengths subject to no intermediate nodes

» For agivenk, Di(}‘_l) gives the shortest path from i

to j using only nodes 1 through k— 1 as possible
intermediate nodes.
» On allowing node k as an intermediate node, either k
IS on the shortest path, or it isn't.
> it isn't: keep the same distance, and path

« DI =DV and V| = v
> it is: the new path must be made of two
shortest paths, joined by node k, i.e. i—k and k—]
k k-1 k—1
« D =D{ Y + D

* \/;(jk) shows where the join occurred

Communications Network Design: lecture 07 — p.5/44

Floyd-Warshall

» The O's in V(" determine the adjacencies (links) in
the final network.
> Vign) indicates that we never found a shorter
path than dij along the direct path.
> hence i and j are adjacent in the SPF tree
» The other terms in V(" show the predecessor nodes
for each end-to-end path.

> construct paths, by concatenating predecessor
nodes

Communications Network Design: lecture 07 — p.6/44

Communications Network Design: lecture 07 — p.5/44

Communications Network Design: lecture 07 — p.6/44

Floyd-Warshall example

Communications Network Design: lecture 07 — p.7/44

Floyd-Warshall example

Initially, we put direct links into the matrix D

ol

o olN

© o olw

© O o olk
©O O o oo w

Communications Network Design: lecture 07 — p.8/44

Communications Network Design: lecture 07 — p.7/44

Communications Network Design: lecture 07 — p.8/44

Floyd-Warshall example Floyd-Warshall example

k = 2: try including node 2 on existing paths (so any path

k = 1: include node 1 on existing direct paths (so any
already containing node 2 e.g. line 2 and second column

path already containing node 1 e.g. top line and first

column of D, can be ighored). Here, nothing changes. of D, can be ignored).
1 2 3 4 5 1 2 3 45 1 2 3 45 1 2 3 45
110 6 3 0 o 1/0 0 0 0O 1/0 6 310 7 110 0 0 2 2
Di('l) 2 0 2 4 1 v 2 0 00O Di('z) 2 0 2 41 v _ 2 0O 00O
J 3 0O 1 6 3 0 0O ! 3 0 13 3 0 02
4 0 5 4 00 4 0 5 4 00
5 0 5 0 5 0 5 0

Communications Network Design: lecture 07 — p.9/44 Communications Network Design: lecture 07 — p.10/44

Communications Network Design: lecture 07 — p.9/44 Communications Network Design: lecture 07 — p.10/44

Floyd-Warshall example Floyd-Warshall example

k =3 try including node 3 on existing paths (so any path k = 4: try including node 4 on existing paths:

already containing node 3 e.g. line 3 and third column of No changes.
D, can be ignored).
1 2 3 45 123 45 12345 12 3 45
110 5 3 4 6 110 3 0 3 3 10 5 346 110 3 0 3 3
' 3 013 3 0 0 2 3 013 3 0 0 2
4 0 4 4 0 3 4 0 4 4 0 3
5 0 5 0 5 0 5 0

E.G. The old path joining 4-5 was a direct link with
distance Dfs) =5. But when we are allowed to include
node 3, we get an alternative D%) + D(325) =4, which is

better, so we set DE@ =4, and V4(g) =3

Communications Network Design: lecture 07 — p.12/44

Communications Network Design: lecture 07 — p.11/44

Communications Network Design: lecture 07 — p.12/44

Communications Network Design: lecture 07 — p.11/44

Floyd-Warshall example

k =5: try including node 5 on existing paths. The entries
Di(f’) give the length of the shortest path from each node
i Yo each other node j.

12345 12 3 4 5
1/0 5 3 46 1/o0 3[0] 3 3
5o _ 2 0231 ve_ 2| 0ol 3]0
3 013 3 o [0] 2
4 0 4 4 0 3
5 0 5 0

Use the boxed zero entries in the final V to determine
links: (1,3), (2.3), (2.5), (3.,4).

Communications Network Design: lecture 07 — p.13/44

Floyd-Warshall shortest paths

Communications Network Design: lecture 07 — p.14/44

Communications Network Design: lecture 07 — p.13/44

Note that the solution is the same as the one we found with Dijkstra. However, that isn’t
guaranteed. In some cases, there may be multiple equal-length shortest paths. The path
you find depends on the ordering of the nodes in the various techniques, so depending on
implementation, even two different versions of Dijkstra could return a different SPF tree. We
will consider this issue a little more later on.

Communications Network Design: lecture 07 — p.14/44

Floyd-Warshall complexity

» In calculating Di(}() at each step, we need to compare

[(IN[=1)

two possibilities for each of N 3 pairs of
nodes.

» the algorithm has |N| steps

» total computational complexity is O(|N|3).

» This of course is the same as repeating simple
version of Dijkstra's algorithm |N| times (for each
of |N| sources)

Communications Network Design: lecture 07 — p.15/44

Alternative algorithms

» Dijkstra and FW assume non-negative weights
» not a problem for network applications

» for more general applications, use Bellman-Ford
> can be used on graphs with negative edge
weights
> as long as the graph contains no negative cycle
reachable from the source node
» Johnson's algorithm solves all pairs shortest paths,
may be faster than Floyd-Warshall on sparse
graphs.

Communications Network Design: lecture 07 — p.16/44

Communications Network Design: lecture 07 — p.15/44

We will see a version of Bellman-Ford later on in this course.

Communications Network Design: lecture 07 — p.16/44

Routing implementation

» must obtain consistent results between routers
> to avoid route loops, or dead-ends

» must adapt to changing network
> route around link or node failures
» must use a distributed algorithm
> an algorithm which enables a common objective of two or

more peer processes to be performed jointly by the
combination of processing and exchanging information.

> The distributed algorithm is broken down into a set of local
algorithms, one of which is performed by each peer process.

> Each local process carries out various operations on the
available data, and at various points in the algorithm, it
sends/receives data to/from other peer processes.

Communications Network Design: lecture 07 — p.17/44

SPF implementation

Implementation is performed by a routing protocol
» routing protocol performs SPF calculation
» first needs to find out the topology, and weights

» each router floods its available topology information
to all other routers
> takes the form of LSAs

= Link State Announcements
x a router sends LSA describing its links to

adjacent routers
¢+ LSA includes link weight
* heighbours forward (non-duplicate) LSAs to
their neighbours

> hence this is called a link-state routing protocol

Communications Network Design: lecture 07 — p.18/44

Communications Network Design: lecture 07 — p.17/44

Communications Network Design: lecture 07 — p.18/44

SPF implementation

» once a router has seen all LSA
> it knows the complete topology

> it can perform Dijkstra to compute shortest
paths to all other routers

» note that each router only needs to perform
Dijkstra once

> it only needs to know paths from itself, to the
other routers.
> hence O(|N|?) for simple implementation

> O(|N[®) workload is distributed over [N| routers

Communications Network Design: lecture 07 — p.19/44

SPF routing implementations

» common implementations

> OSPF [1]
x Open Shortest Path First
+ several RFCs needed to see all possibilities
> IS-IS [2]
» Intermediate System-Intermediate System
= several RFCs needed to see all possibilities

» some amusement: RFC 4041, "Requirements for

Morality Sections in Routing Area Drafts”
ftp://ftp.rfc-editor.org/in-notes/rfc4041.txt

It has often been the case that morality has not been given proper
consideration in the design and specification of protocols produced within
the Routing Area. This has led o a decline in the moral values within the
Internet and attempts to retrofit a suitable moral code to implemented
and deployed protocols has been shown to be sub-optimal...

Communications Network Design: lecture 07 — p.20/44

Communications Network Design: lecture 07 — p.19/44

Communications Network Design: lecture 07 — p.20/44

ftp://ftp.rfc-editor.org/in-notes/rfc4041.txt

OSPF

» soft state
> periodically refresh LSA information

> also exchange hel | 0 messages (between
neighbouring routers) to test link states

> in case a failure happens, and isn't detected

» not routed
> LSAS are just sent in IP packets
x like everything else
> transmitted over IP (protocol 89)
x not over TCP, so not reliable transport
> but you can't route, until you have routes

> hence forwarding of LSAs is limited to adjacent
routers

Communications Network Design: lecture 07 — p.21/44

Scaling of OSPF

» as noted earlier, if |N| is too large, computing SPF
takes too long, and we run into problems

» how can you build large (|N| ~ 1000) networks

» use (2 level) hierachy
> in subnetworks compute shortest paths
> compute the shortest paths between subnets
> combine the two
» not as simple as it sounds
> example OSPF areas
> area 0 is the backbone (1st level)
> other ar eas are the subnetworks (2nd level)

Communications Network Design: lecture 07 — p.22/44

Communications Network Design: lecture 07 — p.21/44

Communications Network Design: lecture 07 — p.22/44

a different AS

Communications Network Design: lecture 07 — p.23/44

Load balancing

» in some cases there will be two (or more) equal
distance paths from source to destination

» Dijkstra and FW only give you one path
» solution is non-unique
» more efficient to share load over both paths

10.0.0.0/8

——p» shortest paths

Communications Network Design: lecture 07 — p.24/44

Communications Network Design: lecture 07 — p.23/44

Communications Network Design: lecture 07 — p.24/44

Dijkstra and load balancing

» for all destination nodes in graph, you have a
shortest path

» start at a particular destination

» recursively descend through neighbours at the right
distance back

» algorithm exponential in number of paths, but this is
hopefully small

Communications Network Design: lecture 07 — p.25/44

Dijkstra and load balancing ex.

all links have unit weight

10.0.0.0/8

———» shortest paths

Communications Network Design: lecture 07 — p.26/44

Communications Network Design: lecture 07 — p.25/44

Communications Network Design: lecture 07 — p.26/44

Load balancing implementation

» method one
> split traffic up by addresses
> instead of a simple forwarding table

x e.g. at router 2, the next hop router to prefix
10.0.0.0/8 is router 3

> have two forwarding table entries
> e.g. forwarding table (at router 2)

destination | next hop router
10.0.0.0/9 3
10.1.0.0/9 4

» traffic betwen different prefixes may be uneven

Communications Network Design: lecture 07 — p.27/44

Load balancing implementation

» method two
> need multiple paths in forwarding table
destination | next hop router

10.0.0.0/8 3or4
> allocate traffic between two next hops randomly
as it arrives

> method is simpler o administrate
> better balance of traffic
> may reorder packets
» method two(b)
> randomize first packet of a flow
> subsequent packets of flow follow same route

Communications Network Design: lecture 07 — p.28/44

Communications Network Design: lecture 07 — p.27/44

Communications Network Design: lecture 07 — p.28/44

Load balancing implementation

» method three

> allocate traffic randomly between two paths

> but randomization is based on a hash of the IP
source and destination address

> effect is random allocation
x but with all packets between same source and

destination using the same path

* S0 no reordering within a TCP connection

> hash needs to be randomized at each node,
otherwise multiple splits don't work

* different seeds for randomization at each
router

Communications Network Design: lecture 07 — p.29/44

Load balancing implementation

» method 3 without random seeds in hashes

—Pp-traffic flows
no traffic h(i)=

10.0.0.0/8

h() is the hash
1 = interface 1
2 = interface 2

Communications Network Design: lecture 07 — p.30/44

Communications Network Design: lecture 07 — p.29/44

Communications Network Design: lecture 07 — p.30/44

Link weights

What should be the link weights oc?
» real, physical distance?
» delay of packets along link?
» hop count (e.g. 0e=1)?
» some arbitrary number?
Cisco default
» inverse capacity weights oe = A/re
» the higher capacity links are nominally “shorter”
» encourages ftraffic to use higher capacity links
» it can lead to weird routing

Communications Network Design: lecture 07 — p.31/44

Link weights

Adelaide =100 Melbourne

Bordertown Ballarat

» may think don't need link between Ballarat and
Bordertown, because it has no traffic

» but its just because routing is taking a longer path
> direct path: D = we = 100/r. = 100
> indirect path: D =10+10+1=21

» inverse capacity is often the wrong choice

Communications Network Design: lecture 07 — p.32/44

Communications Network Design: lecture 07 — p.31/44

Communications Network Design: lecture 07 — p.32/44

Link weights

» correct choice depends on objectives

» common cases occur when minimizing delays:

> if propagation delay is dominant
* minimize physical path distance
x weight = link distance, e.g. te =de

> if processing and transmission time dominate
* minimize the hop count,eg. 0.=1

> if queueing causes most delays, need to minimize
loads on links
x early ARPANET had load-sensitive routing
* measured packet delays along links (to get a)
= sent packet along shortest (delay) path

» can also write link weight choice as an optimization

problem (called traffic engineering)

Communications Network Design: lecture 07 — p.33/44

Incremental Dijkstra

As noted above, Dijkstra doesn't scale as well as we
might like.

» network of 1000 nodes need some kind of hierachy

» alternatively, note that most of the time the
network doesn't change

> when it does change, it is usually only a local
change in a few links

> perhaps we don't have to recompute everything
from scratch?

» incremental Dijkstra algorithm
» latest implementations use incremental Dijkstra.

http://ww. ci sco. com en/ US/ about/ac123/acl1l4/acl73/ @3- 04/ sp_cal cul ate. htnl

Communications Network Design: lecture 07 — p.34/44

Communications Network Design: lecture 07 — p.33/44

Communications Network Design: lecture 07 — p.34/44

http://www.cisco.com/en/US/about/ac123/ac114/ac173/Q3-04/sp_calculate.html

Generalization

We focused here on IP routing

» but routing is needed in most communications
networks

Shortest paths used in many areas - not just
communications networks

» there are many other types of networks

> often want shortest paths on these

> e.g. for finding close linkages in social networks
» not always obvious what's a network

> Dijkstra used in image processing

> pixels form a grid, which is a network

» Dijkstra is offen a component of another algorithm

Communications Network Design: lecture 07 — p.35/44

Link state vs Distance Vector

» We saw OSPF was a link-state routing protocol
> floods topology (link states), and computes SPF
> solves shortest path problem

» alternative is called distance-vector protocol
> examples: RIP, IGRP, ...

> originally also aimed to solve shortest paths
* but nodes don't need to know complete

topology
» hybrids exist, e.g. EIGRP

Communications Network Design: lecture 07 — p.36/44

Communications Network Design: lecture 07 — p.35/44

Communications Network Design: lecture 07 — p.36/44

Distance Vector

» Make a list of destinations you can reach and the
distance to these destinations.
> Store in routing table

» Share this list with your neighbours

» Add to routing table new information gained from
adjacent routers about the destinations they can
reach

> remember to increment their distance
> keep the source as the next hop

» If two paths to the same destination exists, keep
the shortest distance path.

» Repeat periodically (in RIP every 30 seconds).

Communications Network Design: lecture 07 — p.37/44

Distance Vector example

subnet |10.1.0.0/24 subnet |10.1.0.0/24
next hop | no route next hop | no route
distance | infinity distance |infinity

10.1.0.0/24 R1 R2 R5
Ethernet 0--
subnet_|10.1.0.0/24 subnet|10.1.0.0/24 subnet_|10.1.0.0/24
next hop | Ethernet 0 next hop | no route next hop | no route
distance |1 distance | infinity distance | infinity

Communications Network Design: lecture 07 — p.38/44

Communications Network Design: lecture 07 — p.37/44

Communications Network Design: lecture 07 — p.38/44

Sink trees

Results of algorithm must be a sink tree
» "sink” is destination
» get a tree leading to the destination
» must be a tree: shortest path can only be composed

of shortest paths
\

©

destination

Communications Network Design: lecture 07 — p.39/44

Distance Vector

» also called Distributed Bellman-Ford
» proved converges for shortest path routing
> ordering and timing of updates doesn't matter

» chief advantages
> history (RIP invented way back in ARPANET)
> simplicity
= example of Cisco RIP configuration

router rip
network 10.1.0.0

» problems
> convergence time (minutes)
> scaling (of RIP)
> count to infinity

Communications Network Design: lecture 07 — p.40/44

Communications Network Design: lecture 07 — p.39/44

Communications Network Design: lecture 07 — p.40/44

Count to infinity

R1 R2 R5
10.1.0.0/24 7 7 a
B)
subnet[10.1.0.0/24 subnet[10.1.0.0/24 subnet_[10.1.0.0/24
next hop | Ethernet O next hop |R1 next hop |R2
distance |1 distance |2 distance |3

Communications Network Design: lecture 07 — p.41/44

RIP

Routing Information Protocol (RIP)

» RIP was first developed in early ARPANET
> RIPv1, defined in RFC 1058 [3] (1988)

> RIPvZ2, defined in RFC 1723 [4] (1994)
* introduced classless routing (CIDR)

> RIPng, defined in RFC 2080 (IPv6)
> MDS authentication RFC 2082.
» implementation

> uses UDP over IP, on port 520 to carry its data
= see RFCs for packet formats

> router transmits full updates every 30 seconds
* by default

Communications Network Design: lecture 07 — p.42/44

Communications Network Design: lecture 07 — p.41/44

Communications Network Design: lecture 07 — p.42/44

RIP

» count-to-infinity mitigated using
> split horizon with poison reverse
> triggered updates
» count-to-infinity stopped
> maximum distance = 15
> infinity = 16
» problems
> convergence is slow

> count to 16 can still be slow
> generates lots of traffic
> maximum length path is 16

Communications Network Design: lecture 07 — p.43/44

References

[1] J. Moy, "OSPF Version 2." IETF, Request for Comments: 2328, 1998.

[2] D. Oran, "OSI IS-IS Intra-domain Routing Protocol.” IETF, Request for Comments:
1142, 1990.

[3] C. Hedrick, "Routing Information Protocol.” IETF, Request for Comments: 1058,
1988.

[4] G. Malkin, "RIP Version 2." IETF, Request for Comments: 1723, 1994,

Communications Network Design: lecture 07 — p.44/44

Communications Network Design: lecture 07 — p.43/44

	
	
	
	Floyd-Warshall
	
	Floyd-Warshall
	
	Floyd-Warshall
	
	Floyd-Warshall
	
	Floyd-Warshall example
	
	Floyd-Warshall example
	
	Floyd-Warshall example
	
	Floyd-Warshall example
	
	Floyd-Warshall example
	
	Floyd-Warshall example
	
	Floyd-Warshall example
	
	Floyd-Warshall shortest paths
	
	Floyd-Warshall complexity
	
	Alternative algorithms
	
	Routing implementation
	
	SPF implementation
	
	SPF implementation
	
	SPF routing implementations
	
	OSPF
	
	Scaling of OSPF
	
	Scaling of OSPF
	
	Load balancing
	
	Dijkstra and load balancing
	
	Dijkstra and load balancing ex.
	
	Load balancing implementation
	
	Load balancing implementation
	
	Load balancing implementation
	
	Load balancing implementation
	
	Link weights
	
	Link weights
	
	Link weights
	
	Incremental Dijkstra
	
	Generalization
	
	Link state vs Distance Vector
	
	Distance Vector
	
	Distance Vector example
	
	Sink trees
	
	Distance Vector
	
	Count to infinity
	
	RIP
	
	RIP
	
	

