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This le
ture introdu
es the routing problem, and des
ribes a 
ommon approa
h to its solution(Dijkstra's algorithm) for shortest-path routing.
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Routing

A 
ommon approa
h to routing uses shortest-paths. The
anoni
al algorithm for solving shortest-path routing isDijkstra's.
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Logi
al vs Physi
al Network

Possible physi
al topology (layer 1)
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Logi
al vs Physi
al Network

Possible logi
al network topology (layer 2)

Communications Network Design: lecture 06 – p.4/43

Communications Network Design: lecture 06 – p.4/43



Logi
al vs Physi
al Network

Possible logi
al network topology (layer 3)
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Mapping the logi
al to the physi
al

Network maps (at one layer) 
an be quite misleading

Physical
layer 1

Network
layer 3

Link
layer 2

optical fiber

virtual ciruits

WDM cross connects

switches

routers
packets
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We 
an do network optimization at any layer, or all of them!
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Cir
uit swit
hing won't go away

Even for purist IP net-heads

◮ often 
ir
uit swit
hing in lower layers

◮ G-MPLS � lambda-swit
hing

⊲ WDM allows multiple wavelengths of light toshare a single �ber

⊲ opti
al 
ross-
onne
ts swit
h the light

⋆ no ele
troni
s involved

⋆ purely opti
al

⊲ proto
ols to set up and tear down opti
al 
ir
uits

◮ pa
ket forwarding on top of these 
ir
uits
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Routing
We need a method to map pa
ket routes to links

◮ 
alled a routing proto
ol

◮ several types exist

◮ we 
onsider (today)

⊲ link state

⊲ shortest path

⊲ IGP (Interior Gateway Proto
ol)routing proto
ols
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Notation and AssumptionsThe underlying stru
ture is a graph, with

◮ a set of nodes N = {1,2, . . .n} (also 
alled vertex)

|N| = n

⊲ a node 
ould be a router, an AS, a PoP, ...

◮ a set of links E ⊆ N×N (also 
alled edges)

E ⊂ {(i, j) : i, j ∈ N, i 6= j}
|E| ≤ n(n−1)/2

⊲ a link 
ould be a physi
al link, logi
al 
ir
uit, ...

◮ assume the links are undire
ted, so

(i, j) = ( j, i)

⊲ this just makes des
riptions easier

⊲ easily generalized to dire
ted graphs

◮ The network is de�ned by the graph, G(N,E)
Communications Network Design: lecture 06 – p.9/43

You need to know this notation: we will use it throughout the 
ourse!
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Notation and Assumptions
◮ Origin-Destination (O-D) pair (p,q) ∈ N×N

◮ Let K be the set of all O-D pairs
K = {[p,q] : p,q∈ N}.

◮ Offered traf�
 between O-D pair (p,q) is tpq

◮ The set of paths in G(N,E) joining an O-D pair (p,q)is denoted Ppq.

⊲ paths are assumed to be a-
y
li

⊲ e.g. no node is visited twi
e
⊲ e.g. loop free

◮ The set of all paths in G(N,E) is denoted P.

P = ∪[p,q]∈KPpq
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You need to know this notation: we will use it throughout the 
ourse!
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Network Paths

2

6

1
3

4
5

Paths P15: 1-2-4-5, 1-2-6-3-5, 1-2-6-5, 1-3-5,1-3-6-2-4-5, 1-3-6-5, 1-4-2-6-3-5, 1-4-2-6-5, 1-4-5
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Notation and Assumptions
◮ Ea
h link e∈ E has a 
apa
ity, denoted by re(≥ 0).

⊲ In 
ommuni
ation networks, this is the maximumservi
e rate, with units of bits/se
 (�bit rate�).
⊲ If links are un
apa
itated,

re =

{

∞, ∀ e∈ E
0, ∀ e 6∈ E

◮ Links have a physi
al distan
e, often measured interms of propagation delays de(≥ 0).

⊲ Where required, assume de = ∞, ∀e 6∈ E
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Routing

◮ in essen
e, routing maps

⊲ end-to-end traf�
 from p to q, i.e. tpq

⊲ to end-to-end paths in Ppq

⊲ to links in E

◮ there are very many paths

⊲ 
an't sear
h them all

⊲ have to be 
lever about 
hoi
e of paths

◮ 
an use multiple paths

⊲ load-balan
ing � spreads load over paths
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Routing
Want to route traf�
 tpq from node p to qDe
ision variables are xµ

xµ = traf�
 allo
ated to path µ∈ P.Note that xµ ≥ 0 and for all [p,q] ∈ K and
∑

µ∈Ppq

xµ = tpq

Also the xµ are disjoint
◮ traf�
 routed on path µ∈ Ppq 
omes from only tpq.The ve
tor x = (xµ : µ∈ P) is 
alled the routing.
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Routing 
osts

Any routing indu
es loads on a link

◮ Denote the load on link e∈ E by fe.

⊲ In dire
ted networks, load is 
alled �ow

◮ link loads are obtained by summing the traf�
allo
ated to all paths 
ontaining the link e.

fe = ∑
µ∈P:e∈µ

xµ

◮ The ve
tor f = ( fe : e∈ E) is 
alled the load on thenetwork.
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Routing 
osts

Assume that load indu
es 
ost

◮ loads 
ause 
ongestion

⊲ in
reases delays

⊲ 
an be seen as a type of 
ost
◮ we may pur
hase network 
apa
ity from a provider

⊲ they may 
harge based on usage
◮ as network grows

⊲ we add 
apa
ity
⊲ if more load on links, we need to add 
apa
itysooner, whi
h 
osts us more

◮ The 
ost of the network for a given load f is C(f)
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Routing problem

The Routing Problem: Determine the optimal routing xto minimise C(f)Formulation: minimize C(f) s.t.

fe = ∑
µ∈P:e∈µ

xµ, ∀e∈ E

xµ ≥ 0, ∀µ∈ P

∑
µ∈Ppq

xµ = tpq, ∀ [p,q] ∈ K

fe ≤ re, ∀e∈ E

Communications Network Design: lecture 06 – p.17/43

Communications Network Design: lecture 06 – p.17/43

Routing problem

The Routing Problem: Determine the optimal routing xto minimise C(f)Formulation: minimize C(f) s.t.
fe = ∑

µ∈P:e∈µ

xµ, ∀e∈ E

xµ ≥ 0, ∀µ∈ P

∑
µ∈Ppq

xµ = tpq , ∀ [p,q] ∈ K

fe ≤ re , ∀e∈ E

indu
ed loadsrouting
traf�

onservation 
apa
ity 
onstraints

edgespaths
O-D pairs
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Linear 
osts

◮ Remove 
apa
ity 
onstraints

◮ Assume linear 
osts, with generi
 weights αe

C(f) = ∑
e∈E

αe fe, αe ≥ 0, ∀e∈ E

◮ then the 
ost of using the link is dire
tlyproportional to the load on the link, i.e.

C( fe) ∝ fe

◮ αe is sometimes 
alled

⊲ the length of the link

⊲ the link weight

⊲ the link 
ost
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Path lengthsThen, in terms of the de
ision variables,
C(f) = ∑

e∈E

αe fe

= ∑
e∈E

αe

(

∑
µ∈P:e∈µ

xµ

)

= ∑
µ∈P

(

∑
e∈µ

αe

)

xµ

= ∑
µ∈P

lµxµ

◮ lµ = ∑e∈µαe is 
alled the 
ost, or length of path µ∈ P.

◮ It is the sum of all the link 
osts along the path

◮ Relationship between link 
ost, and path length

⊲ longer paths use more resour
es
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Network path-length example

7

4 4

1 2

3

Two possible paths from 1 -> 2

◮ Path 1 (1-2), and has length lµ = 7

◮ Path 2 (1-3-2), and has length lµ = 4+4 = 8
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Linear 
osts => shortest path routing

We want to minimize C(f) = ∑
e∈E

αe fe = ∑
µ∈P

lµxµ

◮ �nd minimum length paths l̂pq = min{lµ : µ∈ Ppq}

◮ put all traf�
 tpq on a minimum length path
◮ then we get 
ost

C(f) = ∑
µ∈P

lµxµ = ∑
[p,q]∈K

l̂pqtpq

◮ problem solved!
⊲ we just have to �nd shortest paths

⋆ Dijkstra's algorithm
⋆ Floyd-Warshall algorithm
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Spe
ial 
ase

◮ the network is fully meshed (a 
lique),

E = {(i, j), ∀ i, j ∈ N, i 6= j}

◮ the αe satisfy the triangle inequality i.e.

αik ≤ αi j +α jk, ∀ i,k, j ∈ N

◮ Then the path of minimum 
ost between any twonodes p,q is the dire
t link (p,q).

◮ That is, we route all offered traf�
 tpq dire
tlyfrom p to q.

◮ This network is 
alled:a fully meshed network (or 
lique) with dire
t linkrouting.
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Triangle inequality

ij jk

ik

α α

α
ki

j

αik ≤ αi j +α jk, ∀ i,k, j ∈ N
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Dijkstra's algorithm

◮ most networks are not 
liques

◮ fast method to �nd shortest paths is Dijkstra'salgorithm [1℄

⊲ Edsger Dijkstra (1930-2002)

⋆ Dut
h 
omputer s
ientist

⋆ Turing prize winner 1972.

⋆ �Goto Statement Considered Harmful� paper

◮ �nd distan
e of all nodes from one start point

◮ works by �nding paths in order of shortest �rst

⊲ longer paths are built up of shorter paths

Communications Network Design: lecture 06 – p.25/43

Communications Network Design: lecture 06 – p.25/43

Dijkstra's algorithm

Input

◮ graph (N,E)

◮ link weights αe, de�ne link distan
es
di j =











0 if i = j
αe where (i, j) = e∈ E
∞ where (i, j) = e 6∈ E

◮ a start node, WLOG assume it is node 1Output

◮ distan
es D j of ea
h node j ∈ N from start node 1.

◮ a prede
essor node for ea
h node (gives path)
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WLOG = Without Loss of Generality
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Dijkstra's algorithm

Let Sbe the set of labelled nodes.Initialise: S= {1},

D1 = 0,

D j = d1 j , ∀ j 6∈ S, i.e. j 6= 1.Step 1: Find the next 
losest nodeFind i 6∈ Ssu
h that Di = min{D j : j 6∈ S}Set S= S∪{i}.If S= N, stopStep 2: Find new distan
esFor all j 6∈ S, set

D j = min{D j ,Di +di j}Goto Step 1.
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When we initialize Dijkstra, the initial distan
es D j = d1 j are impli
itly set to ∞ for any nodesnot dire
tly 
onne
ted to node 1.Step 1 sele
ts a new node to add to our set of labelled nodes. It 
hooses the node (from theunlabelled set) that is 
losest (as measured by the 
urrent ve
tor D) to the starting node.Step 2 updates the distan
e ve
tor D. The distan
es for the labelled nodes don't 
hange, butfor the unlabelled nodes, we set the distan
e to be the minimum of the distan
e to a labellednode, and then from that node to the start point.
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Dijkstra Example
3

6

4

6

2 5

1

1

start node

1

2 4

3 5
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Dijkstra Example

S={1}

0

3

6 4

2
1

1

6

5
3

6

D=(0,6,3,  ,  )

Initialise

1

2

3 5

44
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Dijkstra Example

0

3

6 4

2
1

1

6

5
3

6

S={1,3} D=(0,6,3,  ,  )

Step 1

1

2

5

44

3
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Dijkstra Example

changed

0

3

4

1
5

3

S={1,3}

6

2

1

6

5 4

9

D=(0,5,3,4,9)

Step 2

1

2

5

44

3
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Dijkstra Example
0

3

4

1
5

3

6

2

6

5 4

9

D=(0,5,3,4,9)

1

S={1,3,4}

Step 1

1

2

5

4

3

4
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Dijkstra Example

0

3

13

6

2

6

5 4

9

D=(0,5,3,4,9)

1

S={1,3,4}

4

5

Step 2

1

2

5

4

3

4
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Dijkstra Example

0

3

13

6

6

5 4

9

D=(0,5,3,4,9)

1

4

52

S={1,3,4,2}

Step 1

1

4

3

42

5
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Dijkstra Example

changed

0

3

3

6

6

5 4

1

4
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S={1,3,4,2}

1

D=(0,5,3,4,6)

6

Step 2

1

4

3

42

5
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Dijkstra Example
0

3

3

6

6

5 4

1

4

52

D=(0,5,3,4,6)

6

S={1,3,4,2,5}

1

Step 1
& stop

1

4

3

42

5

Communications Network Design: lecture 06 – p.36/43

Communications Network Design: lecture 06 – p.36/43



Dijkstra Result

0

3

3

5 4

1

2

D=(0,5,3,4,6)
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S={1,3,4,2,5}

1

6

4

5

6

SPF tree

1

4

3

42
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Dijkstra intuition

◮ build a (Shortest-Path First) SPF tree
◮ let it grow

◮ grow by adding shortest paths onto it
◮ solution must look like a tree

⊲ to get paths, we only need to keep tra
k ofprede
essors, e.g. previous examplenode prede
essor1 -2 33 14 36 2
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The result of Dijkstra is a tree 
onne
ting all nodes ba
k to the initial node. The prede
essorof ea
h node 
an be thought of as its parent in the tree. Given the parents of ea
h node, thetree is 
ompletely de�ned, and so hen
e are the paths from ea
h node ba
k to the startingnode.
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Dijkstra issues

◮ Dijkstra's algorithm solves single-sour
eall-destinations problem

◮ easily extended to a dire
ted graph

⊲ 
an only join up in the dire
tion of a link

◮ link-distan
es (weights) must be non-negative

⊲ there are generalizations to deal with negativeweights

⊲ not often needed for 
ommuni
ations networksFor more examples use

http://carbon.cudenver.edu/~hgreenbe/sessions/dijkstra/DijkstraApplet.html
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Dijkstra 
omplexity

◮ simple implementation 
omplexity O(|N|2)

◮ Cis
o's implementation of Dijkstra tested in [2℄


omp.time= 2.53N2−12.5N+1200mi
rose
onds

◮ 
omplexity (assuming smart data stru
tures, i.e.Fibona

i heap) is
O(|E|+ |N| log|N|),
⊲ |E| = number of edges
⊲ |N| = number of nodes

◮ to 
ompute paths for all pairs, we 
an performDijkstra for ea
h starting point, with 
omplexity

O(|N||E|+ |N|2 log|N|),
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http://carbon.cudenver.edu/~hgreenbe/sessions/dijkstra/DijkstraApplet.html


Dijkstra 
omplexity

Empiri
al Cis
o 7500 and 12000 (GSR) 
omputationtimes for Dijkstra [2℄
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Sket
h of proof of Dijkstra

Dijkstra's algorithm solves the single-sour
e shortest-paths problemin networks that have nonnegative weights.Proof: Call the sour
e node s the root, then we need to show that thepaths from s to ea
h node x 
orresponds to a shortest path in thegraph from s to x. Note that this set of paths forms a tree out of asubset of edges of the graph.The proof uses indu
tion. We assume that the subtree formed atsome point along the algorithm has the property (of shortest paths).Clearly the starting point satis�es this assumption, so we need onlyprove that adding a new node x adds a shortest path to that node. Allother paths to x must begin with a path from the 
urrent subtree(be
ause these are shortest paths) followed by an edge to a node noton the tree. By 
onstru
tion, all su
h paths are longer than the onefrom s to x that is produ
ed by Dijkstra.
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