Communications Network Design
lecture 06

Matthew Roughan
<mat t hew. r oughan@del ai de. edu. au>

Discipline of Applied Mathematics
School of Mathematical Sciences
University of Adelaide

March 20, 2009

Communications Network Design: lecture 06 — p.1/43

Routing

A common approach to routing uses shortest-paths. The
canonical algorithm for solving shortest-path routing is
Dijkstra's.

Communications Network Design: lecture 06 — p.2/43

This lecture introduces the routing problem, and describes a common approach to its solution
(Dijkstra’s algorithm) for shortest-path routing.

Communications Network Design: lecture 06 — p.1/43

Communications Network Design: lecture 06 — p.2/43

Logical vs Physical Network

Possible physical topology (layer 1)

12°S|-
18°S|-
24°S -
30°Sf-
36°Sf-

—fiber

42°S-

1 1 1 1 1
110°E 120°E 130°E 140°E 150°E

Communications Network Design: lecture 06 — p.3/43

160°E

Logical vs Physical Network

Possible logical network topology (layer 2)

~ —

12°s - 9
18°S| 9
24°S - 7
30°SH .
36°S 9
e hub switch
asl — virtual circuit :
1 1 1 1 1
110°E 120°E 130°E 140°E 150°E 160°E

Communications Network Design: lecture 06 — p.4/43

Communications Network Design: lecture 06 — p.3/43

Communications Network Design: lecture 06 — p.4/43

Logical vs Physical Network

Possible logical network topology (layer 3)

>

—

12°S|-

18°S|-

24°S-

30°Sf-

36°Sf-

orouter
42°S ——route

1 1 1 1
110°E 120°E 130°E 140°E 150°E 160°E

Communications Network Design: lecture 06 — p.5/43

Mapping the logical to the physical

Network maps (at one layer) can be quite misleading

sastt o Network
layer 3

routers
packets

Link
layer 2

virtual ciruits
switches

Physical
layer 1

optical fiber
WDM cross connects

Communications Network Design: lecture 06 — p.6/43

Communications Network Design: lecture 06 — p.5/43

We can do network optimization at any layer, or all of them!

Communications Network Design: lecture 06 — p.6/43

Circuit switching won't go away

Even for purist IP net-heads
» often circuit switching in lower layers

» G-MPLS - lambda-switching

> WDM allows multiple wavelengths of light to
share a single fiber

> optical cross-connects switch the light
* ho electronics involved
* purely optical

> protocols to set up and tear down optical circuits
» packet forwarding on top of these circuits

Communications Network Design: lecture 06 — p.7/43

Routing

We need a method to map packet routes to links
» called a routing protocol
» several types exist
» we consider (today)

> link state
> shortest path

> IGP (Interior Gateway Protocol)
routing protocols

Communications Network Design: lecture 06 — p.8/43

Communications Network Design: lecture 06 — p.7/43

Communications Network Design: lecture 06 — p.8/43

Notation and Assumptions

The underlying structure is a graph, with

» aset of hodes N={1,2 ...n} (also called vertex)
IN| =n
> a hode could be a router, an AS, a PoP, ...

» aset of links E C N x N (also called edges)
EC{(i,j):i,jeN,i#]j}
[E|<n(n—1)/2
> a link could be a physical link, logical circuit, ...

» assume the links are undirected, so
0.3) = (1.1
> this just makes descriptions easier
> easily generalized to directed graphs

» The network is defined by the graph, G(N,E)

Communications Network Design: lecture 06 — p.9/43

Notation and Assumptions

» Origin-Destination (O-D) pair (p,q) € N x N
» Let K be the set of all O-D pairs
K={lp.d:p,geN}.
» Offered traffic between O-D pair (p,q) is tpq
» The set of paths in G(N,E) joining an O-D pair (p,q)
is denoted Py
> paths are assumed to be a-cyclic
> e.g. no node is visited twice
> e.g. loop free

» The set of all paths in G(N,E) is denoted P.
P = Ujp.gekPog

Communications Network Design: lecture 06 — p.10/43

You need to know this notation: we will use it throughout the course!

Communications Network Design: lecture 06 — p.9/43

You need to know this notation: we will use it throughout the course!

Communications Network Design: lecture 06 — p.10/43

Network Paths

Communications Network Design: lecture 06 — p.11/43

Notation and Assumptions

» Each link e € E has a capacity, denoted by re(> 0).

> In communication networks, this is the maximum
service rate, with units of bits/sec ("bit rate").

> If links are uncapacitated,

[o, VeckE
710 VedE

» Links have a physical distance, often measured in
terms of propagation delays de(> 0).

> Where required, assume d. = «, Ve¢ E

Communications Network Design: lecture 06 — p.12/43

Communications Network Design: lecture 06 — p.11/43

Communications Network Design: lecture 06 — p.12/43

Routing

» inessence, routing maps

> end-fo-end traffic from p to q, i.e. tyq

> to end-to-end paths in Py

> to links in E
» there are very many paths

> can't search them all

> have to be clever about choice of paths
» can use multiple paths

> load-balancing — spreads load over paths

Communications Network Design: lecture 06 — p.13/43

Routing

Want to route traffic t,q from node p to q

Decision variables are x,
X, = traffic allocated to path pe P.

Note that x, > 0 and for all [p,q] € K and

Xy = Tpg

HEFpq

Also the x, are disjoint
» traffic routed on path p e Py comes from only ty.
The vector x = (x,: L€ P) is called the routing.

Communications Network Design: lecture 06 — p.14/43

Communications Network Design: lecture 06 — p.13/43

Communications Network Design: lecture 06 — p.14/43

Routing costs

Any routing induces loads on a link

» Denote the load on link e € E by fe.
> In directed networks, load is called flow

» link loads are obtained by summing the traffic
allocated to all paths containing the link e.

fe - Z XIJ
perPecu

» The vector f=(f.:ecE) is called the load on the
network.

Communications Network Design: lecture 06 — p.15/43

Routing costs

Assume that load induces cost
» loads cause congestion
> increases delays
> can be seen as a type of cost

» we may purchase network capacity from a provider
> they may charge based on usage
» as network grows

> we add capacity

> if more load on links, we need to add capacity
sooner, which costs us more

» The cost of the network for a given load f is C(f)

Communications Network Design: lecture 06 — p.16/43

Communications Network Design: lecture 06 — p.15/43

Communications Network Design: lecture 06 — p.16/43

Routing problem

The Routing Problem: Determine the optimal routing x

to minimise C(f)

Formulation: minimize C(f) s.t.
fe = X, VeeE
pePiecp
Xy > 0, VueP
XM - th7 v[paq]EK
HEFpq
fe < re, VecE

Communications Network Design: lecture 06 — p.17/43

Routing problem

The Routing Problem: Determine the optimal routing x
to minimise C(f)

— |
induced loads

.
routing

/
traffic
conservation

Formulation: minimize C(f) s.t.
| edges

| paths

N

O-D pairs

fe S?

capacity constraints

Communications Network Design: lecture 06 — p.18/43

Communications Network Design: lecture 06 — p.17/43

Communications Network Design: lecture 06 — p.18/43

Linear costs

» Remove capacity constraints
» Assume linear costs, with generic weights ae

CH)=Y aefe,
ee; ele

» then the cost of using the link is directly
proportional to the load on the link, i.e.

C(fe) O fe

0e>0,VecE

» O is sometimes called
> the length of the link

> the link weight
> the link cost

Communications Network Design: lecture 06 — p.19/43

Path lengths

Then, in terms of the decision variables,

c(f) = e;aefe

-5 20)

= qu Xu

neP \ &
=
pe
» |y =S 0e is called the cost, or length of path ucP.
» It is the sum of all the link costs along the path

» Relationship between link cost, and path length
> longer paths use more resources

Communications Network Design: lecture 06 — p.20/43

Communications Network Design: lecture 06 — p.19/43

Communications Network Design: lecture 06 — p.20/43

Network path-length example Linear costs => shortest path routing

We want to minimize C(f) =) defe=) |
eZE ele MZP uXp

» find minimum length paths g =min{l,: pe Py}
» put all fraffic tyg on a minimum length path
» then we get cost

A

C(f) = Z'uxu: > Ipatpg
He [pajeK

» problem solved!
> we just have to find shortest paths

Two possible paths from 1 -> 2

» Path 1 (1-2), and has length 1, =7 x Dijkstra's algorithm
» Path 2 (1-3-2), and has length |, =4+4=8 * Floyd-Warshall algorithm
Communications Network Design: lecture 06 — p.21/43 Communications Network Design: lecture 06 — p.22/43

Communications Network Design: lecture 06 — p.21/43 Communications Network Design: lecture 06 — p.22/43

Special case

» the network is fully meshed (a clique),
E={(,]), Vi,jeN,i #j}
» the a. satisfy the triangle inequality i.e.
Qik < 0jj +0k, VikjeN
» Then the path of minimum cost between any two

nodes p,q is the direct link (p,q).

» That is, we route all offered traffic tpq directly
from pto q.
» This network is called:

a fully meshed network (or clique) with direct link
routing.

Communications Network Design: lecture 06 — p.23/43

Triangle inequality

Qik < ajj +0j, VikjeN

Communications Network Design: lecture 06 — p.24/43

Communications Network Design: lecture 06 — p.23/43

Communications Network Design: lecture 06 — p.24/43

Dijkstra's algorithm

» most networks are not cliques
» fast method to find shortest paths is Dijkstra's
algorithm [1]
> Edsger Dijkstra (1930-2002)
x Dutch computer scientist
x Turing prize winner 1972.
x "Goto Statement Considered Harmful" paper

» find distance of all nodes from one start point

» works by finding paths in order of shortest first
> longer paths are built up of shorter paths

Communications Network Design: lecture 06 — p.25/43

Dijkstra's algorithm

Input
» graph (N,E)
» link weights o, define link distances
0 ifi=]
dj =< de where (i,j)=ecE

o where (i,j)=e¢E

» a start node, WLOG assume it is node 1
Output

» distances D; of each node j € N from start node 1.
» a predecessor node for each node (gives path)

Communications Network Design: lecture 06 — p.26/43

Communications Network Design: lecture 06 — p.25/43

WLOG = Without Loss of Generality

Communications Network Design: lecture 06 — p.26/43

Dijkstra's algorithm

Let Sbe the set of labelled nodes.

Initialise: S= {1},
D1=0,
Dj =d1j, Vj QS, i.e. J 751

Step 1: Find the next closest node
Find i ¢ Ssuch that Di =min{D;: j ¢ S}
Set S=SuU({i}.
If S=N, stop

Step 2: Find new distances
Forall j ¢S, set
Dj = min{Dj,Di +dij}
Goto Step 1.

Communications Network Design: lecture 06 — p.27/43

Dijkstra Example

start node

Communications Network Design: lecture 06 — p.28/43

When we initialize Dijkstra, the initial distances D; = d;; are implicitly set to « for any nodes
not directly connected to node 1.

Step 1 selects a new node to add to our set of labelled nodes. It chooses the node (from the
unlabelled set) that is closest (as measured by the current vector D) to the starting node.

Step 2 updates the distance vector D. The distances for the labelled nodes don’t change, but
for the unlabelled nodes, we set the distance to be the minimum of the distance to a labelled
node, and then from that node to the start point.

Communications Network Design: lecture 06 — p.27/43

Dijkstra Example

Initialise

D=(0,6,3, ,)

Communications Network Design: lecture 06 — p.29/43

Dijkstra Example

Step 1

@ O

3 ®

S={1,3} D=(0,6,3, ,)

Communications Network Design: lecture 06 — p.30/43

Dijkstra Example

Step 1

S={1,3,4}

5 O
D=(0,5,3,4,9)

Communications Network Design: lecture 06 — p.32/43

Dijkstra Example

Step 2

5
b= (@éi’nggld

S=({1,3}

Communications Network Design: lecture 06 — p.31/43

Dijkstra Example

Step 2

S={1,3,4}

D=(0,5,3,4,9)

Communications Network Design: lecture 06 — p.33/43

Dijkstra Example

Step 1

49

5

S={1,3,4,2}

O

D=(0,5,3,4,9)

Communications Network Design: lecture 06 — p.34/43

Dijkstra Example

O,

S={1,3,4,2,5} D=(0,5,3,4,6)

Communications Network Design: lecture 06 — p.36/43

Dijkstra Example

Step 2

S={1,3,4,2}

D=(0,5,3,4

changed

Communications Network Design: lecture 06 — p.35/43

Communications Network Design: lecture 06 — p.36/43

Dijkstra Result

SPF tree

S={1,3,4,2,5} D=(0,5,3,4,6)

Communications Network Design: lecture 06 — p.37/43

Dijkstra intuition

» build a (Shortest-Path First) SPF tree
» let it grow
» grow by adding shortest paths onto it

» solution must look like a tree

> to get paths, we only need to keep track of
predecessors, e.g. previous example

node | predecessor

o bW
nN w = w

Communications Network Design: lecture 06 — p.38/43

Communications Network Design: lecture 06 — p.37/43

The result of Dijkstra is a tree connecting all nodes back to the initial node. The predecessor
of each node can be thought of as its parent in the tree. Given the parents of each node, the

tree is completely defined, and so hence are the paths from each node back to the starting
node.

Communications Network Design: lecture 06 — p.38/43

Dijkstra issues

» Dijkstra's algorithm solves single-source
all-destinations problem
» easily extended to a directed graph
> can only join up in the direction of a link

» link-distances (weights) must be non-negative

> there are generalizations to deal with negative
weights

> not often needed for communications networks

For more examples use
http://carbon. cudenver. edu/ ~hgr eenbe/ sessi ons/ di j kstra/ Di j kstraAppl et. ht m

Communications Network Design: lecture 06 — p.39/43

Dijkstra complexity

» simple implementation complexity O(|N|?)
» Cisco's implementation of Dijkstra tested in [2]

comp.time = 2.53N? — 125N 4 1200microseconds

» complexity (assuming smart data structures, i.e.
Fibonacci heap) is
O(|E|+[N[log|NJ),
> |E| = number of edges
> |N| = number of nodes
» to compute paths for all pairs, we can perform

Dijkstra for each starting point, with complexity
O(INJE| +[N[?log|N]),

Communications Network Design: lecture 06 — p.40/43

Communications Network Design: lecture 06 — p.39/43

Communications Network Design: lecture 06 — p.40/43

http://carbon.cudenver.edu/~hgreenbe/sessions/dijkstra/DijkstraApplet.html

Dijkstra complexity

Empirical Cisco 7500 and 12000 (6SR) computation
times for Dijkstra [2]

computation time (ms)

450

400

N W W
a o u
o O O

N
o
(=)

0 100 200 300 400

2.53N% — 125N + 120Qu

Number of nodes N

Communications Network Design: lecture 06 — p.41/43

Sketch of proof of Dijkstra

Dijkstra's algorithm solves the single-source shortest-paths problem
in networks that have nonnegative weights.

Proof: Call the source node s the root, then we need to show that the
paths from s to each node x corresponds to a shortest path in the
graph from s to x. Note that this set of paths forms a tree out of a
subset of edges of the graph.

The proof uses induction. We assume that the subtree formed at
some point along the algorithm has the property (of shortest paths).
Clearly the starting point satisfies this assumption, so we need only
prove that adding a new node x adds a shortest path to that node. All
other paths to x must begin with a path from the current subtree
(because these are shortest paths) followed by an edge to a node not
on the tree. By construction, all such paths are longer than the one
from s to x that is produced by Dijkstra.

Communications Network Design: lecture 06 — p.42/43

Communications Network Design: lecture 06 — p.41/43

Communications Network Design: lecture 06 — p.42/43

References

[1] E. Dijkstra, "A note in two problems in connexion with graphs,” Numerische
Mathematik, vol. 1, pp. 269-271, 1959.

[2] A. Shaikh and A. Greenberg, "Experience in black-box OSPF measurement,” in Proc.
ACM SIGCOMM Internet Measurement Workshop, pp. 113-125, 2001.

Communications Network Design: lecture 06 — p.43/43

	
	
	
	Logical vs Physical Network
	
	Logical vs Physical Network
	
	Logical vs Physical Network
	
	Mapping the logical to the physical
	
	Circuit switching won't go away
	
	Routing
	
	Notation and Assumptions
	
	Notation and Assumptions
	
	Network Paths
	
	Notation and Assumptions
	
	Routing
	
	Routing
	
	Routing costs
	
	Routing costs
	
	Routing problem
	
	Routing problem
	
	Linear costs
	
	Path lengths
	
	Network path-length example
	
	Linear costs => shortest path routing
	
	Special case
	
	Triangle inequality
	
	Dijkstra's algorithm
	
	Dijkstra's algorithm
	
	Dijkstra's algorithm
	
	Dijkstra Example
	Dijkstra Example
	Dijkstra Example
	Dijkstra Example
	Dijkstra Example
	Dijkstra Example
	Dijkstra Example
	Dijkstra Example
	Dijkstra Example
	
	Dijkstra Result
	
	Dijkstra intuition
	
	Dijkstra issues
	
	Dijkstra complexity
	
	Dijkstra complexity
	
	Sketch of proof of Dijkstra
	
	

